/* * Minio Cloud Storage, (C) 2016 Minio, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package main import ( "bytes" "encoding/hex" "errors" "io" "sync" "github.com/klauspost/reedsolomon" ) // isSuccessDecodeBlocks - do we have all the blocks to be // successfully decoded?. Input encoded blocks ordered matrix. func isSuccessDecodeBlocks(enBlocks [][]byte, dataBlocks int) bool { // Count number of data and parity blocks that were read. var successDataBlocksCount = 0 var successParityBlocksCount = 0 for index := range enBlocks { if enBlocks[index] == nil { continue } // block index lesser than data blocks, update data block count. if index < dataBlocks { successDataBlocksCount++ continue } // else { // update parity block count. successParityBlocksCount++ } // Returns true if we have atleast dataBlocks + 1 parity. return successDataBlocksCount == dataBlocks || successDataBlocksCount+successParityBlocksCount >= dataBlocks+1 } // isSuccessDataBlocks - do we have all the data blocks? // Input encoded blocks ordered matrix. func isSuccessDataBlocks(enBlocks [][]byte, dataBlocks int) bool { // Count number of data blocks that were read. var successDataBlocksCount = 0 for index := range enBlocks[:dataBlocks] { if enBlocks[index] == nil { continue } // block index lesser than data blocks, update data block count. if index < dataBlocks { successDataBlocksCount++ } } // Returns true if we have atleast the dataBlocks. return successDataBlocksCount >= dataBlocks } // Return ordered partsMetadata depeinding on distribution. func getOrderedPartsMetadata(distribution []int, partsMetadata []xlMetaV1) (orderedPartsMetadata []xlMetaV1) { orderedPartsMetadata = make([]xlMetaV1, len(partsMetadata)) for index := range partsMetadata { blockIndex := distribution[index] orderedPartsMetadata[blockIndex-1] = partsMetadata[index] } return orderedPartsMetadata } // getOrderedDisks - get ordered disks from erasure distribution. // returns ordered slice of disks from their actual distribution. func getOrderedDisks(distribution []int, disks []StorageAPI) (orderedDisks []StorageAPI) { orderedDisks = make([]StorageAPI, len(disks)) // From disks gets ordered disks. for index := range disks { blockIndex := distribution[index] orderedDisks[blockIndex-1] = disks[index] } return orderedDisks } // Return ordered CheckSums depending on the distribution. func getOrderedCheckSums(distribution []int, blockCheckSums []checkSumInfo) (orderedBlockCheckSums []checkSumInfo) { orderedBlockCheckSums = make([]checkSumInfo, len(blockCheckSums)) for index := range blockCheckSums { blockIndex := distribution[index] orderedBlockCheckSums[blockIndex-1] = blockCheckSums[index] } return orderedBlockCheckSums } // Return readable disks slice from which we can read parallelly. func getReadDisks(orderedDisks []StorageAPI, index int, dataBlocks int) (readDisks []StorageAPI, nextIndex int, err error) { readDisks = make([]StorageAPI, len(orderedDisks)) dataDisks := 0 parityDisks := 0 // Count already read data and parity chunks. for i := 0; i < index; i++ { if orderedDisks[i] == nil { continue } if i < dataBlocks { dataDisks++ } else { parityDisks++ } } // Sanity checks - we should never have this situation. if dataDisks == dataBlocks { return nil, 0, errUnexpected } if dataDisks+parityDisks >= dataBlocks+1 { return nil, 0, errUnexpected } // Find the disks from which next set of parallel reads should happen. for i := index; i < len(orderedDisks); i++ { if orderedDisks[i] == nil { continue } if i < dataBlocks { dataDisks++ } else { parityDisks++ } readDisks[i] = orderedDisks[i] if dataDisks == dataBlocks { return readDisks, i + 1, nil } if dataDisks+parityDisks == dataBlocks+1 { return readDisks, i + 1, nil } } return nil, 0, errXLReadQuorum } // parallelRead - reads chunks in parallel from the disks specified in []readDisks. func parallelRead(volume, path string, readDisks []StorageAPI, orderedDisks []StorageAPI, enBlocks [][]byte, blockOffset int64, curChunkSize int64, bitRotVerify func(diskIndex int) bool) { // WaitGroup to synchronise the read go-routines. wg := &sync.WaitGroup{} // Read disks in parallel. for index := range readDisks { if readDisks[index] == nil { continue } wg.Add(1) // Reads chunk from readDisk[index] in routine. go func(index int) { defer wg.Done() // Verify bit rot for the file on this disk. if !bitRotVerify(index) { // So that we don't read from this disk for the next block. orderedDisks[index] = nil return } // Chunk writer. chunkWriter := bytes.NewBuffer(make([]byte, 0, curChunkSize)) // CopyN - copies until current chunk size. err := copyN(chunkWriter, readDisks[index], volume, path, blockOffset, curChunkSize) if err != nil { // So that we don't read from this disk for the next block. orderedDisks[index] = nil return } // Copy the read blocks. enBlocks[index] = chunkWriter.Bytes() // Successfully read. }(index) } // Waiting for first routines to finish. wg.Wait() } // erasureReadFile - read bytes from erasure coded files and writes to given writer. // Erasure coded files are read block by block as per given erasureInfo and data chunks // are decoded into a data block. Data block is trimmed for given offset and length, // then written to given writer. This function also supports bit-rot detection by // verifying checksum of individual block's checksum. func erasureReadFile(writer io.Writer, disks []StorageAPI, volume string, path string, partName string, eInfos []erasureInfo, offset int64, length int64, totalLength int64) (int64, error) { // Offset and length cannot be negative. if offset < 0 || length < 0 { return 0, errUnexpected } // Pick one erasure info. eInfo := pickValidErasureInfo(eInfos) // Gather previously calculated block checksums. blockCheckSums := metaPartBlockChecksums(disks, eInfos, partName) // []orderedDisks will have first eInfo.DataBlocks disks as data // disks and rest will be parity. orderedDisks := getOrderedDisks(eInfo.Distribution, disks) orderedBlockCheckSums := getOrderedCheckSums(eInfo.Distribution, blockCheckSums) // bitRotVerify verifies if the file on a particular disk doesn't have bitrot // by verifying the hash of the contents of the file. bitRotVerify := func() func(diskIndex int) bool { verified := make([]bool, len(orderedDisks)) // Return closure so that we have reference to []verified and // not recalculate the hash on it every time the function is // called for the same disk. return func(diskIndex int) bool { if verified[diskIndex] { // Already validated. return true } // Is this a valid block? isValid := isValidBlock(orderedDisks[diskIndex], volume, path, orderedBlockCheckSums[diskIndex]) verified[diskIndex] = isValid return isValid } }() // Total bytes written to writer bytesWritten := int64(0) // chunkSize is roughly BlockSize/DataBlocks. // chunkSize is calculated such that chunkSize*DataBlocks accommodates BlockSize bytes. // So chunkSize*DataBlocks can be slightly larger than BlockSize if BlockSize is not divisible by // DataBlocks. The extra space will have 0-padding. chunkSize := getEncodedBlockLen(eInfo.BlockSize, eInfo.DataBlocks) // Get start and end block, also bytes to be skipped based on the input offset. startBlock, endBlock, bytesToSkip := getBlockInfo(offset, totalLength, eInfo.BlockSize) // For each block, read chunk from each disk. If we are able to read all the data disks then we don't // need to read parity disks. If one of the data disk is missing we need to read DataBlocks+1 number // of disks. Once read, we Reconstruct() missing data if needed and write it to the given writer. for block := startBlock; bytesWritten < length; block++ { // Each element of enBlocks holds curChunkSize'd amount of data read from its corresponding disk. enBlocks := make([][]byte, len(orderedDisks)) // enBlocks data can have 0-padding hence we need to figure the exact number // of bytes we want to read from enBlocks. blockSize := eInfo.BlockSize // curChunkSize is chunkSize until end block. curChunkSize := chunkSize // We have endBlock, verify if we need to have padding. if block == endBlock && (totalLength%eInfo.BlockSize != 0) { // If this is the last block and size of the block is < BlockSize. curChunkSize = getEncodedBlockLen(totalLength%eInfo.BlockSize, eInfo.DataBlocks) // For the last block, the block size can be less than BlockSize. blockSize = totalLength % eInfo.BlockSize } // Block offset. // NOTE: That for the offset calculation we have to use chunkSize and // not curChunkSize. If we use curChunkSize for offset calculation // then it can result in wrong offset for the last block. blockOffset := block * chunkSize // nextIndex - index from which next set of parallel reads // should happen. nextIndex := 0 for { // readDisks - disks from which we need to read in parallel. var readDisks []StorageAPI var err error readDisks, nextIndex, err = getReadDisks(orderedDisks, nextIndex, eInfo.DataBlocks) if err != nil { return bytesWritten, err } parallelRead(volume, path, readDisks, orderedDisks, enBlocks, blockOffset, curChunkSize, bitRotVerify) if isSuccessDecodeBlocks(enBlocks, eInfo.DataBlocks) { // If enough blocks are available to do rs.Reconstruct() break } if nextIndex == len(orderedDisks) { // No more disks to read from. return bytesWritten, errXLReadQuorum } } // If we have all the data blocks no need to decode, continue to write. if !isSuccessDataBlocks(enBlocks, eInfo.DataBlocks) { // Reconstruct the missing data blocks. if err := decodeData(enBlocks, eInfo.DataBlocks, eInfo.ParityBlocks); err != nil { return bytesWritten, err } } var outSize, outOffset int64 // If this is start block, skip unwanted bytes. if block == startBlock { outOffset = bytesToSkip } // Total data to be read. outSize = blockSize if length-bytesWritten < blockSize { // We should not send more data than what was requested. outSize = length - bytesWritten } // Write data blocks. n, err := writeDataBlocks(writer, enBlocks, eInfo.DataBlocks, outOffset, outSize) if err != nil { return bytesWritten, err } // Update total bytes written. bytesWritten += n } // Success. return bytesWritten, nil } // PartObjectChecksum - returns the checksum for the part name from the checksum slice. func (e erasureInfo) PartObjectChecksum(partName string) checkSumInfo { for _, checksum := range e.Checksum { if checksum.Name == partName { return checksum } } return checkSumInfo{} } // xlMetaPartBlockChecksums - get block checksums for a given part. func metaPartBlockChecksums(disks []StorageAPI, eInfos []erasureInfo, partName string) (blockCheckSums []checkSumInfo) { for index := range disks { if eInfos[index].IsValid() { // Save the read checksums for a given part. blockCheckSums = append(blockCheckSums, eInfos[index].PartObjectChecksum(partName)) } else { blockCheckSums = append(blockCheckSums, checkSumInfo{}) } } return blockCheckSums } // isValidBlock - calculates the checksum hash for the block and // validates if its correct returns true for valid cases, false otherwise. func isValidBlock(disk StorageAPI, volume, path string, blockCheckSum checkSumInfo) (ok bool) { // Disk is not available, not a valid block. if disk == nil { return false } // Read everything for a given block and calculate hash. hashWriter := newHash(blockCheckSum.Algorithm) hashBytes, err := hashSum(disk, volume, path, hashWriter) if err != nil { errorIf(err, "Unable to calculate checksum %s/%s", volume, path) return false } return hex.EncodeToString(hashBytes) == blockCheckSum.Hash } // decodeData - decode encoded blocks. func decodeData(enBlocks [][]byte, dataBlocks, parityBlocks int) error { // Initialized reedsolomon. rs, err := reedsolomon.New(dataBlocks, parityBlocks) if err != nil { return err } // Reconstruct encoded blocks. err = rs.Reconstruct(enBlocks) if err != nil { return err } // Verify reconstructed blocks (parity). ok, err := rs.Verify(enBlocks) if err != nil { return err } if !ok { // Blocks cannot be reconstructed, corrupted data. err = errors.New("Verification failed after reconstruction, data likely corrupted.") return err } // Success. return nil }