linux/net/core/filter.c
Tim Schmielau cd354f1ae7 [PATCH] remove many unneeded #includes of sched.h
After Al Viro (finally) succeeded in removing the sched.h #include in module.h
recently, it makes sense again to remove other superfluous sched.h includes.
There are quite a lot of files which include it but don't actually need
anything defined in there.  Presumably these includes were once needed for
macros that used to live in sched.h, but moved to other header files in the
course of cleaning it up.

To ease the pain, this time I did not fiddle with any header files and only
removed #includes from .c-files, which tend to cause less trouble.

Compile tested against 2.6.20-rc2 and 2.6.20-rc2-mm2 (with offsets) on alpha,
arm, i386, ia64, mips, powerpc, and x86_64 with allnoconfig, defconfig,
allmodconfig, and allyesconfig as well as a few randconfigs on x86_64 and all
configs in arch/arm/configs on arm.  I also checked that no new warnings were
introduced by the patch (actually, some warnings are removed that were emitted
by unnecessarily included header files).

Signed-off-by: Tim Schmielau <tim@physik3.uni-rostock.de>
Acked-by: Russell King <rmk+kernel@arm.linux.org.uk>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-02-14 08:09:54 -08:00

437 lines
9.9 KiB
C

/*
* Linux Socket Filter - Kernel level socket filtering
*
* Author:
* Jay Schulist <jschlst@samba.org>
*
* Based on the design of:
* - The Berkeley Packet Filter
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*
* Andi Kleen - Fix a few bad bugs and races.
* Kris Katterjohn - Added many additional checks in sk_chk_filter()
*/
#include <linux/module.h>
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/fcntl.h>
#include <linux/socket.h>
#include <linux/in.h>
#include <linux/inet.h>
#include <linux/netdevice.h>
#include <linux/if_packet.h>
#include <net/ip.h>
#include <net/protocol.h>
#include <linux/skbuff.h>
#include <net/sock.h>
#include <linux/errno.h>
#include <linux/timer.h>
#include <asm/system.h>
#include <asm/uaccess.h>
#include <asm/unaligned.h>
#include <linux/filter.h>
/* No hurry in this branch */
static void *__load_pointer(struct sk_buff *skb, int k)
{
u8 *ptr = NULL;
if (k >= SKF_NET_OFF)
ptr = skb->nh.raw + k - SKF_NET_OFF;
else if (k >= SKF_LL_OFF)
ptr = skb->mac.raw + k - SKF_LL_OFF;
if (ptr >= skb->head && ptr < skb->tail)
return ptr;
return NULL;
}
static inline void *load_pointer(struct sk_buff *skb, int k,
unsigned int size, void *buffer)
{
if (k >= 0)
return skb_header_pointer(skb, k, size, buffer);
else {
if (k >= SKF_AD_OFF)
return NULL;
return __load_pointer(skb, k);
}
}
/**
* sk_run_filter - run a filter on a socket
* @skb: buffer to run the filter on
* @filter: filter to apply
* @flen: length of filter
*
* Decode and apply filter instructions to the skb->data.
* Return length to keep, 0 for none. skb is the data we are
* filtering, filter is the array of filter instructions, and
* len is the number of filter blocks in the array.
*/
unsigned int sk_run_filter(struct sk_buff *skb, struct sock_filter *filter, int flen)
{
struct sock_filter *fentry; /* We walk down these */
void *ptr;
u32 A = 0; /* Accumulator */
u32 X = 0; /* Index Register */
u32 mem[BPF_MEMWORDS]; /* Scratch Memory Store */
u32 tmp;
int k;
int pc;
/*
* Process array of filter instructions.
*/
for (pc = 0; pc < flen; pc++) {
fentry = &filter[pc];
switch (fentry->code) {
case BPF_ALU|BPF_ADD|BPF_X:
A += X;
continue;
case BPF_ALU|BPF_ADD|BPF_K:
A += fentry->k;
continue;
case BPF_ALU|BPF_SUB|BPF_X:
A -= X;
continue;
case BPF_ALU|BPF_SUB|BPF_K:
A -= fentry->k;
continue;
case BPF_ALU|BPF_MUL|BPF_X:
A *= X;
continue;
case BPF_ALU|BPF_MUL|BPF_K:
A *= fentry->k;
continue;
case BPF_ALU|BPF_DIV|BPF_X:
if (X == 0)
return 0;
A /= X;
continue;
case BPF_ALU|BPF_DIV|BPF_K:
A /= fentry->k;
continue;
case BPF_ALU|BPF_AND|BPF_X:
A &= X;
continue;
case BPF_ALU|BPF_AND|BPF_K:
A &= fentry->k;
continue;
case BPF_ALU|BPF_OR|BPF_X:
A |= X;
continue;
case BPF_ALU|BPF_OR|BPF_K:
A |= fentry->k;
continue;
case BPF_ALU|BPF_LSH|BPF_X:
A <<= X;
continue;
case BPF_ALU|BPF_LSH|BPF_K:
A <<= fentry->k;
continue;
case BPF_ALU|BPF_RSH|BPF_X:
A >>= X;
continue;
case BPF_ALU|BPF_RSH|BPF_K:
A >>= fentry->k;
continue;
case BPF_ALU|BPF_NEG:
A = -A;
continue;
case BPF_JMP|BPF_JA:
pc += fentry->k;
continue;
case BPF_JMP|BPF_JGT|BPF_K:
pc += (A > fentry->k) ? fentry->jt : fentry->jf;
continue;
case BPF_JMP|BPF_JGE|BPF_K:
pc += (A >= fentry->k) ? fentry->jt : fentry->jf;
continue;
case BPF_JMP|BPF_JEQ|BPF_K:
pc += (A == fentry->k) ? fentry->jt : fentry->jf;
continue;
case BPF_JMP|BPF_JSET|BPF_K:
pc += (A & fentry->k) ? fentry->jt : fentry->jf;
continue;
case BPF_JMP|BPF_JGT|BPF_X:
pc += (A > X) ? fentry->jt : fentry->jf;
continue;
case BPF_JMP|BPF_JGE|BPF_X:
pc += (A >= X) ? fentry->jt : fentry->jf;
continue;
case BPF_JMP|BPF_JEQ|BPF_X:
pc += (A == X) ? fentry->jt : fentry->jf;
continue;
case BPF_JMP|BPF_JSET|BPF_X:
pc += (A & X) ? fentry->jt : fentry->jf;
continue;
case BPF_LD|BPF_W|BPF_ABS:
k = fentry->k;
load_w:
ptr = load_pointer(skb, k, 4, &tmp);
if (ptr != NULL) {
A = ntohl(get_unaligned((__be32 *)ptr));
continue;
}
break;
case BPF_LD|BPF_H|BPF_ABS:
k = fentry->k;
load_h:
ptr = load_pointer(skb, k, 2, &tmp);
if (ptr != NULL) {
A = ntohs(get_unaligned((__be16 *)ptr));
continue;
}
break;
case BPF_LD|BPF_B|BPF_ABS:
k = fentry->k;
load_b:
ptr = load_pointer(skb, k, 1, &tmp);
if (ptr != NULL) {
A = *(u8 *)ptr;
continue;
}
break;
case BPF_LD|BPF_W|BPF_LEN:
A = skb->len;
continue;
case BPF_LDX|BPF_W|BPF_LEN:
X = skb->len;
continue;
case BPF_LD|BPF_W|BPF_IND:
k = X + fentry->k;
goto load_w;
case BPF_LD|BPF_H|BPF_IND:
k = X + fentry->k;
goto load_h;
case BPF_LD|BPF_B|BPF_IND:
k = X + fentry->k;
goto load_b;
case BPF_LDX|BPF_B|BPF_MSH:
ptr = load_pointer(skb, fentry->k, 1, &tmp);
if (ptr != NULL) {
X = (*(u8 *)ptr & 0xf) << 2;
continue;
}
return 0;
case BPF_LD|BPF_IMM:
A = fentry->k;
continue;
case BPF_LDX|BPF_IMM:
X = fentry->k;
continue;
case BPF_LD|BPF_MEM:
A = mem[fentry->k];
continue;
case BPF_LDX|BPF_MEM:
X = mem[fentry->k];
continue;
case BPF_MISC|BPF_TAX:
X = A;
continue;
case BPF_MISC|BPF_TXA:
A = X;
continue;
case BPF_RET|BPF_K:
return fentry->k;
case BPF_RET|BPF_A:
return A;
case BPF_ST:
mem[fentry->k] = A;
continue;
case BPF_STX:
mem[fentry->k] = X;
continue;
default:
WARN_ON(1);
return 0;
}
/*
* Handle ancillary data, which are impossible
* (or very difficult) to get parsing packet contents.
*/
switch (k-SKF_AD_OFF) {
case SKF_AD_PROTOCOL:
A = ntohs(skb->protocol);
continue;
case SKF_AD_PKTTYPE:
A = skb->pkt_type;
continue;
case SKF_AD_IFINDEX:
A = skb->dev->ifindex;
continue;
default:
return 0;
}
}
return 0;
}
/**
* sk_chk_filter - verify socket filter code
* @filter: filter to verify
* @flen: length of filter
*
* Check the user's filter code. If we let some ugly
* filter code slip through kaboom! The filter must contain
* no references or jumps that are out of range, no illegal
* instructions, and must end with a RET instruction.
*
* All jumps are forward as they are not signed.
*
* Returns 0 if the rule set is legal or -EINVAL if not.
*/
int sk_chk_filter(struct sock_filter *filter, int flen)
{
struct sock_filter *ftest;
int pc;
if (flen == 0 || flen > BPF_MAXINSNS)
return -EINVAL;
/* check the filter code now */
for (pc = 0; pc < flen; pc++) {
ftest = &filter[pc];
/* Only allow valid instructions */
switch (ftest->code) {
case BPF_ALU|BPF_ADD|BPF_K:
case BPF_ALU|BPF_ADD|BPF_X:
case BPF_ALU|BPF_SUB|BPF_K:
case BPF_ALU|BPF_SUB|BPF_X:
case BPF_ALU|BPF_MUL|BPF_K:
case BPF_ALU|BPF_MUL|BPF_X:
case BPF_ALU|BPF_DIV|BPF_X:
case BPF_ALU|BPF_AND|BPF_K:
case BPF_ALU|BPF_AND|BPF_X:
case BPF_ALU|BPF_OR|BPF_K:
case BPF_ALU|BPF_OR|BPF_X:
case BPF_ALU|BPF_LSH|BPF_K:
case BPF_ALU|BPF_LSH|BPF_X:
case BPF_ALU|BPF_RSH|BPF_K:
case BPF_ALU|BPF_RSH|BPF_X:
case BPF_ALU|BPF_NEG:
case BPF_LD|BPF_W|BPF_ABS:
case BPF_LD|BPF_H|BPF_ABS:
case BPF_LD|BPF_B|BPF_ABS:
case BPF_LD|BPF_W|BPF_LEN:
case BPF_LD|BPF_W|BPF_IND:
case BPF_LD|BPF_H|BPF_IND:
case BPF_LD|BPF_B|BPF_IND:
case BPF_LD|BPF_IMM:
case BPF_LDX|BPF_W|BPF_LEN:
case BPF_LDX|BPF_B|BPF_MSH:
case BPF_LDX|BPF_IMM:
case BPF_MISC|BPF_TAX:
case BPF_MISC|BPF_TXA:
case BPF_RET|BPF_K:
case BPF_RET|BPF_A:
break;
/* Some instructions need special checks */
case BPF_ALU|BPF_DIV|BPF_K:
/* check for division by zero */
if (ftest->k == 0)
return -EINVAL;
break;
case BPF_LD|BPF_MEM:
case BPF_LDX|BPF_MEM:
case BPF_ST:
case BPF_STX:
/* check for invalid memory addresses */
if (ftest->k >= BPF_MEMWORDS)
return -EINVAL;
break;
case BPF_JMP|BPF_JA:
/*
* Note, the large ftest->k might cause loops.
* Compare this with conditional jumps below,
* where offsets are limited. --ANK (981016)
*/
if (ftest->k >= (unsigned)(flen-pc-1))
return -EINVAL;
break;
case BPF_JMP|BPF_JEQ|BPF_K:
case BPF_JMP|BPF_JEQ|BPF_X:
case BPF_JMP|BPF_JGE|BPF_K:
case BPF_JMP|BPF_JGE|BPF_X:
case BPF_JMP|BPF_JGT|BPF_K:
case BPF_JMP|BPF_JGT|BPF_X:
case BPF_JMP|BPF_JSET|BPF_K:
case BPF_JMP|BPF_JSET|BPF_X:
/* for conditionals both must be safe */
if (pc + ftest->jt + 1 >= flen ||
pc + ftest->jf + 1 >= flen)
return -EINVAL;
break;
default:
return -EINVAL;
}
}
return (BPF_CLASS(filter[flen - 1].code) == BPF_RET) ? 0 : -EINVAL;
}
/**
* sk_attach_filter - attach a socket filter
* @fprog: the filter program
* @sk: the socket to use
*
* Attach the user's filter code. We first run some sanity checks on
* it to make sure it does not explode on us later. If an error
* occurs or there is insufficient memory for the filter a negative
* errno code is returned. On success the return is zero.
*/
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk)
{
struct sk_filter *fp;
unsigned int fsize = sizeof(struct sock_filter) * fprog->len;
int err;
/* Make sure new filter is there and in the right amounts. */
if (fprog->filter == NULL)
return -EINVAL;
fp = sock_kmalloc(sk, fsize+sizeof(*fp), GFP_KERNEL);
if (!fp)
return -ENOMEM;
if (copy_from_user(fp->insns, fprog->filter, fsize)) {
sock_kfree_s(sk, fp, fsize+sizeof(*fp));
return -EFAULT;
}
atomic_set(&fp->refcnt, 1);
fp->len = fprog->len;
err = sk_chk_filter(fp->insns, fp->len);
if (!err) {
struct sk_filter *old_fp;
rcu_read_lock_bh();
old_fp = rcu_dereference(sk->sk_filter);
rcu_assign_pointer(sk->sk_filter, fp);
rcu_read_unlock_bh();
fp = old_fp;
}
if (fp)
sk_filter_release(sk, fp);
return err;
}
EXPORT_SYMBOL(sk_chk_filter);
EXPORT_SYMBOL(sk_run_filter);