/*************************************************************************/ /* curve.cpp */ /*************************************************************************/ /* This file is part of: */ /* GODOT ENGINE */ /* http://www.godotengine.org */ /*************************************************************************/ /* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */ /* */ /* Permission is hereby granted, free of charge, to any person obtaining */ /* a copy of this software and associated documentation files (the */ /* "Software"), to deal in the Software without restriction, including */ /* without limitation the rights to use, copy, modify, merge, publish, */ /* distribute, sublicense, and/or sell copies of the Software, and to */ /* permit persons to whom the Software is furnished to do so, subject to */ /* the following conditions: */ /* */ /* The above copyright notice and this permission notice shall be */ /* included in all copies or substantial portions of the Software. */ /* */ /* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */ /* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */ /* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/ /* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */ /* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */ /* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */ /* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*************************************************************************/ #include "curve.h" #include "core_string_names.h" template static _FORCE_INLINE_ T _bezier_interp(real_t t, T start, T control_1, T control_2, T end) { /* Formula from Wikipedia article on Bezier curves. */ real_t omt = (1.0 - t); real_t omt2 = omt * omt; real_t omt3 = omt2 * omt; real_t t2 = t * t; real_t t3 = t2 * t; return start * omt3 + control_1 * omt2 * t * 3.0 + control_2 * omt * t2 * 3.0 + end * t3; } #if 0 int Curve2D::get_point_count() const { return points.size(); } void Curve2D::add_point(const Vector2& p_pos, const Vector2& p_in, const Vector2& p_out) { Point n; n.pos=p_pos; n.in=p_in; n.out=p_out; points.push_back(n); emit_signal(CoreStringNames::get_singleton()->changed); } void Curve2D::set_point_pos(int p_index, const Vector2& p_pos) { ERR_FAIL_INDEX(p_index,points.size()); points[p_index].pos=p_pos; emit_signal(CoreStringNames::get_singleton()->changed); } Vector2 Curve2D::get_point_pos(int p_index) const { ERR_FAIL_INDEX_V(p_index,points.size(),Vector2()); return points[p_index].pos; } void Curve2D::set_point_in(int p_index, const Vector2& p_in) { ERR_FAIL_INDEX(p_index,points.size()); points[p_index].in=p_in; emit_signal(CoreStringNames::get_singleton()->changed); } Vector2 Curve2D::get_point_in(int p_index) const { ERR_FAIL_INDEX_V(p_index,points.size(),Vector2()); return points[p_index].in; } void Curve2D::set_point_out(int p_index, const Vector2& p_out) { ERR_FAIL_INDEX(p_index,points.size()); points[p_index].out=p_out; emit_signal(CoreStringNames::get_singleton()->changed); } Vector2 Curve2D::get_point_out(int p_index) const { ERR_FAIL_INDEX_V(p_index,points.size(),Vector2()); return points[p_index].out; } void Curve2D::remove_point(int p_index) { ERR_FAIL_INDEX(p_index,points.size()); points.remove(p_index); emit_signal(CoreStringNames::get_singleton()->changed); } Vector2 Curve2D::interpolate(int p_index, float p_offset) const { int pc = points.size(); ERR_FAIL_COND_V(pc==0,Vector2()); if (p_index >= pc-1) return points[pc-1].pos; else if (p_index<0) return points[0].pos; Vector2 p0 = points[p_index].pos; Vector2 p1 = p0+points[p_index].out; Vector2 p3 = points[p_index+1].pos; Vector2 p2 = p3+points[p_index+1].in; return _bezier_interp(p_offset,p0,p1,p2,p3); } Vector2 Curve2D::interpolatef(real_t p_findex) const { if (p_findex<0) p_findex=0; else if (p_findex>=points.size()) p_findex=points.size(); return interpolate((int)p_findex,Math::fmod(p_findex,1.0)); } DVector Curve2D::bake(int p_subdivs) const { int pc = points.size(); DVector ret; if (pc<2) return ret; ret.resize((pc-1)*p_subdivs+1); DVector::Write w = ret.write(); const Point *r = points.ptr(); for(int i=0;i::Write(); return ret; } void Curve2D::advance(real_t p_distance,int &r_index, real_t &r_pos) const { int pc = points.size(); ERR_FAIL_COND(pc<2); if (r_index<0 || r_index>=(pc-1)) return; Vector2 pos = interpolate(r_index,r_pos); float sign=p_distance<0 ? -1 : 1; p_distance=Math::abs(p_distance); real_t base = r_index+r_pos; real_t top = 0.1; //a tenth is in theory representative int iterations=32; for(int i=0;i0 && o >=pc) { top=pc-base; break; } else if (sign<0 && o <0) { top=-base; break; } Vector2 new_d = interpolatef(o); if (new_d.distance_to(pos) > p_distance) break; top*=2.0; } real_t bottom = 0.0; iterations=8; real_t final_offset; for(int i=0;i p_distance) { bottom=middle; } else { top=middle; } final_offset=o; } r_index=(int)final_offset; r_pos=Math::fmod(final_offset,1.0); } void Curve2D::get_approx_position_from_offset(real_t p_offset,int &r_index, real_t &r_pos,int p_subdivs) const { ERR_FAIL_COND(points.size()<2); real_t accum=0; for(int i=0;ip_offset) { r_index=j-1; if (d>0) { real_t mf = (p_offset-(accum-d)) / d; r_pos=frac-(1.0-mf); } else { r_pos=frac; } return; } prev_p=p; } } r_index=points.size()-1; r_pos=1.0; } void Curve2D::set_points_in(const Vector2Array& p_points) { points.resize(p_points.size()); for (int i=0; i= 0 && p_atpos < points.size()) points.insert(p_atpos, n); else points.push_back(n); baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } void Curve2D::set_point_pos(int p_index, const Vector2 &p_pos) { ERR_FAIL_INDEX(p_index, points.size()); points[p_index].pos = p_pos; baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } Vector2 Curve2D::get_point_pos(int p_index) const { ERR_FAIL_INDEX_V(p_index, points.size(), Vector2()); return points[p_index].pos; } void Curve2D::set_point_in(int p_index, const Vector2 &p_in) { ERR_FAIL_INDEX(p_index, points.size()); points[p_index].in = p_in; baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } Vector2 Curve2D::get_point_in(int p_index) const { ERR_FAIL_INDEX_V(p_index, points.size(), Vector2()); return points[p_index].in; } void Curve2D::set_point_out(int p_index, const Vector2 &p_out) { ERR_FAIL_INDEX(p_index, points.size()); points[p_index].out = p_out; baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } Vector2 Curve2D::get_point_out(int p_index) const { ERR_FAIL_INDEX_V(p_index, points.size(), Vector2()); return points[p_index].out; } void Curve2D::remove_point(int p_index) { ERR_FAIL_INDEX(p_index, points.size()); points.remove(p_index); baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } void Curve2D::clear_points() { if (!points.empty()) { points.clear(); baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } } Vector2 Curve2D::interpolate(int p_index, float p_offset) const { int pc = points.size(); ERR_FAIL_COND_V(pc == 0, Vector2()); if (p_index >= pc - 1) return points[pc - 1].pos; else if (p_index < 0) return points[0].pos; Vector2 p0 = points[p_index].pos; Vector2 p1 = p0 + points[p_index].out; Vector2 p3 = points[p_index + 1].pos; Vector2 p2 = p3 + points[p_index + 1].in; return _bezier_interp(p_offset, p0, p1, p2, p3); } Vector2 Curve2D::interpolatef(real_t p_findex) const { if (p_findex < 0) p_findex = 0; else if (p_findex >= points.size()) p_findex = points.size(); return interpolate((int)p_findex, Math::fmod(p_findex, 1.0)); } void Curve2D::_bake_segment2d(Map &r_bake, float p_begin, float p_end, const Vector2 &p_a, const Vector2 &p_out, const Vector2 &p_b, const Vector2 &p_in, int p_depth, int p_max_depth, float p_tol) const { float mp = p_begin + (p_end - p_begin) * 0.5; Vector2 beg = _bezier_interp(p_begin, p_a, p_a + p_out, p_b + p_in, p_b); Vector2 mid = _bezier_interp(mp, p_a, p_a + p_out, p_b + p_in, p_b); Vector2 end = _bezier_interp(p_end, p_a, p_a + p_out, p_b + p_in, p_b); Vector2 na = (mid - beg).normalized(); Vector2 nb = (end - mid).normalized(); float dp = na.dot(nb); if (dp < Math::cos(Math::deg2rad(p_tol))) { r_bake[mp] = mid; } if (p_depth < p_max_depth) { _bake_segment2d(r_bake, p_begin, mp, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_tol); _bake_segment2d(r_bake, mp, p_end, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_tol); } } void Curve2D::_bake() const { if (!baked_cache_dirty) return; baked_max_ofs = 0; baked_cache_dirty = false; if (points.size() == 0) { baked_point_cache.resize(0); return; } if (points.size() == 1) { baked_point_cache.resize(1); baked_point_cache.set(0, points[0].pos); return; } Vector2 pos = points[0].pos; List pointlist; pointlist.push_back(pos); //start always from origin for (int i = 0; i < points.size() - 1; i++) { float step = 0.1; // at least 10 substeps ought to be enough? float p = 0; while (p < 1.0) { float np = p + step; if (np > 1.0) np = 1.0; Vector2 npp = _bezier_interp(np, points[i].pos, points[i].pos + points[i].out, points[i + 1].pos + points[i + 1].in, points[i + 1].pos); float d = pos.distance_to(npp); if (d > bake_interval) { // OK! between P and NP there _has_ to be Something, let's go searching! int iterations = 10; //lots of detail! float low = p; float hi = np; float mid = low + (hi - low) * 0.5; for (int j = 0; j < iterations; j++) { npp = _bezier_interp(mid, points[i].pos, points[i].pos + points[i].out, points[i + 1].pos + points[i + 1].in, points[i + 1].pos); d = pos.distance_to(npp); if (bake_interval < d) hi = mid; else low = mid; mid = low + (hi - low) * 0.5; } pos = npp; p = mid; pointlist.push_back(pos); } else { p = np; } } } Vector2 lastpos = points[points.size() - 1].pos; float rem = pos.distance_to(lastpos); baked_max_ofs = (pointlist.size() - 1) * bake_interval + rem; pointlist.push_back(lastpos); baked_point_cache.resize(pointlist.size()); Vector2Array::Write w = baked_point_cache.write(); int idx = 0; for (List::Element *E = pointlist.front(); E; E = E->next()) { w[idx] = E->get(); idx++; } } float Curve2D::get_baked_length() const { if (baked_cache_dirty) _bake(); return baked_max_ofs; } Vector2 Curve2D::interpolate_baked(float p_offset, bool p_cubic) const { if (baked_cache_dirty) _bake(); //validate// int pc = baked_point_cache.size(); if (pc == 0) { ERR_EXPLAIN("No points in Curve2D"); ERR_FAIL_COND_V(pc == 0, Vector2()); } if (pc == 1) return baked_point_cache.get(0); int bpc = baked_point_cache.size(); Vector2Array::Read r = baked_point_cache.read(); if (p_offset < 0) return r[0]; if (p_offset >= baked_max_ofs) return r[bpc - 1]; int idx = Math::floor((double)p_offset / (double)bake_interval); float frac = Math::fmod(p_offset, bake_interval); if (idx >= bpc - 1) { return r[bpc - 1]; } else if (idx == bpc - 2) { frac /= Math::fmod(baked_max_ofs, bake_interval); } else { frac /= bake_interval; } if (p_cubic) { Vector2 pre = idx > 0 ? r[idx - 1] : r[idx]; Vector2 post = (idx < (bpc - 2)) ? r[idx + 2] : r[idx + 1]; return r[idx].cubic_interpolate(r[idx + 1], pre, post, frac); } else { return r[idx].linear_interpolate(r[idx + 1], frac); } } Vector2Array Curve2D::get_baked_points() const { if (baked_cache_dirty) _bake(); return baked_point_cache; } void Curve2D::set_bake_interval(float p_tolerance) { bake_interval = p_tolerance; baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } float Curve2D::get_bake_interval() const { return bake_interval; } Dictionary Curve2D::_get_data() const { Dictionary dc; Vector2Array d; d.resize(points.size() * 3); Vector2Array::Write w = d.write(); for (int i = 0; i < points.size(); i++) { w[i * 3 + 0] = points[i].in; w[i * 3 + 1] = points[i].out; w[i * 3 + 2] = points[i].pos; } w = Vector2Array::Write(); dc["points"] = d; return dc; } void Curve2D::_set_data(const Dictionary &p_data) { ERR_FAIL_COND(!p_data.has("points")); Vector2Array rp = p_data["points"]; int pc = rp.size(); ERR_FAIL_COND(pc % 3 != 0); points.resize(pc / 3); Vector2Array::Read r = rp.read(); for (int i = 0; i < points.size(); i++) { points[i].in = r[i * 3 + 0]; points[i].out = r[i * 3 + 1]; points[i].pos = r[i * 3 + 2]; } baked_cache_dirty = true; } Vector2Array Curve2D::tesselate(int p_max_stages, float p_tolerance) const { Vector2Array tess; if (points.size() == 0) { return tess; } Vector > midpoints; midpoints.resize(points.size() - 1); int pc = 1; for (int i = 0; i < points.size() - 1; i++) { _bake_segment2d(midpoints[i], 0, 1, points[i].pos, points[i].out, points[i + 1].pos, points[i + 1].in, 0, p_max_stages, p_tolerance); pc++; pc += midpoints[i].size(); } tess.resize(pc); Vector2Array::Write bpw = tess.write(); bpw[0] = points[0].pos; int pidx = 0; for (int i = 0; i < points.size() - 1; i++) { for (Map::Element *E = midpoints[i].front(); E; E = E->next()) { pidx++; bpw[pidx] = E->get(); } pidx++; bpw[pidx] = points[i + 1].pos; } bpw = Vector2Array::Write(); return tess; } void Curve2D::_bind_methods() { ObjectTypeDB::bind_method(_MD("get_point_count"), &Curve2D::get_point_count); ObjectTypeDB::bind_method(_MD("add_point", "pos", "in", "out", "atpos"), &Curve2D::add_point, DEFVAL(Vector2()), DEFVAL(Vector2()), DEFVAL(-1)); ObjectTypeDB::bind_method(_MD("set_point_pos", "idx", "pos"), &Curve2D::set_point_pos); ObjectTypeDB::bind_method(_MD("get_point_pos", "idx"), &Curve2D::get_point_pos); ObjectTypeDB::bind_method(_MD("set_point_in", "idx", "pos"), &Curve2D::set_point_in); ObjectTypeDB::bind_method(_MD("get_point_in", "idx"), &Curve2D::get_point_in); ObjectTypeDB::bind_method(_MD("set_point_out", "idx", "pos"), &Curve2D::set_point_out); ObjectTypeDB::bind_method(_MD("get_point_out", "idx"), &Curve2D::get_point_out); ObjectTypeDB::bind_method(_MD("remove_point", "idx"), &Curve2D::remove_point); ObjectTypeDB::bind_method(_MD("clear_points"), &Curve2D::clear_points); ObjectTypeDB::bind_method(_MD("interpolate", "idx", "t"), &Curve2D::interpolate); ObjectTypeDB::bind_method(_MD("interpolatef", "fofs"), &Curve2D::interpolatef); //ObjectTypeDB::bind_method(_MD("bake","subdivs"),&Curve2D::bake,DEFVAL(10)); ObjectTypeDB::bind_method(_MD("set_bake_interval", "distance"), &Curve2D::set_bake_interval); ObjectTypeDB::bind_method(_MD("get_bake_interval"), &Curve2D::get_bake_interval); ObjectTypeDB::bind_method(_MD("get_baked_length"), &Curve2D::get_baked_length); ObjectTypeDB::bind_method(_MD("interpolate_baked", "offset", "cubic"), &Curve2D::interpolate_baked, DEFVAL(false)); ObjectTypeDB::bind_method(_MD("get_baked_points"), &Curve2D::get_baked_points); ObjectTypeDB::bind_method(_MD("tesselate", "max_stages", "tolerance_degrees"), &Curve2D::tesselate, DEFVAL(5), DEFVAL(4)); ObjectTypeDB::bind_method(_MD("_get_data"), &Curve2D::_get_data); ObjectTypeDB::bind_method(_MD("_set_data"), &Curve2D::_set_data); ADD_PROPERTY(PropertyInfo(Variant::REAL, "bake_interval", PROPERTY_HINT_RANGE, "0.01,512,0.01"), _SCS("set_bake_interval"), _SCS("get_bake_interval")); ADD_PROPERTY(PropertyInfo(Variant::INT, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), _SCS("_set_data"), _SCS("_get_data")); /*ADD_PROPERTY( PropertyInfo( Variant::VECTOR3_ARRAY, "points_out"), _SCS("set_points_out"),_SCS("get_points_out")); ADD_PROPERTY( PropertyInfo( Variant::VECTOR3_ARRAY, "points_pos"), _SCS("set_points_pos"),_SCS("get_points_pos")); */ } Curve2D::Curve2D() { baked_cache_dirty = false; baked_max_ofs = 0; /* add_point(Vector2(-1,0,0)); add_point(Vector2(0,2,0)); add_point(Vector2(0,3,5));*/ bake_interval = 5; } /***********************************************************************************/ /***********************************************************************************/ /***********************************************************************************/ /***********************************************************************************/ /***********************************************************************************/ /***********************************************************************************/ int Curve3D::get_point_count() const { return points.size(); } void Curve3D::add_point(const Vector3 &p_pos, const Vector3 &p_in, const Vector3 &p_out, int p_atpos) { Point n; n.pos = p_pos; n.in = p_in; n.out = p_out; if (p_atpos >= 0 && p_atpos < points.size()) points.insert(p_atpos, n); else points.push_back(n); baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } void Curve3D::set_point_pos(int p_index, const Vector3 &p_pos) { ERR_FAIL_INDEX(p_index, points.size()); points[p_index].pos = p_pos; baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } Vector3 Curve3D::get_point_pos(int p_index) const { ERR_FAIL_INDEX_V(p_index, points.size(), Vector3()); return points[p_index].pos; } void Curve3D::set_point_tilt(int p_index, float p_tilt) { ERR_FAIL_INDEX(p_index, points.size()); points[p_index].tilt = p_tilt; baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } float Curve3D::get_point_tilt(int p_index) const { ERR_FAIL_INDEX_V(p_index, points.size(), 0); return points[p_index].tilt; } void Curve3D::set_point_in(int p_index, const Vector3 &p_in) { ERR_FAIL_INDEX(p_index, points.size()); points[p_index].in = p_in; baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } Vector3 Curve3D::get_point_in(int p_index) const { ERR_FAIL_INDEX_V(p_index, points.size(), Vector3()); return points[p_index].in; } void Curve3D::set_point_out(int p_index, const Vector3 &p_out) { ERR_FAIL_INDEX(p_index, points.size()); points[p_index].out = p_out; baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } Vector3 Curve3D::get_point_out(int p_index) const { ERR_FAIL_INDEX_V(p_index, points.size(), Vector3()); return points[p_index].out; } void Curve3D::remove_point(int p_index) { ERR_FAIL_INDEX(p_index, points.size()); points.remove(p_index); baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } void Curve3D::clear_points() { if (!points.empty()) { points.clear(); baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } } Vector3 Curve3D::interpolate(int p_index, float p_offset) const { int pc = points.size(); ERR_FAIL_COND_V(pc == 0, Vector3()); if (p_index >= pc - 1) return points[pc - 1].pos; else if (p_index < 0) return points[0].pos; Vector3 p0 = points[p_index].pos; Vector3 p1 = p0 + points[p_index].out; Vector3 p3 = points[p_index + 1].pos; Vector3 p2 = p3 + points[p_index + 1].in; return _bezier_interp(p_offset, p0, p1, p2, p3); } Vector3 Curve3D::interpolatef(real_t p_findex) const { if (p_findex < 0) p_findex = 0; else if (p_findex >= points.size()) p_findex = points.size(); return interpolate((int)p_findex, Math::fmod(p_findex, 1.0)); } void Curve3D::_bake_segment3d(Map &r_bake, float p_begin, float p_end, const Vector3 &p_a, const Vector3 &p_out, const Vector3 &p_b, const Vector3 &p_in, int p_depth, int p_max_depth, float p_tol) const { float mp = p_begin + (p_end - p_begin) * 0.5; Vector3 beg = _bezier_interp(p_begin, p_a, p_a + p_out, p_b + p_in, p_b); Vector3 mid = _bezier_interp(mp, p_a, p_a + p_out, p_b + p_in, p_b); Vector3 end = _bezier_interp(p_end, p_a, p_a + p_out, p_b + p_in, p_b); Vector3 na = (mid - beg).normalized(); Vector3 nb = (end - mid).normalized(); float dp = na.dot(nb); if (dp < Math::cos(Math::deg2rad(p_tol))) { r_bake[mp] = mid; } if (p_depth < p_max_depth) { _bake_segment3d(r_bake, p_begin, mp, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_tol); _bake_segment3d(r_bake, mp, p_end, p_a, p_out, p_b, p_in, p_depth + 1, p_max_depth, p_tol); } } void Curve3D::_bake() const { if (!baked_cache_dirty) return; baked_max_ofs = 0; baked_cache_dirty = false; if (points.size() == 0) { baked_point_cache.resize(0); baked_tilt_cache.resize(0); return; } if (points.size() == 1) { baked_point_cache.resize(1); baked_point_cache.set(0, points[0].pos); baked_tilt_cache.resize(1); baked_tilt_cache.set(0, points[0].tilt); return; } Vector3 pos = points[0].pos; List pointlist; pointlist.push_back(Plane(pos, points[0].tilt)); for (int i = 0; i < points.size() - 1; i++) { float step = 0.1; // at least 10 substeps ought to be enough? float p = 0; while (p < 1.0) { float np = p + step; if (np > 1.0) np = 1.0; Vector3 npp = _bezier_interp(np, points[i].pos, points[i].pos + points[i].out, points[i + 1].pos + points[i + 1].in, points[i + 1].pos); float d = pos.distance_to(npp); if (d > bake_interval) { // OK! between P and NP there _has_ to be Something, let's go searching! int iterations = 10; //lots of detail! float low = p; float hi = np; float mid = low + (hi - low) * 0.5; for (int j = 0; j < iterations; j++) { npp = _bezier_interp(mid, points[i].pos, points[i].pos + points[i].out, points[i + 1].pos + points[i + 1].in, points[i + 1].pos); d = pos.distance_to(npp); if (bake_interval < d) hi = mid; else low = mid; mid = low + (hi - low) * 0.5; } pos = npp; p = mid; Plane post; post.normal = pos; post.d = Math::lerp(points[i].tilt, points[i + 1].tilt, mid); pointlist.push_back(post); } else { p = np; } } } Vector3 lastpos = points[points.size() - 1].pos; float lastilt = points[points.size() - 1].tilt; float rem = pos.distance_to(lastpos); baked_max_ofs = (pointlist.size() - 1) * bake_interval + rem; pointlist.push_back(Plane(lastpos, lastilt)); baked_point_cache.resize(pointlist.size()); Vector3Array::Write w = baked_point_cache.write(); int idx = 0; baked_tilt_cache.resize(pointlist.size()); RealArray::Write wt = baked_tilt_cache.write(); for (List::Element *E = pointlist.front(); E; E = E->next()) { w[idx] = E->get().normal; wt[idx] = E->get().d; idx++; } } float Curve3D::get_baked_length() const { if (baked_cache_dirty) _bake(); return baked_max_ofs; } Vector3 Curve3D::interpolate_baked(float p_offset, bool p_cubic) const { if (baked_cache_dirty) _bake(); //validate// int pc = baked_point_cache.size(); if (pc == 0) { ERR_EXPLAIN("No points in Curve3D"); ERR_FAIL_COND_V(pc == 0, Vector3()); } if (pc == 1) return baked_point_cache.get(0); int bpc = baked_point_cache.size(); Vector3Array::Read r = baked_point_cache.read(); if (p_offset < 0) return r[0]; if (p_offset >= baked_max_ofs) return r[bpc - 1]; int idx = Math::floor((double)p_offset / (double)bake_interval); float frac = Math::fmod(p_offset, bake_interval); if (idx >= bpc - 1) { return r[bpc - 1]; } else if (idx == bpc - 2) { frac /= Math::fmod(baked_max_ofs, bake_interval); } else { frac /= bake_interval; } if (p_cubic) { Vector3 pre = idx > 0 ? r[idx - 1] : r[idx]; Vector3 post = (idx < (bpc - 2)) ? r[idx + 2] : r[idx + 1]; return r[idx].cubic_interpolate(r[idx + 1], pre, post, frac); } else { return r[idx].linear_interpolate(r[idx + 1], frac); } } float Curve3D::interpolate_baked_tilt(float p_offset) const { if (baked_cache_dirty) _bake(); //validate// int pc = baked_tilt_cache.size(); if (pc == 0) { ERR_EXPLAIN("No tilts in Curve3D"); ERR_FAIL_COND_V(pc == 0, 0); } if (pc == 1) return baked_tilt_cache.get(0); int bpc = baked_tilt_cache.size(); RealArray::Read r = baked_tilt_cache.read(); if (p_offset < 0) return r[0]; if (p_offset >= baked_max_ofs) return r[bpc - 1]; int idx = Math::floor((double)p_offset / (double)bake_interval); float frac = Math::fmod(p_offset, bake_interval); if (idx >= bpc - 1) { return r[bpc - 1]; } else if (idx == bpc - 2) { frac /= Math::fmod(baked_max_ofs, bake_interval); } else { frac /= bake_interval; } return Math::lerp(r[idx], r[idx + 1], frac); } Vector3Array Curve3D::get_baked_points() const { if (baked_cache_dirty) _bake(); return baked_point_cache; } RealArray Curve3D::get_baked_tilts() const { if (baked_cache_dirty) _bake(); return baked_tilt_cache; } void Curve3D::set_bake_interval(float p_tolerance) { bake_interval = p_tolerance; baked_cache_dirty = true; emit_signal(CoreStringNames::get_singleton()->changed); } float Curve3D::get_bake_interval() const { return bake_interval; } Dictionary Curve3D::_get_data() const { Dictionary dc; Vector3Array d; d.resize(points.size() * 3); Vector3Array::Write w = d.write(); RealArray t; t.resize(points.size()); RealArray::Write wt = t.write(); for (int i = 0; i < points.size(); i++) { w[i * 3 + 0] = points[i].in; w[i * 3 + 1] = points[i].out; w[i * 3 + 2] = points[i].pos; wt[i] = points[i].tilt; } w = Vector3Array::Write(); wt = RealArray::Write(); dc["points"] = d; dc["tilts"] = t; return dc; } void Curve3D::_set_data(const Dictionary &p_data) { ERR_FAIL_COND(!p_data.has("points")); ERR_FAIL_COND(!p_data.has("tilts")); Vector3Array rp = p_data["points"]; int pc = rp.size(); ERR_FAIL_COND(pc % 3 != 0); points.resize(pc / 3); Vector3Array::Read r = rp.read(); RealArray rtl = p_data["tilts"]; RealArray::Read rt = rtl.read(); for (int i = 0; i < points.size(); i++) { points[i].in = r[i * 3 + 0]; points[i].out = r[i * 3 + 1]; points[i].pos = r[i * 3 + 2]; points[i].tilt = rt[i]; } baked_cache_dirty = true; } Vector3Array Curve3D::tesselate(int p_max_stages, float p_tolerance) const { Vector3Array tess; if (points.size() == 0) { return tess; } Vector > midpoints; midpoints.resize(points.size() - 1); int pc = 1; for (int i = 0; i < points.size() - 1; i++) { _bake_segment3d(midpoints[i], 0, 1, points[i].pos, points[i].out, points[i + 1].pos, points[i + 1].in, 0, p_max_stages, p_tolerance); pc++; pc += midpoints[i].size(); } tess.resize(pc); Vector3Array::Write bpw = tess.write(); bpw[0] = points[0].pos; int pidx = 0; for (int i = 0; i < points.size() - 1; i++) { for (Map::Element *E = midpoints[i].front(); E; E = E->next()) { pidx++; bpw[pidx] = E->get(); } pidx++; bpw[pidx] = points[i + 1].pos; } bpw = Vector3Array::Write(); return tess; } void Curve3D::_bind_methods() { ObjectTypeDB::bind_method(_MD("get_point_count"), &Curve3D::get_point_count); ObjectTypeDB::bind_method(_MD("add_point", "pos", "in", "out", "atpos"), &Curve3D::add_point, DEFVAL(Vector3()), DEFVAL(Vector3()), DEFVAL(-1)); ObjectTypeDB::bind_method(_MD("set_point_pos", "idx", "pos"), &Curve3D::set_point_pos); ObjectTypeDB::bind_method(_MD("get_point_pos", "idx"), &Curve3D::get_point_pos); ObjectTypeDB::bind_method(_MD("set_point_tilt", "idx", "tilt"), &Curve3D::set_point_tilt); ObjectTypeDB::bind_method(_MD("get_point_tilt", "idx"), &Curve3D::get_point_tilt); ObjectTypeDB::bind_method(_MD("set_point_in", "idx", "pos"), &Curve3D::set_point_in); ObjectTypeDB::bind_method(_MD("get_point_in", "idx"), &Curve3D::get_point_in); ObjectTypeDB::bind_method(_MD("set_point_out", "idx", "pos"), &Curve3D::set_point_out); ObjectTypeDB::bind_method(_MD("get_point_out", "idx"), &Curve3D::get_point_out); ObjectTypeDB::bind_method(_MD("remove_point", "idx"), &Curve3D::remove_point); ObjectTypeDB::bind_method(_MD("clear_points"), &Curve3D::clear_points); ObjectTypeDB::bind_method(_MD("interpolate", "idx", "t"), &Curve3D::interpolate); ObjectTypeDB::bind_method(_MD("interpolatef", "fofs"), &Curve3D::interpolatef); //ObjectTypeDB::bind_method(_MD("bake","subdivs"),&Curve3D::bake,DEFVAL(10)); ObjectTypeDB::bind_method(_MD("set_bake_interval", "distance"), &Curve3D::set_bake_interval); ObjectTypeDB::bind_method(_MD("get_bake_interval"), &Curve3D::get_bake_interval); ObjectTypeDB::bind_method(_MD("get_baked_length"), &Curve3D::get_baked_length); ObjectTypeDB::bind_method(_MD("interpolate_baked", "offset", "cubic"), &Curve3D::interpolate_baked, DEFVAL(false)); ObjectTypeDB::bind_method(_MD("get_baked_points"), &Curve3D::get_baked_points); ObjectTypeDB::bind_method(_MD("get_baked_tilts"), &Curve3D::get_baked_tilts); ObjectTypeDB::bind_method(_MD("tesselate", "max_stages", "tolerance_degrees"), &Curve3D::tesselate, DEFVAL(5), DEFVAL(4)); ObjectTypeDB::bind_method(_MD("_get_data"), &Curve3D::_get_data); ObjectTypeDB::bind_method(_MD("_set_data"), &Curve3D::_set_data); ADD_PROPERTY(PropertyInfo(Variant::REAL, "bake_interval", PROPERTY_HINT_RANGE, "0.01,512,0.01"), _SCS("set_bake_interval"), _SCS("get_bake_interval")); ADD_PROPERTY(PropertyInfo(Variant::INT, "_data", PROPERTY_HINT_NONE, "", PROPERTY_USAGE_NOEDITOR), _SCS("_set_data"), _SCS("_get_data")); /*ADD_PROPERTY( PropertyInfo( Variant::VECTOR3_ARRAY, "points_out"), _SCS("set_points_out"),_SCS("get_points_out")); ADD_PROPERTY( PropertyInfo( Variant::VECTOR3_ARRAY, "points_pos"), _SCS("set_points_pos"),_SCS("get_points_pos")); */ } Curve3D::Curve3D() { baked_cache_dirty = false; baked_max_ofs = 0; /* add_point(Vector3(-1,0,0)); add_point(Vector3(0,2,0)); add_point(Vector3(0,3,5));*/ bake_interval = 0.2; }