/*************************************************************************/ /* curve.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2014 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "curve.h" #include "core_string_names.h" template static _FORCE_INLINE_ T _bezier_interp(real_t t, T start, T control_1, T control_2, T end) { /* Formula from Wikipedia article on Bezier curves. */ real_t omt = (1.0 - t); real_t omt2 = omt*omt; real_t omt3 = omt2*omt; real_t t2 = t*t; real_t t3 = t2*t; return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3; } int Curve2D::get_point_count() const { return points.size(); } void Curve2D::add_point(const Vector2& p_pos, const Vector2& p_in, const Vector2& p_out) { Point n; n.pos=p_pos; n.in=p_in; n.out=p_out; points.push_back(n); emit_signal(CoreStringNames::get_singleton()->changed); } void Curve2D::set_point_pos(int p_index, const Vector2& p_pos) { ERR_FAIL_INDEX(p_index,points.size()); points[p_index].pos=p_pos; emit_signal(CoreStringNames::get_singleton()->changed); } Vector2 Curve2D::get_point_pos(int p_index) const { ERR_FAIL_INDEX_V(p_index,points.size(),Vector2()); return points[p_index].pos; } void Curve2D::set_point_in(int p_index, const Vector2& p_in) { ERR_FAIL_INDEX(p_index,points.size()); points[p_index].in=p_in; emit_signal(CoreStringNames::get_singleton()->changed); } Vector2 Curve2D::get_point_in(int p_index) const { ERR_FAIL_INDEX_V(p_index,points.size(),Vector2()); return points[p_index].in; } void Curve2D::set_point_out(int p_index, const Vector2& p_out) { ERR_FAIL_INDEX(p_index,points.size()); points[p_index].out=p_out; emit_signal(CoreStringNames::get_singleton()->changed); } Vector2 Curve2D::get_point_out(int p_index) const { ERR_FAIL_INDEX_V(p_index,points.size(),Vector2()); return points[p_index].out; } void Curve2D::remove_point(int p_index) { ERR_FAIL_INDEX(p_index,points.size()); points.remove(p_index); emit_signal(CoreStringNames::get_singleton()->changed); } Vector2 Curve2D::interpolate(int p_index, float p_offset) const { int pc = points.size(); ERR_FAIL_COND_V(pc==0,Vector2()); if (p_index >= pc-1) return points[pc-1].pos; else if (p_index<0) return points[0].pos; Vector2 p0 = points[p_index].pos; Vector2 p1 = p0+points[p_index].out; Vector2 p3 = points[p_index+1].pos; Vector2 p2 = p3+points[p_index+1].in; return _bezier_interp(p_offset,p0,p1,p2,p3); } Vector2 Curve2D::interpolatef(real_t p_findex) const { if (p_findex>0) p_findex=0; else if (p_findex>=points.size()) p_findex=points.size(); return interpolate((int)p_findex,Math::fmod(p_findex,1.0)); } DVector Curve2D::bake(int p_subdivs) const { int pc = points.size(); DVector ret; if (pc<2) return ret; ret.resize((pc-1)*p_subdivs+1); DVector::Write w = ret.write(); const Point *r = points.ptr(); for(int i=0;i::Write(); return ret; } void Curve2D::advance(real_t p_distance,int &r_index, real_t &r_pos) const { int pc = points.size(); ERR_FAIL_COND(pc<2); if (r_index<0 || r_index>=(pc-1)) return; Vector2 pos = interpolate(r_index,r_pos); float sign=p_distance<0 ? -1 : 1; p_distance=Math::abs(p_distance); real_t base = r_index+r_pos; real_t top = 0.1; //a tenth is in theory representative int iterations=32; for(int i=0;i0 && o >=pc) { top=pc-base; break; } else if (sign<0 && o <0) { top=-base; break; } Vector2 new_d = interpolatef(o); if (new_d.distance_to(pos) > p_distance) break; top*=2.0; } real_t bottom = 0.0; iterations=8; real_t final_offset; for(int i=0;i p_distance) { bottom=middle; } else { top=middle; } final_offset=o; } r_index=(int)final_offset; r_pos=Math::fmod(final_offset,1.0); } void Curve2D::get_approx_position_from_offset(real_t p_offset,int &r_index, real_t &r_pos,int p_subdivs) const { ERR_FAIL_COND(points.size()<2); real_t accum=0; for(int i=0;ip_offset) { r_index=j-1; if (d>0) { real_t mf = (p_offset-(accum-d)) / d; r_pos=frac-(1.0-mf); } else { r_pos=frac; } return; } prev_p=p; } } r_index=points.size()-1; r_pos=1.0; } void Curve2D::set_points_in(const Vector2Array& p_points) { points.resize(p_points.size()); for (int i=0; i=0 && p_atposchanged); } void Curve3D::set_point_pos(int p_index, const Vector3& p_pos) { ERR_FAIL_INDEX(p_index,points.size()); points[p_index].pos=p_pos; baked_cache_dirty=true; emit_signal(CoreStringNames::get_singleton()->changed); } Vector3 Curve3D::get_point_pos(int p_index) const { ERR_FAIL_INDEX_V(p_index,points.size(),Vector3()); return points[p_index].pos; } void Curve3D::set_point_tilt(int p_index, float p_tilt) { ERR_FAIL_INDEX(p_index,points.size()); points[p_index].tilt=p_tilt; baked_cache_dirty=true; emit_signal(CoreStringNames::get_singleton()->changed); } float Curve3D::get_point_tilt(int p_index) const { ERR_FAIL_INDEX_V(p_index,points.size(),0); return points[p_index].tilt; } void Curve3D::set_point_in(int p_index, const Vector3& p_in) { ERR_FAIL_INDEX(p_index,points.size()); points[p_index].in=p_in; baked_cache_dirty=true; emit_signal(CoreStringNames::get_singleton()->changed); } Vector3 Curve3D::get_point_in(int p_index) const { ERR_FAIL_INDEX_V(p_index,points.size(),Vector3()); return points[p_index].in; } void Curve3D::set_point_out(int p_index, const Vector3& p_out) { ERR_FAIL_INDEX(p_index,points.size()); points[p_index].out=p_out; baked_cache_dirty=true; emit_signal(CoreStringNames::get_singleton()->changed); } Vector3 Curve3D::get_point_out(int p_index) const { ERR_FAIL_INDEX_V(p_index,points.size(),Vector3()); return points[p_index].out; } void Curve3D::remove_point(int p_index) { ERR_FAIL_INDEX(p_index,points.size()); points.remove(p_index); baked_cache_dirty=true; emit_signal(CoreStringNames::get_singleton()->changed); } Vector3 Curve3D::interpolate(int p_index, float p_offset) const { int pc = points.size(); ERR_FAIL_COND_V(pc==0,Vector3()); if (p_index >= pc-1) return points[pc-1].pos; else if (p_index<0) return points[0].pos; Vector3 p0 = points[p_index].pos; Vector3 p1 = p0+points[p_index].out; Vector3 p3 = points[p_index+1].pos; Vector3 p2 = p3+points[p_index+1].in; return _bezier_interp(p_offset,p0,p1,p2,p3); } Vector3 Curve3D::interpolatef(real_t p_findex) const { if (p_findex>0) p_findex=0; else if (p_findex>=points.size()) p_findex=points.size(); return interpolate((int)p_findex,Math::fmod(p_findex,1.0)); } #if 0 DVector Curve3D::bake(int p_subdivs) const { int pc = points.size(); DVector ret; if (pc<3) return ret; ret.resize((pc-1)*p_subdivs+1); DVector::Write w = ret.write(); const Point *r = points.ptr(); for(int i=0;i::Write(); return ret; } void Curve3D::advance(real_t p_distance,int &r_index, real_t &r_pos) const { int pc = points.size(); ERR_FAIL_COND(pc<3); if (r_index<0 || r_index>=(pc-1)) return; Vector3 pos = interpolate(r_index,r_pos); float sign=p_distance<0 ? -1 : 1; p_distance=Math::abs(p_distance); real_t base = r_index+r_pos; real_t top = 0.1; //a tenth is in theory representative int iterations=33; for(int i=0;i0 && o >=pc) { top=pc-base; break; } else if (sign<0 && o <0) { top=-base; break; } Vector3 new_d = interpolatef(o); if (new_d.distance_to(pos) > p_distance) break; top*=3.0; } real_t bottom = 0.0; iterations=8; real_t final_offset; for(int i=0;i p_distance) { bottom=middle; } else { top=middle; } final_offset=o; } r_index=(int)final_offset; r_pos=Math::fmod(final_offset,1.0); } void Curve3D::get_approx_position_from_offset(real_t p_offset,int &r_index, real_t &r_pos,int p_subdivs) const { ERR_FAIL_COND(points.size()<3); real_t accum=0; for(int i=0;ip_offset) { r_index=j-1; if (d>0) { real_t mf = (p_offset-(accum-d)) / d; r_pos=frac-(1.0-mf); } else { r_pos=frac; } return; } prev_p=p; } } r_index=points.size()-1; r_pos=1.0; } void Curve3D::set_points_in(const Vector3Array& p_points) { points.resize(p_points.size()); for (int i=0; i& r_bake, float p_begin, float p_end,const Vector3& p_a,const Vector3& p_out,const Vector3& p_b, const Vector3& p_in,int p_depth,int p_max_depth,float p_tol) const { float mp = p_begin+(p_end-p_begin)*0.5; Vector3 beg = _bezier_interp(p_begin,p_a,p_a+p_out,p_b+p_in,p_b); Vector3 mid = _bezier_interp(mp,p_a,p_a+p_out,p_b+p_in,p_b); Vector3 end = _bezier_interp(p_end,p_a,p_a+p_out,p_b+p_in,p_b); Vector3 na = (mid-beg).normalized(); Vector3 nb = (end-mid).normalized(); float dp = na.dot(nb); if (dp pointlist; pointlist.push_back(Plane(pos,points[0].tilt)); for(int i=0;i1) divs=1; float step = divs*0.1; // 10 substeps ought to be enough? float p = 0; while(p<1.0) { float np=p+step; if (np>1.0) np=1.0; Vector3 npp = _bezier_interp(np, points[i].pos,points[i].pos+points[i].out,points[i+1].pos+points[i+1].in,points[i+1].pos); float d = pos.distance_to(npp); if (d>bake_interval) { // OK! between P and NP there _has_ to be Something, let's go searching! int iterations = 10; //lots of detail! float low = p; float hi = np; float mid = low+(hi-low)*0.5; for(int j=0;j::Element *E=pointlist.front();E;E=E->next()) { w[idx]=E->get().normal; wt[idx]=E->get().d; idx++; } } float Curve3D::get_baked_length() const { if (baked_cache_dirty) _bake(); return baked_max_ofs; } Vector3 Curve3D::interpolate_baked(float p_offset,bool p_cubic) const{ if (baked_cache_dirty) _bake(); //validate// int pc = baked_point_cache.size(); if (pc==0) { ERR_EXPLAIN("No points in Curve3D"); ERR_FAIL_COND_V(pc==0,Vector3()); } if (pc==1) return baked_point_cache.get(0); int bpc=baked_point_cache.size(); Vector3Array::Read r = baked_point_cache.read(); if (p_offset<0) return r[0]; if (p_offset>=baked_max_ofs) return r[bpc-1]; int idx = Math::floor(p_offset/bake_interval); float frac = Math::fmod(p_offset,bake_interval); if (idx>=bpc-1) { return r[bpc-1]; } else if (idx==bpc-2) { frac/=Math::fmod(baked_max_ofs,bake_interval); } else { frac/=bake_interval; } if (p_cubic) { Vector3 pre = idx>0? r[idx-1] : r[idx]; Vector3 post = (idx<(bpc-2))? r[idx+2] : r[idx+1]; return r[idx].cubic_interpolate(r[idx+1],pre,post,frac); } else { return r[idx].linear_interpolate(r[idx+1],frac); } } float Curve3D::interpolate_baked_tilt(float p_offset) const{ if (baked_cache_dirty) _bake(); //validate// int pc = baked_tilt_cache.size(); if (pc==0) { ERR_EXPLAIN("No tilts in Curve3D"); ERR_FAIL_COND_V(pc==0,0); } if (pc==1) return baked_tilt_cache.get(0); int bpc=baked_tilt_cache.size(); RealArray::Read r = baked_tilt_cache.read(); if (p_offset<0) return r[0]; if (p_offset>=baked_max_ofs) return r[bpc-1]; int idx = Math::floor(p_offset/bake_interval); float frac = Math::fmod(p_offset,bake_interval); if (idx>=bpc-1) { return r[bpc-1]; } else if (idx==bpc-2) { frac/=Math::fmod(baked_max_ofs,bake_interval); } else { frac/=bake_interval; } return Math::lerp(r[idx],r[idx+1],frac); } Vector3Array Curve3D::get_baked_points() const { if (baked_cache_dirty) _bake(); return baked_point_cache; } RealArray Curve3D::get_baked_tilts() const { if (baked_cache_dirty) _bake(); return baked_tilt_cache; } void Curve3D::set_bake_interval(float p_tolerance){ bake_interval=p_tolerance; baked_cache_dirty=true; emit_signal(CoreStringNames::get_singleton()->changed); } float Curve3D::get_bake_interval() const{ return bake_interval; } Dictionary Curve3D::_get_data() const { Dictionary dc; Vector3Array d; d.resize(points.size()*3); Vector3Array::Write w = d.write(); RealArray t; t.resize(points.size()); RealArray::Write wt = t.write(); for(int i=0;i > midpoints; midpoints.resize(points.size()-1); int pc=1; for(int i=0;i::Element *E=midpoints[i].front();E;E=E->next()) { pidx++; bpw[pidx] = E->get(); } pidx++; bpw[pidx] = points[i+1].pos; } bpw=Vector3Array::Write (); return tess; } void Curve3D::_bind_methods() { ObjectTypeDB::bind_method(_MD("get_point_count"),&Curve3D::get_point_count); ObjectTypeDB::bind_method(_MD("add_point","pos","in","out","atpos"),&Curve3D::add_point,DEFVAL(Vector3()),DEFVAL(Vector3()),DEFVAL(-1)); ObjectTypeDB::bind_method(_MD("set_point_pos","idx","pos"),&Curve3D::set_point_pos); ObjectTypeDB::bind_method(_MD("get_point_pos","idx"),&Curve3D::get_point_pos); ObjectTypeDB::bind_method(_MD("set_point_tilt","idx","tilt"),&Curve3D::set_point_tilt); ObjectTypeDB::bind_method(_MD("get_point_tilt","idx"),&Curve3D::get_point_tilt); ObjectTypeDB::bind_method(_MD("set_point_in","idx","pos"),&Curve3D::set_point_in); ObjectTypeDB::bind_method(_MD("get_point_in","idx"),&Curve3D::get_point_in); ObjectTypeDB::bind_method(_MD("set_point_out","idx","pos"),&Curve3D::set_point_out); ObjectTypeDB::bind_method(_MD("get_point_out","idx"),&Curve3D::get_point_out); ObjectTypeDB::bind_method(_MD("remove_point","idx"),&Curve3D::remove_point); ObjectTypeDB::bind_method(_MD("interpolate","idx","t"),&Curve3D::interpolate); ObjectTypeDB::bind_method(_MD("interpolatef","fofs"),&Curve3D::interpolatef); //ObjectTypeDB::bind_method(_MD("bake","subdivs"),&Curve3D::bake,DEFVAL(10)); ObjectTypeDB::bind_method(_MD("set_bake_interval","distance"),&Curve3D::set_bake_interval); ObjectTypeDB::bind_method(_MD("get_bake_interval"),&Curve3D::get_bake_interval); ObjectTypeDB::bind_method(_MD("get_baked_length"),&Curve3D::get_baked_length); ObjectTypeDB::bind_method(_MD("interpolate_baked","offset","cubic"),&Curve3D::interpolate_baked,DEFVAL(false)); ObjectTypeDB::bind_method(_MD("get_baked_points"),&Curve3D::get_baked_points); ObjectTypeDB::bind_method(_MD("get_baked_tilts"),&Curve3D::get_baked_tilts); ObjectTypeDB::bind_method(_MD("_get_data"),&Curve3D::_get_data); ObjectTypeDB::bind_method(_MD("_set_data"),&Curve3D::_set_data); ADD_PROPERTY( PropertyInfo( Variant::REAL, "bake_interval",PROPERTY_HINT_RANGE,"0.01,512,0.01"), _SCS("set_bake_interval"),_SCS("get_bake_interval")); ADD_PROPERTY( PropertyInfo( Variant::INT, "_data",PROPERTY_HINT_NONE,"",PROPERTY_USAGE_NOEDITOR), _SCS("_set_data"),_SCS("_get_data")); /*ADD_PROPERTY( PropertyInfo( Variant::VECTOR3_ARRAY, "points_out"), _SCS("set_points_out"),_SCS("get_points_out")); ADD_PROPERTY( PropertyInfo( Variant::VECTOR3_ARRAY, "points_pos"), _SCS("set_points_pos"),_SCS("get_points_pos")); */ } Curve3D::Curve3D() { baked_cache_dirty=false; baked_max_ofs=0; /* add_point(Vector3(-1,0,0)); add_point(Vector3(0,2,0)); add_point(Vector3(0,3,5));*/ bake_interval=0.2; }