/*************************************************************************/ /* texture_loader_pvr.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* https://godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2019 Juan Linietsky, Ariel Manzur. */ /* Copyright (c) 2014-2019 Godot Engine contributors (cf. AUTHORS.md) */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "texture_loader_pvr.h" #include "PvrTcEncoder.h" #include "RgbaBitmap.h" #include "core/os/file_access.h" #include #include static void _pvrtc_decompress(Image *p_img); enum PVRFLags { PVR_HAS_MIPMAPS = 0x00000100, PVR_TWIDDLED = 0x00000200, PVR_NORMAL_MAP = 0x00000400, PVR_BORDER = 0x00000800, PVR_CUBE_MAP = 0x00001000, PVR_FALSE_MIPMAPS = 0x00002000, PVR_VOLUME_TEXTURES = 0x00004000, PVR_HAS_ALPHA = 0x00008000, PVR_VFLIP = 0x00010000 }; RES ResourceFormatPVR::load(const String &p_path, const String &p_original_path, Error *r_error) { if (r_error) *r_error = ERR_CANT_OPEN; Error err; FileAccess *f = FileAccess::open(p_path, FileAccess::READ, &err); if (!f) return RES(); FileAccessRef faref(f); ERR_FAIL_COND_V(err, RES()); if (r_error) *r_error = ERR_FILE_CORRUPT; uint32_t hsize = f->get_32(); ERR_FAIL_COND_V(hsize != 52, RES()); uint32_t height = f->get_32(); uint32_t width = f->get_32(); uint32_t mipmaps = f->get_32(); uint32_t flags = f->get_32(); uint32_t surfsize = f->get_32(); f->seek(f->get_position() + 20); // bpp, rmask, gmask, bmask, amask uint8_t pvrid[5] = { 0, 0, 0, 0, 0 }; f->get_buffer(pvrid, 4); ERR_FAIL_COND_V(String((char *)pvrid) != "PVR!", RES()); f->get_32(); // surfcount /* print_line("height: "+itos(height)); print_line("width: "+itos(width)); print_line("mipmaps: "+itos(mipmaps)); print_line("flags: "+itos(flags)); print_line("surfsize: "+itos(surfsize)); print_line("bpp: "+itos(bpp)); print_line("rmask: "+itos(rmask)); print_line("gmask: "+itos(gmask)); print_line("bmask: "+itos(bmask)); print_line("amask: "+itos(amask)); print_line("surfcount: "+itos(surfcount)); */ PoolVector data; data.resize(surfsize); ERR_FAIL_COND_V(data.size() == 0, RES()); PoolVector::Write w = data.write(); f->get_buffer(&w[0], surfsize); err = f->get_error(); ERR_FAIL_COND_V(err != OK, RES()); Image::Format format = Image::FORMAT_MAX; switch (flags & 0xFF) { case 0x18: case 0xC: format = (flags & PVR_HAS_ALPHA) ? Image::FORMAT_PVRTC2A : Image::FORMAT_PVRTC2; break; case 0x19: case 0xD: format = (flags & PVR_HAS_ALPHA) ? Image::FORMAT_PVRTC4A : Image::FORMAT_PVRTC4; break; case 0x16: format = Image::FORMAT_L8; break; case 0x17: format = Image::FORMAT_LA8; break; case 0x20: case 0x80: case 0x81: format = Image::FORMAT_DXT1; break; case 0x21: case 0x22: case 0x82: case 0x83: format = Image::FORMAT_DXT3; break; case 0x23: case 0x24: case 0x84: case 0x85: format = Image::FORMAT_DXT5; break; case 0x4: case 0x15: format = Image::FORMAT_RGB8; break; case 0x5: case 0x12: format = Image::FORMAT_RGBA8; break; case 0x36: format = Image::FORMAT_ETC; break; default: ERR_EXPLAIN("Unsupported format in PVR texture: " + itos(flags & 0xFF)); ERR_FAIL_V(RES()); } w = PoolVector::Write(); int tex_flags = Texture::FLAG_FILTER | Texture::FLAG_REPEAT; if (mipmaps) tex_flags |= Texture::FLAG_MIPMAPS; Ref image = memnew(Image(width, height, mipmaps, format, data)); ERR_FAIL_COND_V(image->empty(), RES()); Ref texture = memnew(ImageTexture); texture->create_from_image(image, tex_flags); if (r_error) *r_error = OK; return texture; } void ResourceFormatPVR::get_recognized_extensions(List *p_extensions) const { p_extensions->push_back("pvr"); } bool ResourceFormatPVR::handles_type(const String &p_type) const { return ClassDB::is_parent_class(p_type, "Texture"); } String ResourceFormatPVR::get_resource_type(const String &p_path) const { if (p_path.get_extension().to_lower() == "pvr") return "Texture"; return ""; } static void _compress_pvrtc4(Image *p_img) { Ref img = p_img->duplicate(); bool make_mipmaps = false; if (!img->is_size_po2() || img->get_width() != img->get_height()) { make_mipmaps = img->has_mipmaps(); img->resize_to_po2(true); } img->convert(Image::FORMAT_RGBA8); if (!img->has_mipmaps() && make_mipmaps) img->generate_mipmaps(); bool use_alpha = img->detect_alpha(); Ref new_img; new_img.instance(); new_img->create(img->get_width(), img->get_height(), img->has_mipmaps(), use_alpha ? Image::FORMAT_PVRTC4A : Image::FORMAT_PVRTC4); PoolVector data = new_img->get_data(); { PoolVector::Write wr = data.write(); PoolVector::Read r = img->get_data().read(); for (int i = 0; i <= new_img->get_mipmap_count(); i++) { int ofs, size, w, h; img->get_mipmap_offset_size_and_dimensions(i, ofs, size, w, h); Javelin::RgbaBitmap bm(w, h); for (int j = 0; j < size / 4; j++) { Javelin::ColorRgba *dp = bm.GetData(); /* red and Green colors are swapped. */ new (dp) Javelin::ColorRgba(r[ofs + 4 * j + 2], r[ofs + 4 * j + 1], r[ofs + 4 * j], r[ofs + 4 * j + 3]); } new_img->get_mipmap_offset_size_and_dimensions(i, ofs, size, w, h); Javelin::PvrTcEncoder::EncodeRgba4Bpp(&wr[ofs], bm); } } p_img->create(new_img->get_width(), new_img->get_height(), new_img->has_mipmaps(), new_img->get_format(), data); } ResourceFormatPVR::ResourceFormatPVR() { Image::_image_decompress_pvrtc = _pvrtc_decompress; Image::_image_compress_pvrtc4_func = _compress_pvrtc4; Image::_image_compress_pvrtc2_func = _compress_pvrtc4; } ///////////////////////////////////////////////////////// //PVRTC decompressor, Based on PVRTC decompressor by IMGTEC. ///////////////////////////////////////////////////////// #define PT_INDEX 2 #define BLK_Y_SIZE 4 #define BLK_X_MAX 8 #define BLK_X_2BPP 8 #define BLK_X_4BPP 4 #define WRAP_COORD(Val, Size) ((Val) & ((Size)-1)) /* Define an expression to either wrap or clamp large or small vals to the legal coordinate range */ #define LIMIT_COORD(Val, Size, p_tiled) \ ((p_tiled) ? WRAP_COORD((Val), (Size)) : CLAMP((Val), 0, (Size)-1)) struct PVRTCBlock { //blocks are 64 bits uint32_t data[2]; }; _FORCE_INLINE_ bool is_po2(uint32_t p_input) { if (p_input == 0) return 0; uint32_t minus1 = p_input - 1; return ((p_input | minus1) == (p_input ^ minus1)) ? 1 : 0; } static void unpack_5554(const PVRTCBlock *p_block, int p_ab_colors[2][4]) { uint32_t raw_bits[2]; raw_bits[0] = p_block->data[1] & (0xFFFE); raw_bits[1] = p_block->data[1] >> 16; for (int i = 0; i < 2; i++) { if (raw_bits[i] & (1 << 15)) { p_ab_colors[i][0] = (raw_bits[i] >> 10) & 0x1F; p_ab_colors[i][1] = (raw_bits[i] >> 5) & 0x1F; p_ab_colors[i][2] = raw_bits[i] & 0x1F; if (i == 0) p_ab_colors[0][2] |= p_ab_colors[0][2] >> 4; p_ab_colors[i][3] = 0xF; } else { p_ab_colors[i][0] = (raw_bits[i] >> (8 - 1)) & 0x1E; p_ab_colors[i][1] = (raw_bits[i] >> (4 - 1)) & 0x1E; p_ab_colors[i][0] |= p_ab_colors[i][0] >> 4; p_ab_colors[i][1] |= p_ab_colors[i][1] >> 4; p_ab_colors[i][2] = (raw_bits[i] & 0xF) << 1; if (i == 0) p_ab_colors[0][2] |= p_ab_colors[0][2] >> 3; else p_ab_colors[0][2] |= p_ab_colors[0][2] >> 4; p_ab_colors[i][3] = (raw_bits[i] >> 11) & 0xE; } } } static void unpack_modulations(const PVRTCBlock *p_block, const int p_2bit, int p_modulation[8][16], int p_modulation_modes[8][16], int p_x, int p_y) { int block_mod_mode = p_block->data[1] & 1; uint32_t modulation_bits = p_block->data[0]; if (p_2bit && block_mod_mode) { for (int y = 0; y < BLK_Y_SIZE; y++) { for (int x = 0; x < BLK_X_2BPP; x++) { p_modulation_modes[y + p_y][x + p_x] = block_mod_mode; if (((x ^ y) & 1) == 0) { p_modulation[y + p_y][x + p_x] = modulation_bits & 3; modulation_bits >>= 2; } } } } else if (p_2bit) { for (int y = 0; y < BLK_Y_SIZE; y++) { for (int x = 0; x < BLK_X_2BPP; x++) { p_modulation_modes[y + p_y][x + p_x] = block_mod_mode; if (modulation_bits & 1) p_modulation[y + p_y][x + p_x] = 0x3; else p_modulation[y + p_y][x + p_x] = 0x0; modulation_bits >>= 1; } } } else { for (int y = 0; y < BLK_Y_SIZE; y++) { for (int x = 0; x < BLK_X_4BPP; x++) { p_modulation_modes[y + p_y][x + p_x] = block_mod_mode; p_modulation[y + p_y][x + p_x] = modulation_bits & 3; modulation_bits >>= 2; } } } ERR_FAIL_COND(modulation_bits != 0); } static void interpolate_colors(const int p_colorp[4], const int p_colorq[4], const int p_colorr[4], const int p_colors[4], bool p_2bit, const int x, const int y, int r_result[4]) { int u, v, uscale; int k; int tmp1, tmp2; int P[4], Q[4], R[4], S[4]; for (k = 0; k < 4; k++) { P[k] = p_colorp[k]; Q[k] = p_colorq[k]; R[k] = p_colorr[k]; S[k] = p_colors[k]; } v = (y & 0x3) | ((~y & 0x2) << 1); if (p_2bit) u = (x & 0x7) | ((~x & 0x4) << 1); else u = (x & 0x3) | ((~x & 0x2) << 1); v = v - BLK_Y_SIZE / 2; if (p_2bit) { u = u - BLK_X_2BPP / 2; uscale = 8; } else { u = u - BLK_X_4BPP / 2; uscale = 4; } for (k = 0; k < 4; k++) { tmp1 = P[k] * uscale + u * (Q[k] - P[k]); tmp2 = R[k] * uscale + u * (S[k] - R[k]); tmp1 = tmp1 * 4 + v * (tmp2 - tmp1); r_result[k] = tmp1; } if (p_2bit) { for (k = 0; k < 3; k++) { r_result[k] >>= 2; } r_result[3] >>= 1; } else { for (k = 0; k < 3; k++) { r_result[k] >>= 1; } } for (k = 0; k < 4; k++) { ERR_FAIL_COND(r_result[k] >= 256); } for (k = 0; k < 3; k++) { r_result[k] += r_result[k] >> 5; } r_result[3] += r_result[3] >> 4; for (k = 0; k < 4; k++) { ERR_FAIL_COND(r_result[k] >= 256); } } static void get_modulation_value(int x, int y, const int p_2bit, const int p_modulation[8][16], const int p_modulation_modes[8][16], int *r_mod, int *p_dopt) { static const int rep_vals0[4] = { 0, 3, 5, 8 }; static const int rep_vals1[4] = { 0, 4, 4, 8 }; int mod_val; y = (y & 0x3) | ((~y & 0x2) << 1); if (p_2bit) x = (x & 0x7) | ((~x & 0x4) << 1); else x = (x & 0x3) | ((~x & 0x2) << 1); *p_dopt = 0; if (p_modulation_modes[y][x] == 0) { mod_val = rep_vals0[p_modulation[y][x]]; } else if (p_2bit) { if (((x ^ y) & 1) == 0) mod_val = rep_vals0[p_modulation[y][x]]; else if (p_modulation_modes[y][x] == 1) { mod_val = (rep_vals0[p_modulation[y - 1][x]] + rep_vals0[p_modulation[y + 1][x]] + rep_vals0[p_modulation[y][x - 1]] + rep_vals0[p_modulation[y][x + 1]] + 2) / 4; } else if (p_modulation_modes[y][x] == 2) { mod_val = (rep_vals0[p_modulation[y][x - 1]] + rep_vals0[p_modulation[y][x + 1]] + 1) / 2; } else { mod_val = (rep_vals0[p_modulation[y - 1][x]] + rep_vals0[p_modulation[y + 1][x]] + 1) / 2; } } else { mod_val = rep_vals1[p_modulation[y][x]]; *p_dopt = p_modulation[y][x] == PT_INDEX; } *r_mod = mod_val; } static int disable_twiddling = 0; static uint32_t twiddle_uv(uint32_t p_height, uint32_t p_width, uint32_t p_y, uint32_t p_x) { uint32_t twiddled; uint32_t min_dimension; uint32_t max_value; uint32_t scr_bit_pos; uint32_t dst_bit_pos; int shift_count; ERR_FAIL_COND_V(p_y >= p_height, 0); ERR_FAIL_COND_V(p_x >= p_width, 0); ERR_FAIL_COND_V(!is_po2(p_height), 0); ERR_FAIL_COND_V(!is_po2(p_width), 0); if (p_height < p_width) { min_dimension = p_height; max_value = p_x; } else { min_dimension = p_width; max_value = p_y; } if (disable_twiddling) return (p_y * p_width + p_x); scr_bit_pos = 1; dst_bit_pos = 1; twiddled = 0; shift_count = 0; while (scr_bit_pos < min_dimension) { if (p_y & scr_bit_pos) { twiddled |= dst_bit_pos; } if (p_x & scr_bit_pos) { twiddled |= (dst_bit_pos << 1); } scr_bit_pos <<= 1; dst_bit_pos <<= 2; shift_count += 1; } max_value >>= shift_count; twiddled |= (max_value << (2 * shift_count)); return twiddled; } static void decompress_pvrtc(PVRTCBlock *p_comp_img, const int p_2bit, const int p_width, const int p_height, const int p_tiled, unsigned char *p_dst) { int x, y; int i, j; int block_x, blk_y; int block_xp1, blk_yp1; int x_block_size; int block_width, block_height; int p_x, p_y; int p_modulation[8][16] = { { 0 } }; int p_modulation_modes[8][16] = { { 0 } }; int Mod, DoPT; unsigned int u_pos; // local neighbourhood of blocks PVRTCBlock *p_blocks[2][2]; PVRTCBlock *prev[2][2] = { { NULL, NULL }, { NULL, NULL } }; struct { int Reps[2][4]; } colors5554[2][2]; int ASig[4], BSig[4]; int r_result[4]; if (p_2bit) x_block_size = BLK_X_2BPP; else x_block_size = BLK_X_4BPP; block_width = MAX(2, p_width / x_block_size); block_height = MAX(2, p_height / BLK_Y_SIZE); for (y = 0; y < p_height; y++) { for (x = 0; x < p_width; x++) { block_x = (x - x_block_size / 2); blk_y = (y - BLK_Y_SIZE / 2); block_x = LIMIT_COORD(block_x, p_width, p_tiled); blk_y = LIMIT_COORD(blk_y, p_height, p_tiled); block_x /= x_block_size; blk_y /= BLK_Y_SIZE; block_xp1 = LIMIT_COORD(block_x + 1, block_width, p_tiled); blk_yp1 = LIMIT_COORD(blk_y + 1, block_height, p_tiled); p_blocks[0][0] = p_comp_img + twiddle_uv(block_height, block_width, blk_y, block_x); p_blocks[0][1] = p_comp_img + twiddle_uv(block_height, block_width, blk_y, block_xp1); p_blocks[1][0] = p_comp_img + twiddle_uv(block_height, block_width, blk_yp1, block_x); p_blocks[1][1] = p_comp_img + twiddle_uv(block_height, block_width, blk_yp1, block_xp1); if (memcmp(prev, p_blocks, 4 * sizeof(void *)) != 0) { p_y = 0; for (i = 0; i < 2; i++) { p_x = 0; for (j = 0; j < 2; j++) { unpack_5554(p_blocks[i][j], colors5554[i][j].Reps); unpack_modulations( p_blocks[i][j], p_2bit, p_modulation, p_modulation_modes, p_x, p_y); p_x += x_block_size; } p_y += BLK_Y_SIZE; } memcpy(prev, p_blocks, 4 * sizeof(void *)); } interpolate_colors( colors5554[0][0].Reps[0], colors5554[0][1].Reps[0], colors5554[1][0].Reps[0], colors5554[1][1].Reps[0], p_2bit, x, y, ASig); interpolate_colors( colors5554[0][0].Reps[1], colors5554[0][1].Reps[1], colors5554[1][0].Reps[1], colors5554[1][1].Reps[1], p_2bit, x, y, BSig); get_modulation_value(x, y, p_2bit, (const int(*)[16])p_modulation, (const int(*)[16])p_modulation_modes, &Mod, &DoPT); for (i = 0; i < 4; i++) { r_result[i] = ASig[i] * 8 + Mod * (BSig[i] - ASig[i]); r_result[i] >>= 3; } if (DoPT) r_result[3] = 0; u_pos = (x + y * p_width) << 2; p_dst[u_pos + 0] = (uint8_t)r_result[0]; p_dst[u_pos + 1] = (uint8_t)r_result[1]; p_dst[u_pos + 2] = (uint8_t)r_result[2]; p_dst[u_pos + 3] = (uint8_t)r_result[3]; } } } static void _pvrtc_decompress(Image *p_img) { ERR_FAIL_COND(p_img->get_format() != Image::FORMAT_PVRTC2 && p_img->get_format() != Image::FORMAT_PVRTC2A && p_img->get_format() != Image::FORMAT_PVRTC4 && p_img->get_format() != Image::FORMAT_PVRTC4A); bool _2bit = (p_img->get_format() == Image::FORMAT_PVRTC2 || p_img->get_format() == Image::FORMAT_PVRTC2A); PoolVector data = p_img->get_data(); PoolVector::Read r = data.read(); PoolVector newdata; newdata.resize(p_img->get_width() * p_img->get_height() * 4); PoolVector::Write w = newdata.write(); decompress_pvrtc((PVRTCBlock *)r.ptr(), _2bit, p_img->get_width(), p_img->get_height(), 0, (unsigned char *)w.ptr()); w = PoolVector::Write(); r = PoolVector::Read(); bool make_mipmaps = p_img->has_mipmaps(); p_img->create(p_img->get_width(), p_img->get_height(), false, Image::FORMAT_RGBA8, newdata); if (make_mipmaps) p_img->generate_mipmaps(); }