/* * Minio Cloud Storage, (C) 2017, 2018 Minio, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package cmd import ( "context" "crypto/hmac" "crypto/rand" "crypto/subtle" "encoding/binary" "errors" "io" "net/http" "path" "strconv" "github.com/minio/minio/cmd/crypto" "github.com/minio/minio/cmd/logger" "github.com/minio/minio/pkg/ioutil" sha256 "github.com/minio/sha256-simd" "github.com/minio/sio" ) var ( // AWS errors for invalid SSE-C requests. errInsecureSSERequest = errors.New("SSE-C requests require TLS connections") errEncryptedObject = errors.New("The object was stored using a form of SSE") errInvalidSSEParameters = errors.New("The SSE-C key for key-rotation is not correct") // special access denied errKMSNotConfigured = errors.New("KMS not configured for a server side encrypted object") // Additional Minio errors for SSE-C requests. errObjectTampered = errors.New("The requested object was modified and may be compromised") // error returned when invalid encryption parameters are specified errInvalidEncryptionParameters = errors.New("The encryption parameters are not applicable to this object") ) const ( // SSECustomerKeySize is the size of valid client provided encryption keys in bytes. // Currently AWS supports only AES256. So the SSE-C key size is fixed to 32 bytes. SSECustomerKeySize = 32 // SSEIVSize is the size of the IV data SSEIVSize = 32 // 32 bytes // SSE dare package block size. sseDAREPackageBlockSize = 64 * 1024 // 64KiB bytes // SSE dare package meta padding bytes. sseDAREPackageMetaSize = 32 // 32 bytes ) const ( // SSESealAlgorithmDareSha256 specifies DARE as authenticated en/decryption scheme and SHA256 as cryptographic // hash function. The key derivation of DARE-SHA256 is not optimal and does not include the object path. // It is considered legacy and should not be used anymore. SSESealAlgorithmDareSha256 = "DARE-SHA256" // SSESealAlgorithmDareV2HmacSha256 specifies DAREv2 as authenticated en/decryption scheme and SHA256 as cryptographic // hash function for the HMAC PRF. SSESealAlgorithmDareV2HmacSha256 = "DAREv2-HMAC-SHA256" ) // hasServerSideEncryptionHeader returns true if the given HTTP header // contains server-side-encryption. func hasServerSideEncryptionHeader(header http.Header) bool { return crypto.S3.IsRequested(header) || crypto.SSEC.IsRequested(header) } // ParseSSECopyCustomerRequest parses the SSE-C header fields of the provided request. // It returns the client provided key on success. func ParseSSECopyCustomerRequest(h http.Header, metadata map[string]string) (key []byte, err error) { if !globalIsSSL { // minio only supports HTTP or HTTPS requests not both at the same time // we cannot use r.TLS == nil here because Go's http implementation reflects on // the net.Conn and sets the TLS field of http.Request only if it's an tls.Conn. // Minio uses a BufConn (wrapping a tls.Conn) so the type check within the http package // will always fail -> r.TLS is always nil even for TLS requests. return nil, errInsecureSSERequest } if crypto.S3.IsEncrypted(metadata) && crypto.SSECopy.IsRequested(h) { return nil, crypto.ErrIncompatibleEncryptionMethod } k, err := crypto.SSECopy.ParseHTTP(h) return k[:], err } // ParseSSECustomerRequest parses the SSE-C header fields of the provided request. // It returns the client provided key on success. func ParseSSECustomerRequest(r *http.Request) (key []byte, err error) { return ParseSSECustomerHeader(r.Header) } // ParseSSECustomerHeader parses the SSE-C header fields and returns // the client provided key on success. func ParseSSECustomerHeader(header http.Header) (key []byte, err error) { if !globalIsSSL { // minio only supports HTTP or HTTPS requests not both at the same time // we cannot use r.TLS == nil here because Go's http implementation reflects on // the net.Conn and sets the TLS field of http.Request only if it's an tls.Conn. // Minio uses a BufConn (wrapping a tls.Conn) so the type check within the http package // will always fail -> r.TLS is always nil even for TLS requests. return nil, errInsecureSSERequest } if crypto.S3.IsRequested(header) && crypto.SSEC.IsRequested(header) { return key, crypto.ErrIncompatibleEncryptionMethod } k, err := crypto.SSEC.ParseHTTP(header) return k[:], err } // This function rotates old to new key. func rotateKey(oldKey []byte, newKey []byte, bucket, object string, metadata map[string]string) error { switch { default: return errObjectTampered case crypto.SSEC.IsEncrypted(metadata): sealedKey, err := crypto.SSEC.ParseMetadata(metadata) if err != nil { return err } var objectKey crypto.ObjectKey var extKey [32]byte copy(extKey[:], oldKey) if err = objectKey.Unseal(extKey, sealedKey, crypto.SSEC.String(), bucket, object); err != nil { if subtle.ConstantTimeCompare(oldKey, newKey) == 1 { return errInvalidSSEParameters // AWS returns special error for equal but invalid keys. } return crypto.ErrInvalidCustomerKey // To provide strict AWS S3 compatibility we return: access denied. } if subtle.ConstantTimeCompare(oldKey, newKey) == 1 && sealedKey.Algorithm == crypto.SealAlgorithm { return nil // don't rotate on equal keys if seal algorithm is latest } copy(extKey[:], newKey) sealedKey = objectKey.Seal(extKey, sealedKey.IV, crypto.SSEC.String(), bucket, object) crypto.SSEC.CreateMetadata(metadata, sealedKey) return nil } } func newEncryptMetadata(key []byte, bucket, object string, metadata map[string]string, sseS3 bool) ([]byte, error) { var sealedKey crypto.SealedKey if sseS3 { if globalKMS == nil { return nil, errKMSNotConfigured } key, encKey, err := globalKMS.GenerateKey(globalKMSKeyID, crypto.Context{bucket: path.Join(bucket, object)}) if err != nil { return nil, err } objectKey := crypto.GenerateKey(key, rand.Reader) sealedKey = objectKey.Seal(key, crypto.GenerateIV(rand.Reader), crypto.S3.String(), bucket, object) crypto.S3.CreateMetadata(metadata, globalKMSKeyID, encKey, sealedKey) return objectKey[:], nil } var extKey [32]byte copy(extKey[:], key) objectKey := crypto.GenerateKey(extKey, rand.Reader) sealedKey = objectKey.Seal(extKey, crypto.GenerateIV(rand.Reader), crypto.SSEC.String(), bucket, object) crypto.SSEC.CreateMetadata(metadata, sealedKey) return objectKey[:], nil } func newEncryptReader(content io.Reader, key []byte, bucket, object string, metadata map[string]string, sseS3 bool) (io.Reader, error) { objectEncryptionKey, err := newEncryptMetadata(key, bucket, object, metadata, sseS3) if err != nil { return nil, err } reader, err := sio.EncryptReader(content, sio.Config{Key: objectEncryptionKey[:], MinVersion: sio.Version20}) if err != nil { return nil, crypto.ErrInvalidCustomerKey } return reader, nil } // set new encryption metadata from http request headers for SSE-C and generated key from KMS in the case of // SSE-S3 func setEncryptionMetadata(r *http.Request, bucket, object string, metadata map[string]string) (err error) { var ( key []byte ) if crypto.SSEC.IsRequested(r.Header) { key, err = ParseSSECustomerRequest(r) if err != nil { return } } _, err = newEncryptMetadata(key, bucket, object, metadata, crypto.S3.IsRequested(r.Header)) return } // EncryptRequest takes the client provided content and encrypts the data // with the client provided key. It also marks the object as client-side-encrypted // and sets the correct headers. func EncryptRequest(content io.Reader, r *http.Request, bucket, object string, metadata map[string]string) (io.Reader, error) { var ( key []byte err error ) if crypto.S3.IsRequested(r.Header) && crypto.SSEC.IsRequested(r.Header) { return nil, crypto.ErrIncompatibleEncryptionMethod } if crypto.SSEC.IsRequested(r.Header) { key, err = ParseSSECustomerRequest(r) if err != nil { return nil, err } } return newEncryptReader(content, key, bucket, object, metadata, crypto.S3.IsRequested(r.Header)) } // DecryptCopyRequest decrypts the object with the client provided key. It also removes // the client-side-encryption metadata from the object and sets the correct headers. func DecryptCopyRequest(client io.Writer, r *http.Request, bucket, object string, metadata map[string]string) (io.WriteCloser, error) { var ( key []byte err error ) if crypto.SSECopy.IsRequested(r.Header) { key, err = ParseSSECopyCustomerRequest(r.Header, metadata) if err != nil { return nil, err } } return newDecryptWriter(client, key, bucket, object, 0, metadata) } func decryptObjectInfo(key []byte, bucket, object string, metadata map[string]string) ([]byte, error) { switch { default: return nil, errObjectTampered case crypto.S3.IsEncrypted(metadata): if globalKMS == nil { return nil, errKMSNotConfigured } keyID, kmsKey, sealedKey, err := crypto.S3.ParseMetadata(metadata) if err != nil { return nil, err } extKey, err := globalKMS.UnsealKey(keyID, kmsKey, crypto.Context{bucket: path.Join(bucket, object)}) if err != nil { return nil, err } var objectKey crypto.ObjectKey if err = objectKey.Unseal(extKey, sealedKey, crypto.S3.String(), bucket, object); err != nil { return nil, err } return objectKey[:], nil case crypto.SSEC.IsEncrypted(metadata): var extKey [32]byte copy(extKey[:], key) sealedKey, err := crypto.SSEC.ParseMetadata(metadata) if err != nil { return nil, err } var objectKey crypto.ObjectKey if err = objectKey.Unseal(extKey, sealedKey, crypto.SSEC.String(), bucket, object); err != nil { return nil, err } return objectKey[:], nil } } func newDecryptWriter(client io.Writer, key []byte, bucket, object string, seqNumber uint32, metadata map[string]string) (io.WriteCloser, error) { objectEncryptionKey, err := decryptObjectInfo(key, bucket, object, metadata) if err != nil { return nil, err } return newDecryptWriterWithObjectKey(client, objectEncryptionKey, seqNumber, metadata) } func newDecryptWriterWithObjectKey(client io.Writer, objectEncryptionKey []byte, seqNumber uint32, metadata map[string]string) (io.WriteCloser, error) { writer, err := sio.DecryptWriter(client, sio.Config{ Key: objectEncryptionKey, SequenceNumber: seqNumber, }) if err != nil { return nil, crypto.ErrInvalidCustomerKey } delete(metadata, crypto.SSEIV) delete(metadata, crypto.SSESealAlgorithm) delete(metadata, crypto.SSECSealedKey) delete(metadata, crypto.SSEMultipart) delete(metadata, crypto.S3SealedKey) delete(metadata, crypto.S3KMSSealedKey) delete(metadata, crypto.S3KMSKeyID) return writer, nil } // Adding support for reader based interface // DecryptRequestWithSequenceNumberR - same as // DecryptRequestWithSequenceNumber but with a reader func DecryptRequestWithSequenceNumberR(client io.Reader, h http.Header, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) { if crypto.S3.IsEncrypted(metadata) { return newDecryptReader(client, nil, bucket, object, seqNumber, metadata) } key, err := ParseSSECustomerHeader(h) if err != nil { return nil, err } return newDecryptReader(client, key, bucket, object, seqNumber, metadata) } // DecryptCopyRequestR - same as DecryptCopyRequest, but with a // Reader func DecryptCopyRequestR(client io.Reader, h http.Header, bucket, object string, metadata map[string]string) (io.Reader, error) { var ( key []byte err error ) if crypto.SSECopy.IsRequested(h) { key, err = ParseSSECopyCustomerRequest(h, metadata) if err != nil { return nil, err } } return newDecryptReader(client, key, bucket, object, 0, metadata) } func newDecryptReader(client io.Reader, key []byte, bucket, object string, seqNumber uint32, metadata map[string]string) (io.Reader, error) { objectEncryptionKey, err := decryptObjectInfo(key, bucket, object, metadata) if err != nil { return nil, err } return newDecryptReaderWithObjectKey(client, objectEncryptionKey, seqNumber, metadata) } func newDecryptReaderWithObjectKey(client io.Reader, objectEncryptionKey []byte, seqNumber uint32, metadata map[string]string) (io.Reader, error) { reader, err := sio.DecryptReader(client, sio.Config{ Key: objectEncryptionKey, SequenceNumber: seqNumber, }) if err != nil { return nil, crypto.ErrInvalidCustomerKey } return reader, nil } // GetEncryptedOffsetLength - returns encrypted offset and length // along with sequence number func GetEncryptedOffsetLength(startOffset, length int64, objInfo ObjectInfo) (seqNumber uint32, encStartOffset, encLength int64) { if len(objInfo.Parts) == 0 || !crypto.IsMultiPart(objInfo.UserDefined) { seqNumber, encStartOffset, encLength = getEncryptedSinglePartOffsetLength(startOffset, length, objInfo) return } seqNumber, encStartOffset, encLength = getEncryptedMultipartsOffsetLength(startOffset, length, objInfo) return } // DecryptBlocksRequestR - same as DecryptBlocksRequest but with a // reader func DecryptBlocksRequestR(inputReader io.Reader, h http.Header, offset, length int64, seqNumber uint32, partStart int, oi ObjectInfo, copySource bool) ( io.Reader, error) { bucket, object := oi.Bucket, oi.Name // Single part case if len(oi.Parts) == 0 || !crypto.IsMultiPart(oi.UserDefined) { var reader io.Reader var err error if copySource { reader, err = DecryptCopyRequestR(inputReader, h, bucket, object, oi.UserDefined) } else { reader, err = DecryptRequestWithSequenceNumberR(inputReader, h, bucket, object, seqNumber, oi.UserDefined) } if err != nil { return nil, err } return reader, nil } partDecRelOffset := int64(seqNumber) * sseDAREPackageBlockSize partEncRelOffset := int64(seqNumber) * (sseDAREPackageBlockSize + sseDAREPackageMetaSize) w := &DecryptBlocksReader{ reader: inputReader, startSeqNum: seqNumber, partDecRelOffset: partDecRelOffset, partEncRelOffset: partEncRelOffset, parts: oi.Parts, partIndex: partStart, header: h, bucket: bucket, object: object, customerKeyHeader: h.Get(crypto.SSECKey), copySource: copySource, } w.metadata = map[string]string{} // Copy encryption metadata for internal use. for k, v := range oi.UserDefined { w.metadata[k] = v } if w.copySource { w.customerKeyHeader = h.Get(crypto.SSECopyKey) } if err := w.buildDecrypter(w.parts[w.partIndex].Number); err != nil { return nil, err } return w, nil } // DecryptRequestWithSequenceNumber decrypts the object with the client provided key. It also removes // the client-side-encryption metadata from the object and sets the correct headers. func DecryptRequestWithSequenceNumber(client io.Writer, r *http.Request, bucket, object string, seqNumber uint32, metadata map[string]string) (io.WriteCloser, error) { if crypto.S3.IsEncrypted(metadata) { return newDecryptWriter(client, nil, bucket, object, seqNumber, metadata) } key, err := ParseSSECustomerRequest(r) if err != nil { return nil, err } return newDecryptWriter(client, key, bucket, object, seqNumber, metadata) } // DecryptRequest decrypts the object with client provided key for SSE-C and SSE-S3. It also removes // the encryption metadata from the object and sets the correct headers. func DecryptRequest(client io.Writer, r *http.Request, bucket, object string, metadata map[string]string) (io.WriteCloser, error) { return DecryptRequestWithSequenceNumber(client, r, bucket, object, 0, metadata) } // DecryptBlocksReader - decrypts multipart parts, while implementing // a io.Reader compatible interface. type DecryptBlocksReader struct { // Source of the encrypted content that will be decrypted reader io.Reader // Current decrypter for the current encrypted data block decrypter io.Reader // Start sequence number startSeqNum uint32 // Current part index partIndex int // Parts information parts []objectPartInfo header http.Header bucket, object string metadata map[string]string partDecRelOffset, partEncRelOffset int64 copySource bool // Customer Key customerKeyHeader string } func (d *DecryptBlocksReader) buildDecrypter(partID int) error { m := make(map[string]string) for k, v := range d.metadata { m[k] = v } // Initialize the first decrypter; new decrypters will be // initialized in Read() operation as needed. var key []byte var err error if d.copySource { if crypto.SSEC.IsEncrypted(d.metadata) { d.header.Set(crypto.SSECopyKey, d.customerKeyHeader) key, err = ParseSSECopyCustomerRequest(d.header, d.metadata) } } else { if crypto.SSEC.IsEncrypted(d.metadata) { d.header.Set(crypto.SSECKey, d.customerKeyHeader) key, err = ParseSSECustomerHeader(d.header) } } if err != nil { return err } objectEncryptionKey, err := decryptObjectInfo(key, d.bucket, d.object, m) if err != nil { return err } var partIDbin [4]byte binary.LittleEndian.PutUint32(partIDbin[:], uint32(partID)) // marshal part ID mac := hmac.New(sha256.New, objectEncryptionKey) // derive part encryption key from part ID and object key mac.Write(partIDbin[:]) partEncryptionKey := mac.Sum(nil) // Limit the reader, so the decryptor doesnt receive bytes // from the next part (different DARE stream) encLenToRead := d.parts[d.partIndex].Size - d.partEncRelOffset decrypter, err := newDecryptReaderWithObjectKey(io.LimitReader(d.reader, encLenToRead), partEncryptionKey, d.startSeqNum, m) if err != nil { return err } d.decrypter = decrypter return nil } func (d *DecryptBlocksReader) Read(p []byte) (int, error) { var err error var n1 int decPartSize, _ := sio.DecryptedSize(uint64(d.parts[d.partIndex].Size)) unreadPartLen := int64(decPartSize) - d.partDecRelOffset if int64(len(p)) < unreadPartLen { n1, err = d.decrypter.Read(p) if err != nil { return 0, err } d.partDecRelOffset += int64(n1) } else { n1, err = io.ReadFull(d.decrypter, p[:unreadPartLen]) if err != nil { return 0, err } // We should now proceed to next part, reset all // values appropriately. d.partEncRelOffset = 0 d.partDecRelOffset = 0 d.startSeqNum = 0 d.partIndex++ if d.partIndex == len(d.parts) { return n1, io.EOF } err = d.buildDecrypter(d.parts[d.partIndex].Number) if err != nil { return 0, err } n1, err = d.decrypter.Read(p[n1:]) if err != nil { return 0, err } d.partDecRelOffset += int64(n1) } return len(p), nil } // DecryptBlocksWriter - decrypts multipart parts, while implementing // a io.Writer compatible interface. type DecryptBlocksWriter struct { // Original writer where the plain data will be written writer io.Writer // Current decrypter for the current encrypted data block decrypter io.WriteCloser // Start sequence number startSeqNum uint32 // Current part index partIndex int // Parts information parts []objectPartInfo req *http.Request bucket, object string metadata map[string]string partEncRelOffset int64 copySource bool // Customer Key customerKeyHeader string } func (w *DecryptBlocksWriter) buildDecrypter(partID int) error { m := make(map[string]string) for k, v := range w.metadata { m[k] = v } // Initialize the first decrypter, new decrypters will be initialized in Write() operation as needed. var key []byte var err error if w.copySource { if crypto.SSEC.IsEncrypted(w.metadata) { w.req.Header.Set(crypto.SSECopyKey, w.customerKeyHeader) key, err = ParseSSECopyCustomerRequest(w.req.Header, w.metadata) } } else { if crypto.SSEC.IsEncrypted(w.metadata) { w.req.Header.Set(crypto.SSECKey, w.customerKeyHeader) key, err = ParseSSECustomerRequest(w.req) } } if err != nil { return err } objectEncryptionKey, err := decryptObjectInfo(key, w.bucket, w.object, m) if err != nil { return err } var partIDbin [4]byte binary.LittleEndian.PutUint32(partIDbin[:], uint32(partID)) // marshal part ID mac := hmac.New(sha256.New, objectEncryptionKey) // derive part encryption key from part ID and object key mac.Write(partIDbin[:]) partEncryptionKey := mac.Sum(nil) // make sure to provide a NopCloser such that a Close // on sio.decryptWriter doesn't close the underlying writer's // close which perhaps can close the stream prematurely. decrypter, err := newDecryptWriterWithObjectKey(ioutil.NopCloser(w.writer), partEncryptionKey, w.startSeqNum, m) if err != nil { return err } if w.decrypter != nil { // Pro-actively close the writer such that any pending buffers // are flushed already before we allocate a new decrypter. err = w.decrypter.Close() if err != nil { return err } } w.decrypter = decrypter return nil } func (w *DecryptBlocksWriter) Write(p []byte) (int, error) { var err error var n1 int if int64(len(p)) < w.parts[w.partIndex].Size-w.partEncRelOffset { n1, err = w.decrypter.Write(p) if err != nil { return 0, err } w.partEncRelOffset += int64(n1) } else { n1, err = w.decrypter.Write(p[:w.parts[w.partIndex].Size-w.partEncRelOffset]) if err != nil { return 0, err } // We should now proceed to next part, reset all values appropriately. w.partEncRelOffset = 0 w.startSeqNum = 0 w.partIndex++ err = w.buildDecrypter(w.partIndex + 1) if err != nil { return 0, err } n1, err = w.decrypter.Write(p[n1:]) if err != nil { return 0, err } w.partEncRelOffset += int64(n1) } return len(p), nil } // Close closes the LimitWriter. It behaves like io.Closer. func (w *DecryptBlocksWriter) Close() error { if w.decrypter != nil { err := w.decrypter.Close() if err != nil { return err } } if closer, ok := w.writer.(io.Closer); ok { return closer.Close() } return nil } // DecryptAllBlocksCopyRequest - setup a struct which can decrypt many concatenated encrypted data // parts information helps to know the boundaries of each encrypted data block, this function decrypts // all parts starting from part-1. func DecryptAllBlocksCopyRequest(client io.Writer, r *http.Request, bucket, object string, objInfo ObjectInfo) (io.WriteCloser, int64, error) { w, _, size, err := DecryptBlocksRequest(client, r, bucket, object, 0, objInfo.Size, objInfo, true) return w, size, err } // DecryptBlocksRequest - setup a struct which can decrypt many concatenated encrypted data // parts information helps to know the boundaries of each encrypted data block. func DecryptBlocksRequest(client io.Writer, r *http.Request, bucket, object string, startOffset, length int64, objInfo ObjectInfo, copySource bool) (io.WriteCloser, int64, int64, error) { var seqNumber uint32 var encStartOffset, encLength int64 if len(objInfo.Parts) == 0 || !crypto.IsMultiPart(objInfo.UserDefined) { seqNumber, encStartOffset, encLength = getEncryptedSinglePartOffsetLength(startOffset, length, objInfo) var writer io.WriteCloser var err error if copySource { writer, err = DecryptCopyRequest(client, r, bucket, object, objInfo.UserDefined) } else { writer, err = DecryptRequestWithSequenceNumber(client, r, bucket, object, seqNumber, objInfo.UserDefined) } if err != nil { return nil, 0, 0, err } return writer, encStartOffset, encLength, nil } seqNumber, encStartOffset, encLength = getEncryptedMultipartsOffsetLength(startOffset, length, objInfo) var partStartIndex int var partStartOffset = startOffset // Skip parts until final offset maps to a particular part offset. for i, part := range objInfo.Parts { decryptedSize, err := sio.DecryptedSize(uint64(part.Size)) if err != nil { return nil, -1, -1, errObjectTampered } partStartIndex = i // Offset is smaller than size we have reached the // proper part offset, break out we start from // this part index. if partStartOffset < int64(decryptedSize) { break } // Continue to look for next part. partStartOffset -= int64(decryptedSize) } startSeqNum := partStartOffset / sseDAREPackageBlockSize partEncRelOffset := int64(startSeqNum) * (sseDAREPackageBlockSize + sseDAREPackageMetaSize) w := &DecryptBlocksWriter{ writer: client, startSeqNum: uint32(startSeqNum), partEncRelOffset: partEncRelOffset, parts: objInfo.Parts, partIndex: partStartIndex, req: r, bucket: bucket, object: object, customerKeyHeader: r.Header.Get(crypto.SSECKey), copySource: copySource, } w.metadata = map[string]string{} // Copy encryption metadata for internal use. for k, v := range objInfo.UserDefined { w.metadata[k] = v } // Purge all the encryption headers. delete(objInfo.UserDefined, crypto.SSEIV) delete(objInfo.UserDefined, crypto.SSESealAlgorithm) delete(objInfo.UserDefined, crypto.SSECSealedKey) delete(objInfo.UserDefined, crypto.SSEMultipart) if crypto.S3.IsEncrypted(objInfo.UserDefined) { delete(objInfo.UserDefined, crypto.S3SealedKey) delete(objInfo.UserDefined, crypto.S3KMSKeyID) delete(objInfo.UserDefined, crypto.S3KMSSealedKey) } if w.copySource { w.customerKeyHeader = r.Header.Get(crypto.SSECopyKey) } if err := w.buildDecrypter(w.parts[w.partIndex].Number); err != nil { return nil, 0, 0, err } return w, encStartOffset, encLength, nil } // getEncryptedMultipartsOffsetLength - fetch sequence number, encrypted start offset and encrypted length. func getEncryptedMultipartsOffsetLength(offset, length int64, obj ObjectInfo) (uint32, int64, int64) { // Calculate encrypted offset of a multipart object computeEncOffset := func(off int64, obj ObjectInfo) (seqNumber uint32, encryptedOffset int64, err error) { var curPartEndOffset uint64 var prevPartsEncSize int64 for _, p := range obj.Parts { size, decErr := sio.DecryptedSize(uint64(p.Size)) if decErr != nil { err = errObjectTampered // assign correct error type return } if off < int64(curPartEndOffset+size) { seqNumber, encryptedOffset, _ = getEncryptedSinglePartOffsetLength(off-int64(curPartEndOffset), 1, obj) encryptedOffset += int64(prevPartsEncSize) break } curPartEndOffset += size prevPartsEncSize += p.Size } return } // Calculate the encrypted start offset corresponding to the plain offset seqNumber, encStartOffset, _ := computeEncOffset(offset, obj) // Calculate also the encrypted end offset corresponding to plain offset + plain length _, encEndOffset, _ := computeEncOffset(offset+length-1, obj) // encLength is the diff between encrypted end offset and encrypted start offset + one package size // to ensure all encrypted data are covered encLength := encEndOffset - encStartOffset + (64*1024 + 32) // Calculate total size of all parts var totalPartsLength int64 for _, p := range obj.Parts { totalPartsLength += p.Size } // Set encLength to maximum possible value if it exceeded total parts size if encLength+encStartOffset > totalPartsLength { encLength = totalPartsLength - encStartOffset } return seqNumber, encStartOffset, encLength } // getEncryptedSinglePartOffsetLength - fetch sequence number, encrypted start offset and encrypted length. func getEncryptedSinglePartOffsetLength(offset, length int64, objInfo ObjectInfo) (seqNumber uint32, encOffset int64, encLength int64) { onePkgSize := int64(sseDAREPackageBlockSize + sseDAREPackageMetaSize) seqNumber = uint32(offset / sseDAREPackageBlockSize) encOffset = int64(seqNumber) * onePkgSize // The math to compute the encrypted length is always // originalLength i.e (offset+length-1) to be divided under // 64KiB blocks which is the payload size for each encrypted // block. This is then multiplied by final package size which // is basically 64KiB + 32. Finally negate the encrypted offset // to get the final encrypted length on disk. encLength = ((offset+length)/sseDAREPackageBlockSize)*onePkgSize - encOffset // Check for the remainder, to figure if we need one extract package to read from. if (offset+length)%sseDAREPackageBlockSize > 0 { encLength += onePkgSize } if encLength+encOffset > objInfo.EncryptedSize() { encLength = objInfo.EncryptedSize() - encOffset } return seqNumber, encOffset, encLength } // DecryptedSize returns the size of the object after decryption in bytes. // It returns an error if the object is not encrypted or marked as encrypted // but has an invalid size. func (o *ObjectInfo) DecryptedSize() (int64, error) { if !crypto.IsEncrypted(o.UserDefined) { return 0, errors.New("Cannot compute decrypted size of an unencrypted object") } if len(o.Parts) == 0 || !crypto.IsMultiPart(o.UserDefined) { size, err := sio.DecryptedSize(uint64(o.Size)) if err != nil { err = errObjectTampered // assign correct error type } return int64(size), err } var size int64 for _, part := range o.Parts { partSize, err := sio.DecryptedSize(uint64(part.Size)) if err != nil { return 0, errObjectTampered } size += int64(partSize) } return size, nil } // GetDecryptedRange - To decrypt the range (off, length) of the // decrypted object stream, we need to read the range (encOff, // encLength) of the encrypted object stream to decrypt it, and // compute skipLen, the number of bytes to skip in the beginning of // the encrypted range. // // In addition we also compute the object part number for where the // requested range starts, along with the DARE sequence number within // that part. For single part objects, the partStart will be 0. func (o *ObjectInfo) GetDecryptedRange(rs *HTTPRangeSpec) (encOff, encLength, skipLen int64, seqNumber uint32, partStart int, err error) { if !crypto.IsEncrypted(o.UserDefined) { err = errors.New("Object is not encrypted") return } if rs == nil { // No range, so offsets refer to the whole object. return 0, int64(o.Size), 0, 0, 0, nil } // Assemble slice of (decrypted) part sizes in `sizes` var decObjSize int64 // decrypted total object size var partSize uint64 partSize, err = sio.DecryptedSize(uint64(o.Size)) if err != nil { return } sizes := []int64{int64(partSize)} decObjSize = sizes[0] if crypto.IsMultiPart(o.UserDefined) { sizes = make([]int64, len(o.Parts)) decObjSize = 0 for i, part := range o.Parts { partSize, err = sio.DecryptedSize(uint64(part.Size)) if err != nil { return } t := int64(partSize) sizes[i] = t decObjSize += t } } var off, length int64 off, length, err = rs.GetOffsetLength(decObjSize) if err != nil { return } // At this point, we have: // // 1. the decrypted part sizes in `sizes` (single element for // single part object) and total decrypted object size `decObjSize` // // 2. the (decrypted) start offset `off` and (decrypted) // length to read `length` // // These are the inputs to the rest of the algorithm below. // Locate the part containing the start of the required range var partEnd int var cumulativeSum, encCumulativeSum int64 for i, size := range sizes { if off < cumulativeSum+size { partStart = i break } cumulativeSum += size encPartSize, _ := sio.EncryptedSize(uint64(size)) encCumulativeSum += int64(encPartSize) } // partStart is always found in the loop above, // because off is validated. sseDAREEncPackageBlockSize := int64(sseDAREPackageBlockSize + sseDAREPackageMetaSize) startPkgNum := (off - cumulativeSum) / sseDAREPackageBlockSize // Now we can calculate the number of bytes to skip skipLen = (off - cumulativeSum) % sseDAREPackageBlockSize encOff = encCumulativeSum + startPkgNum*sseDAREEncPackageBlockSize // Locate the part containing the end of the required range endOffset := off + length - 1 for i1, size := range sizes[partStart:] { i := partStart + i1 if endOffset < cumulativeSum+size { partEnd = i break } cumulativeSum += size encPartSize, _ := sio.EncryptedSize(uint64(size)) encCumulativeSum += int64(encPartSize) } // partEnd is always found in the loop above, because off and // length are validated. endPkgNum := (endOffset - cumulativeSum) / sseDAREPackageBlockSize // Compute endEncOffset with one additional DARE package (so // we read the package containing the last desired byte). endEncOffset := encCumulativeSum + (endPkgNum+1)*sseDAREEncPackageBlockSize // Check if the DARE package containing the end offset is a // full sized package (as the last package in the part may be // smaller) lastPartSize, _ := sio.EncryptedSize(uint64(sizes[partEnd])) if endEncOffset > encCumulativeSum+int64(lastPartSize) { endEncOffset = encCumulativeSum + int64(lastPartSize) } encLength = endEncOffset - encOff // Set the sequence number as the starting package number of // the requested block seqNumber = uint32(startPkgNum) return encOff, encLength, skipLen, seqNumber, partStart, nil } // EncryptedSize returns the size of the object after encryption. // An encrypted object is always larger than a plain object // except for zero size objects. func (o *ObjectInfo) EncryptedSize() int64 { size, err := sio.EncryptedSize(uint64(o.Size)) if err != nil { // This cannot happen since AWS S3 allows parts to be 5GB at most // sio max. size is 256 TB reqInfo := (&logger.ReqInfo{}).AppendTags("size", strconv.FormatUint(size, 10)) ctx := logger.SetReqInfo(context.Background(), reqInfo) logger.CriticalIf(ctx, err) } return int64(size) } // DecryptCopyObjectInfo tries to decrypt the provided object if it is encrypted. // It fails if the object is encrypted and the HTTP headers don't contain // SSE-C headers or the object is not encrypted but SSE-C headers are provided. (AWS behavior) // DecryptObjectInfo returns 'ErrNone' if the object is not encrypted or the // decryption succeeded. // // DecryptCopyObjectInfo also returns whether the object is encrypted or not. func DecryptCopyObjectInfo(info *ObjectInfo, headers http.Header) (apiErr APIErrorCode, encrypted bool) { // Directories are never encrypted. if info.IsDir { return ErrNone, false } if apiErr, encrypted = ErrNone, crypto.IsEncrypted(info.UserDefined); !encrypted && crypto.SSECopy.IsRequested(headers) { apiErr = ErrInvalidEncryptionParameters } else if encrypted { if (!crypto.SSECopy.IsRequested(headers) && crypto.SSEC.IsEncrypted(info.UserDefined)) || (crypto.SSECopy.IsRequested(headers) && crypto.S3.IsEncrypted(info.UserDefined)) { apiErr = ErrSSEEncryptedObject return } var err error if info.Size, err = info.DecryptedSize(); err != nil { apiErr = toAPIErrorCode(err) } } return } // DecryptObjectInfo tries to decrypt the provided object if it is encrypted. // It fails if the object is encrypted and the HTTP headers don't contain // SSE-C headers or the object is not encrypted but SSE-C headers are provided. (AWS behavior) // DecryptObjectInfo returns 'ErrNone' if the object is not encrypted or the // decryption succeeded. // // DecryptObjectInfo also returns whether the object is encrypted or not. func DecryptObjectInfo(info ObjectInfo, headers http.Header) (encrypted bool, err error) { // Directories are never encrypted. if info.IsDir { return false, nil } // disallow X-Amz-Server-Side-Encryption header on HEAD and GET if crypto.S3.IsRequested(headers) { err = errInvalidEncryptionParameters return } if err, encrypted = nil, crypto.IsEncrypted(info.UserDefined); !encrypted && crypto.SSEC.IsRequested(headers) { err = errInvalidEncryptionParameters } else if encrypted { if (crypto.SSEC.IsEncrypted(info.UserDefined) && !crypto.SSEC.IsRequested(headers)) || (crypto.S3.IsEncrypted(info.UserDefined) && crypto.SSEC.IsRequested(headers)) { err = errEncryptedObject return } _, err = info.DecryptedSize() } return }