/* * Minio Cloud Storage, (C) 2016 Minio, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package cmd import ( "errors" "io" "sync" "github.com/klauspost/reedsolomon" "github.com/minio/minio/pkg/bpool" ) // isSuccessDecodeBlocks - do we have all the blocks to be // successfully decoded?. Input encoded blocks ordered matrix. func isSuccessDecodeBlocks(enBlocks [][]byte, dataBlocks int) bool { // Count number of data and parity blocks that were read. var successDataBlocksCount = 0 var successParityBlocksCount = 0 for index := range enBlocks { if enBlocks[index] == nil { continue } // block index lesser than data blocks, update data block count. if index < dataBlocks { successDataBlocksCount++ continue } // else { // update parity block count. successParityBlocksCount++ } // Returns true if we have atleast dataBlocks parity. return successDataBlocksCount == dataBlocks || successDataBlocksCount+successParityBlocksCount >= dataBlocks } // isSuccessDataBlocks - do we have all the data blocks? // Input encoded blocks ordered matrix. func isSuccessDataBlocks(enBlocks [][]byte, dataBlocks int) bool { // Count number of data blocks that were read. var successDataBlocksCount = 0 for index := range enBlocks[:dataBlocks] { if enBlocks[index] == nil { continue } // block index lesser than data blocks, update data block count. if index < dataBlocks { successDataBlocksCount++ } } // Returns true if we have atleast the dataBlocks. return successDataBlocksCount >= dataBlocks } // Return readable disks slice from which we can read parallelly. func getReadDisks(orderedDisks []StorageAPI, index int, dataBlocks int) (readDisks []StorageAPI, nextIndex int, err error) { readDisks = make([]StorageAPI, len(orderedDisks)) dataDisks := 0 parityDisks := 0 // Count already read data and parity chunks. for i := 0; i < index; i++ { if orderedDisks[i] == nil { continue } if i < dataBlocks { dataDisks++ } else { parityDisks++ } } // Sanity checks - we should never have this situation. if dataDisks == dataBlocks { return nil, 0, traceError(errUnexpected) } if dataDisks+parityDisks >= dataBlocks { return nil, 0, traceError(errUnexpected) } // Find the disks from which next set of parallel reads should happen. for i := index; i < len(orderedDisks); i++ { if orderedDisks[i] == nil { continue } if i < dataBlocks { dataDisks++ } else { parityDisks++ } readDisks[i] = orderedDisks[i] if dataDisks == dataBlocks { return readDisks, i + 1, nil } else if dataDisks+parityDisks == dataBlocks { return readDisks, i + 1, nil } } return nil, 0, traceError(errXLReadQuorum) } // parallelRead - reads chunks in parallel from the disks specified in []readDisks. func parallelRead(volume, path string, readDisks, orderedDisks []StorageAPI, enBlocks [][]byte, blockOffset, curChunkSize int64, brVerifiers []bitRotVerifier, pool *bpool.BytePool) { // WaitGroup to synchronise the read go-routines. wg := &sync.WaitGroup{} // Read disks in parallel. for index := range readDisks { if readDisks[index] == nil { continue } wg.Add(1) // Reads chunk from readDisk[index] in routine. go func(index int) { defer wg.Done() // evaluate if we need to perform bit-rot checking needBitRotVerification := true if brVerifiers[index].isVerified { needBitRotVerification = false // if file has bit-rot, do not reuse disk if brVerifiers[index].hasBitRot { orderedDisks[index] = nil return } } buf, err := pool.Get() if err != nil { errorIf(err, "unable to get buffer from byte pool") orderedDisks[index] = nil return } buf = buf[:curChunkSize] if needBitRotVerification { _, err = readDisks[index].ReadFileWithVerify( volume, path, blockOffset, buf, brVerifiers[index].algo, brVerifiers[index].checkSum) } else { _, err = readDisks[index].ReadFile(volume, path, blockOffset, buf) } // if bit-rot verification was done, store the // result of verification so we can skip // re-doing it next time if needBitRotVerification { brVerifiers[index].isVerified = true _, ok := err.(hashMismatchError) brVerifiers[index].hasBitRot = ok } if err != nil { orderedDisks[index] = nil return } enBlocks[index] = buf }(index) } // Waiting for first routines to finish. wg.Wait() } // erasureReadFile - read bytes from erasure coded files and writes to // given writer. Erasure coded files are read block by block as per // given erasureInfo and data chunks are decoded into a data // block. Data block is trimmed for given offset and length, then // written to given writer. This function also supports bit-rot // detection by verifying checksum of individual block's checksum. func erasureReadFile(writer io.Writer, disks []StorageAPI, volume, path string, offset, length, totalLength, blockSize int64, dataBlocks, parityBlocks int, checkSums []string, algo HashAlgo, pool *bpool.BytePool) (int64, error) { // Offset and length cannot be negative. if offset < 0 || length < 0 { return 0, traceError(errUnexpected) } // Can't request more data than what is available. if offset+length > totalLength { return 0, traceError(errUnexpected) } // chunkSize is the amount of data that needs to be read from // each disk at a time. chunkSize := getChunkSize(blockSize, dataBlocks) brVerifiers := make([]bitRotVerifier, len(disks)) for i := range brVerifiers { brVerifiers[i].algo = algo brVerifiers[i].checkSum = checkSums[i] } // Total bytes written to writer var bytesWritten int64 startBlock := offset / blockSize endBlock := (offset + length) / blockSize // curChunkSize = chunk size for the current block in the for loop below. // curBlockSize = block size for the current block in the for loop below. // curChunkSize and curBlockSize can change for the last block if totalLength%blockSize != 0 curChunkSize := chunkSize curBlockSize := blockSize // For each block, read chunk from each disk. If we are able to read all the data disks then we don't // need to read parity disks. If one of the data disk is missing we need to read DataBlocks+1 number // of disks. Once read, we Reconstruct() missing data if needed and write it to the given writer. for block := startBlock; block <= endBlock; block++ { // Mark all buffers as unused at the start of the loop so that the buffers // can be reused. pool.Reset() // Each element of enBlocks holds curChunkSize'd amount of data read from its corresponding disk. enBlocks := make([][]byte, len(disks)) if ((offset + bytesWritten) / blockSize) == (totalLength / blockSize) { // This is the last block for which curBlockSize and curChunkSize can change. // For ex. if totalLength is 15M and blockSize is 10MB, curBlockSize for // the last block should be 5MB. curBlockSize = totalLength % blockSize curChunkSize = getChunkSize(curBlockSize, dataBlocks) } // NOTE: That for the offset calculation we have to use chunkSize and // not curChunkSize. If we use curChunkSize for offset calculation // then it can result in wrong offset for the last block. blockOffset := block * chunkSize // nextIndex - index from which next set of parallel reads // should happen. nextIndex := 0 for { // readDisks - disks from which we need to read in parallel. var readDisks []StorageAPI var err error // get readable disks slice from which we can read parallelly. readDisks, nextIndex, err = getReadDisks(disks, nextIndex, dataBlocks) if err != nil { return bytesWritten, err } // Issue a parallel read across the disks specified in readDisks. parallelRead(volume, path, readDisks, disks, enBlocks, blockOffset, curChunkSize, brVerifiers, pool) if isSuccessDecodeBlocks(enBlocks, dataBlocks) { // If enough blocks are available to do rs.Reconstruct() break } if nextIndex == len(disks) { // No more disks to read from. return bytesWritten, traceError(errXLReadQuorum) } // We do not have enough enough data blocks to reconstruct the data // hence continue the for-loop till we have enough data blocks. } // If we have all the data blocks no need to decode, continue to write. if !isSuccessDataBlocks(enBlocks, dataBlocks) { // Reconstruct the missing data blocks. if err := decodeData(enBlocks, dataBlocks, parityBlocks); err != nil { return bytesWritten, err } } // Offset in enBlocks from where data should be read from. var enBlocksOffset int64 // Total data to be read from enBlocks. enBlocksLength := curBlockSize // If this is the start block then enBlocksOffset might not be 0. if block == startBlock { enBlocksOffset = offset % blockSize enBlocksLength -= enBlocksOffset } remaining := length - bytesWritten if remaining < enBlocksLength { // We should not send more data than what was requested. enBlocksLength = remaining } // Write data blocks. n, err := writeDataBlocks(writer, enBlocks, dataBlocks, enBlocksOffset, enBlocksLength) if err != nil { return bytesWritten, err } // Update total bytes written. bytesWritten += n if bytesWritten == length { // Done writing all the requested data. break } } // Success. return bytesWritten, nil } // decodeData - decode encoded blocks. func decodeData(enBlocks [][]byte, dataBlocks, parityBlocks int) error { // Initialized reedsolomon. rs, err := reedsolomon.New(dataBlocks, parityBlocks) if err != nil { return traceError(err) } // Reconstruct encoded blocks. err = rs.Reconstruct(enBlocks) if err != nil { return traceError(err) } // Verify reconstructed blocks (parity). ok, err := rs.Verify(enBlocks) if err != nil { return traceError(err) } if !ok { // Blocks cannot be reconstructed, corrupted data. err = errors.New("Verification failed after reconstruction, data likely corrupted") return traceError(err) } // Success. return nil }