
Intel® Intelligent Storage Acceleration Library
(Intel® ISA-L) Open Source Version
API Reference Manual - Version 2.10

April 8, 2014

1

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IM-
PLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT
AS PROVIDED IN INTEL’S LICENSE AGREEMENT FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR INTENDED FOR ANY
APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A SITUATION WHERE PERSONAL INJURY OR
DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or charac-
teristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without notice. Do not
finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-
548-4725, or go to: http://www.intel.com/design/literature.htm

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2011 - 2014 Intel Corporation. All rights reserved.

http://www.intel.com/design/literature.htm

Contents

1 Storage Library 1
1.1 About This Document . 1
1.2 Overview . 1
1.3 Erasure Code Functions . 1
1.4 System Requirements . 2

2 Function Version Numbers 3
2.1 Function Version Numbers . 3
2.2 Function Version Numbers Tables . 4

3 Instruction Set Requirements 5

4 File Index 7
4.1 File List . 7

5 File Documentation 8
5.1 erasure_code.h File Reference . 8

5.1.1 Detailed Description . 10
5.1.2 Function Documentation . 10

5.1.2.1 ec_encode_data . 10
5.1.2.2 ec_encode_data_base . 11
5.1.2.3 ec_encode_data_sse . 11
5.1.2.4 ec_init_tables . 12
5.1.2.5 gf_2vect_dot_prod_avx . 12
5.1.2.6 gf_2vect_dot_prod_avx2 . 13
5.1.2.7 gf_2vect_dot_prod_sse . 13
5.1.2.8 gf_3vect_dot_prod_avx . 14
5.1.2.9 gf_3vect_dot_prod_avx2 . 14
5.1.2.10 gf_3vect_dot_prod_sse . 15
5.1.2.11 gf_4vect_dot_prod_avx . 16
5.1.2.12 gf_4vect_dot_prod_avx2 . 16
5.1.2.13 gf_4vect_dot_prod_sse . 17
5.1.2.14 gf_5vect_dot_prod_avx . 17
5.1.2.15 gf_5vect_dot_prod_avx2 . 18
5.1.2.16 gf_5vect_dot_prod_sse . 19
5.1.2.17 gf_6vect_dot_prod_avx . 19

CONTENTS ii

5.1.2.18 gf_6vect_dot_prod_avx2 . 20
5.1.2.19 gf_6vect_dot_prod_sse . 20
5.1.2.20 gf_gen_cauchy1_matrix . 21
5.1.2.21 gf_gen_rs_matrix . 21
5.1.2.22 gf_inv . 22
5.1.2.23 gf_invert_matrix . 22
5.1.2.24 gf_mul . 22
5.1.2.25 gf_vect_dot_prod . 23
5.1.2.26 gf_vect_dot_prod_avx . 23
5.1.2.27 gf_vect_dot_prod_avx2 . 24
5.1.2.28 gf_vect_dot_prod_base . 24
5.1.2.29 gf_vect_dot_prod_sse . 25

5.2 gf_vect_mul.h File Reference . 25
5.2.1 Detailed Description . 26
5.2.2 Function Documentation . 26

5.2.2.1 gf_vect_mul . 26
5.2.2.2 gf_vect_mul_avx . 27
5.2.2.3 gf_vect_mul_base . 27
5.2.2.4 gf_vect_mul_init . 27
5.2.2.5 gf_vect_mul_sse . 28

5.3 types.h File Reference . 28
5.3.1 Detailed Description . 28

CHAPTER 1
STORAGE LIBRARY

1.1 About This Document

This document describes the software programming interface and operation of functions in the library. Sections in
this document are grouped by the functions found in individual header files that define the function prototypes. Sub-
sections include function parameters, description and type.

This document refers to the open release version of the library. A separate, general release called the Intel® Intelligent
Storage Acceleration Library (Intel® ISA-L) is also available and contains an extended set of functions.

1.2 Overview

The Intel® Intelligent Storage Acceleration Library (Intel® ISA-L) Open Source Version is a collection of functions
used in storage applications optimized for Intel architecture Intel® 64. In some cases, multiple versions of the same
function are available that are optimized for a particular Intel architecture and instruction set. This software takes
advantage of new instructions and users should ensure that the chosen function is compatible with hardware it will run
on.

1.3 Erasure Code Functions

Functions pertaining to erasure codes implement a general Reed-Solomon type encoding for blocks of data to protect
against erasure of whole blocks. Individual operations can be described in terms of arithmetic in the Galois finite field
GF(2∧8) with the particular field-defining primitive or reducing polynomial x8 + x4 + x3 + x2 + 1 (0x1d).

For example, the function ec_encode_data() will generate a set of parity blocks Pi from the set of k source blocks Di

and arbitrary encoding coefficients ai,j where each byte in P is calculated from sources as:

Pi =
k∑

j=1

ai,j ·Dj

where addition and multiplication · is defined in GF(2∧8). Since any arbitrary set of coefficients ai,j can be supplied,
the same fundamental function can be used for encoding blocks or decoding from blocks in erasure.

As noted in the above document, the scheduler routines do not enforce atomic access to the context structure. If a
single scheduler state structure is being used by multiple threads, then the application must take care that calls are not
made from different threads at the same time, i.e. thread-safety should be implemented at a level higher than these
routines. This could be implemented by employing a separate context structure for each worker thread.

1.4 System Requirements 2

1.4 System Requirements

Individual functions may have various run-time requirements such as the minimum version of SSE as described in
Instruction Set Requirements. General requirements are listed below.

Recommended Hardware:

• em64t: A system based on the Intel® Xeon® processor with Intel® 64 architecture.

• IA32: When available for 32-bit functions; A system based on the Intel® Xeon® processor or subsequent IA-32
architecture based processor.

Software Requirements:

Most functions in the library use the 64-bit embedded and Unix standard for calling convention http://refspecs.-
linuxfoundation.org/elf/x86_64-abi-0.95.pdf. When available, 32-bit versions use cdecl. Individual
functions are written to be statically linked with an application.

Building Library Functions:

• Yasm Assembler: version at least v1.2.0.

Building Examples and Tests:

Examples and test source follow simple command line POSIX standards and should be portable to any mostly POSI-
X-compliant OS.

Note

Please note that the library assumes 1MB = 1,000,000 bytes in reported performance figures.

http://refspecs.linuxfoundation.org/elf/x86_64-abi-0.95.pdf.
http://refspecs.linuxfoundation.org/elf/x86_64-abi-0.95.pdf.

CHAPTER 2
FUNCTION VERSION NUMBERS

2.1 Function Version Numbers

Individual functions are given version numbers with the format mm-vv-ssss.
- mm = Two hex digits indicating the processor a function was optimized for.

- 00 = Nehalem/Jasper Forest/Multibinary
- 01 = Westmere
- 02 = Sandybridge
- 03 = Ivy Bridge
- 04 = Haswell
- 05 = Silvermont

- vv = function version number
- ssss = function serial number

2.2 Function Version Numbers Tables 4

2.2 Function Version Numbers Tables

Function Version
gf_vect_mul_sse 00-02-0034
gf_vect_mul_init 00-02-0035
gf_vect_mul_avx 01-02-0036
gf_vect_dot_prod_sse 00-03-0060
gf_vect_dot_prod_avx 02-03-0061
gf_2vect_dot_prod_sse 00-02-0062
gf_3vect_dot_prod_sse 00-03-0063
gf_4vect_dot_prod_avx2 04-03-0064
gf_4vect_dot_prod_avx 00-02-0064
gf_4vect_dot_prod_sse 00-03-0064
gf_5vect_dot_prod_sse 00-03-0065
gf_6vect_dot_prod_sse 00-03-0066
ec_init_tables 00-01-0068
ec_encode_data_sse 00-02-0069
ec_encode_data 00-02-0133
gf_vect_mul 00-02-0134
ec_encode_data_base 00-01-0135
gf_vect_mul_base 00-01-0136
gf_vect_dot_prod_base 00-01-0137
gf_vect_dot_prod 00-01-0138
gf_vect_dot_prod_avx2 04-03-0190
gf_2vect_dot_prod_avx 02-03-0191
gf_3vect_dot_prod_avx 02-03-0192
gf_5vect_dot_prod_avx 02-03-0194
gf_6vect_dot_prod_avx 02-03-0195
gf_2vect_dot_prod_avx2 04-03-0196
gf_3vect_dot_prod_avx2 04-03-0197
gf_5vect_dot_prod_avx2 04-03-0199
gf_6vect_dot_prod_avx2 04-03-019a

CHAPTER 3
INSTRUCTION SET REQUIREMENTS

ec_encode_data_sse (int len, int k, int rows, unsigned char ∗gftbls, unsigned char ∗∗data, unsigned char ∗∗coding)
SSE4.1

gf_2vect_dot_prod_avx (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)
AVX

gf_2vect_dot_prod_avx2 (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)
AVX2

gf_2vect_dot_prod_sse (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)
SSE4.1

gf_3vect_dot_prod_avx (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)
AVX

gf_3vect_dot_prod_avx2 (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)
AVX2

gf_3vect_dot_prod_sse (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)
SSE4.1

gf_4vect_dot_prod_avx (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)
AVX

gf_4vect_dot_prod_avx2 (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)
AVX2

gf_4vect_dot_prod_sse (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)
SSE4.1

gf_5vect_dot_prod_avx (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)
AVX

gf_5vect_dot_prod_avx2 (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)
AVX2

gf_5vect_dot_prod_sse (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)
SSE4.1

gf_6vect_dot_prod_avx (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)
AVX

gf_6vect_dot_prod_avx2 (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)
AVX2

gf_6vect_dot_prod_sse (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)
SSE4.1

6

gf_vect_dot_prod_avx (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗dest)
AVX

gf_vect_dot_prod_avx2 (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗dest)
AVX2

gf_vect_dot_prod_sse (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗dest)
SSE4.1

gf_vect_mul_avx (int len, unsigned char ∗gftbl, void ∗src, void ∗dest)
AVX

gf_vect_mul_sse (int len, unsigned char ∗gftbl, void ∗src, void ∗dest)
SSE4.1

CHAPTER 4
FILE INDEX

4.1 File List

Here is a list of all documented files with brief descriptions:

erasure_code.h
Interface to functions supporting erasure code encode and decode 8

gf_vect_mul.h
Interface to functions for vector (block) multiplication in GF(2∧8) 25

types.h
Defines standard width types . 28

CHAPTER 5
FILE DOCUMENTATION

5.1 erasure code.h File Reference

Interface to functions supporting erasure code encode and decode.

#include "gf_vect_mul.h"

Functions

• void ec_init_tables (int k, int rows, unsigned char ∗a, unsigned char ∗gftbls)
Initialize tables for fast Erasure Code encode and decode.

• void ec_encode_data_sse (int len, int k, int rows, unsigned char ∗gftbls, unsigned char ∗∗data, unsigned char
∗∗coding)

Generate or decode erasure codes on blocks of data.
• void ec_encode_data (int len, int k, int rows, unsigned char ∗gftbls, unsigned char ∗∗data, unsigned char
∗∗coding)

Generate or decode erasure codes on blocks of data, runs appropriate version.
• void ec_encode_data_base (int len, int srcs, int dests, unsigned char ∗v, unsigned char ∗∗src, unsigned char
∗∗dest)

Generate or decode erasure codes on blocks of data, runs baseline version.
• void gf_vect_dot_prod_sse (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗dest)

GF(2∧8) vector dot product.
• void gf_vect_dot_prod_avx (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗dest)

GF(2∧8) vector dot product.
• void gf_vect_dot_prod_avx2 (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char
∗dest)

GF(2∧8) vector dot product.
• void gf_2vect_dot_prod_sse (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)

GF(2∧8) vector dot product with two outputs.
• void gf_2vect_dot_prod_avx (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char
∗∗dest)

GF(2∧8) vector dot product with two outputs.
• void gf_2vect_dot_prod_avx2 (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char
∗∗dest)

GF(2∧8) vector dot product with two outputs.
• void gf_3vect_dot_prod_sse (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)

5.1 erasure_code.h File Reference 9

GF(2∧8) vector dot product with three outputs.
• void gf_3vect_dot_prod_avx (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char
∗∗dest)

GF(2∧8) vector dot product with three outputs.
• void gf_3vect_dot_prod_avx2 (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char
∗∗dest)

GF(2∧8) vector dot product with three outputs.
• void gf_4vect_dot_prod_sse (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)

GF(2∧8) vector dot product with four outputs.
• void gf_4vect_dot_prod_avx (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char
∗∗dest)

GF(2∧8) vector dot product with four outputs.
• void gf_4vect_dot_prod_avx2 (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char
∗∗dest)

GF(2∧8) vector dot product with four outputs.
• void gf_5vect_dot_prod_sse (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)

GF(2∧8) vector dot product with five outputs.
• void gf_5vect_dot_prod_avx (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char
∗∗dest)

GF(2∧8) vector dot product with five outputs.
• void gf_5vect_dot_prod_avx2 (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char
∗∗dest)

GF(2∧8) vector dot product with five outputs.
• void gf_6vect_dot_prod_sse (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗∗dest)

GF(2∧8) vector dot product with six outputs.
• void gf_6vect_dot_prod_avx (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char
∗∗dest)

GF(2∧8) vector dot product with six outputs.
• void gf_6vect_dot_prod_avx2 (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char
∗∗dest)

GF(2∧8) vector dot product with six outputs.
• void gf_vect_dot_prod_base (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗dest)

GF(2∧8) vector dot product, runs baseline version.
• void gf_vect_dot_prod (int len, int vlen, unsigned char ∗gftbls, unsigned char ∗∗src, unsigned char ∗dest)

GF(2∧8) vector dot product, runs appropriate version.
• unsigned char gf_mul (unsigned char a, unsigned char b)

Single element GF(2∧8) multiply.
• unsigned char gf_inv (unsigned char a)

5.1 erasure_code.h File Reference 10

Single element GF(2∧8) inverse.
• void gf_gen_rs_matrix (unsigned char ∗a, int m, int k)

Generate a matrix of coefficients to be used for encoding.
• void gf_gen_cauchy1_matrix (unsigned char ∗a, int m, int k)

Generate a Cauchy matrix of coefficients to be used for encoding.
• int gf_invert_matrix (unsigned char ∗in, unsigned char ∗out, const int n)

Invert a matrix in GF(2∧8)

5.1.1 Detailed Description

Interface to functions supporting erasure code encode and decode. This file defines the interface to optimized functions
used in erasure codes. Encode and decode of erasures in GF(2∧8) are made by calculating the dot product of the
symbols (bytes in GF(2∧8)) across a set of buffers and a set of coefficients. Values for the coefficients are determined
by the type of erasure code. Using a general dot product means that any sequence of coefficients may be used including
erasure codes based on random coefficients. Multiple versions of dot product are supplied to calculate 1-6 output
vectors in one pass. Base GF multiply and divide functions can be sped up by defining GF_LARGE_TABLES at the
expense of memory size.

5.1.2 Function Documentation

5.1.2.1 void ec encode data (int len, int k, int rows, unsigned char ∗ gftbls, unsigned char ∗∗ data, unsigned char
∗∗ coding)

Generate or decode erasure codes on blocks of data, runs appropriate version.

Given a list of source data blocks, generate one or multiple blocks of encoded data as specified by a matrix of GF(2∧8)
coefficients. When given a suitable set of coefficients, this function will perform the fast generation or decoding of
Reed-Solomon type erasure codes.

This function determines what instruction sets are enabled and selects the appropriate version at runtime.

Parameters
len Length of each block of data (vector) of source or dest data.

k The number of vector sources or rows in the generator matrix for coding.
rows The number of output vectors to concurrently encode/decode.

gftbls Pointer to array of input tables generated from coding coefficients in ec_init_tables(). Must be
of size 32∗k∗rows

data Array of pointers to source input buffers.
coding Array of pointers to coded output buffers.

Returns

none

5.1 erasure_code.h File Reference 11

5.1.2.2 void ec encode data base (int len, int srcs, int dests, unsigned char ∗ v, unsigned char ∗∗ src, unsigned
char ∗∗ dest)

Generate or decode erasure codes on blocks of data, runs baseline version.

Given a list of source data blocks, generate one or multiple blocks of encoded data as specified by a matrix of GF(2∧8)
coefficients. When given a suitable set of coefficients, this function will perform the fast generation or decoding of
Reed-Solomon type erasure codes.

Parameters
len Length of each block of data (vector) of source or dest data.

srcs The number of vector sources or rows in the generator matrix for coding.
dests The number of output vectors to concurrently encode/decode.

v Pointer to array of input tables generated from coding coefficients in ec_init_tables(). Must be
of size 32∗k∗rows

src Array of pointers to source input buffers.
dest Array of pointers to coded output buffers.

Returns

none

5.1.2.3 void ec encode data sse (int len, int k, int rows, unsigned char ∗ gftbls, unsigned char ∗∗ data, unsigned
char ∗∗ coding)

Generate or decode erasure codes on blocks of data.

Given a list of source data blocks, generate one or multiple blocks of encoded data as specified by a matrix of GF(2∧8)
coefficients. When given a suitable set of coefficients, this function will perform the fast generation or decoding of
Reed-Solomon type erasure codes.

Requires SSE4.1

Parameters
len Length of each block of data (vector) of source or dest data.

k The number of vector sources or rows in the generator matrix for coding.
rows The number of output vectors to concurrently encode/decode.

gftbls Pointer to array of input tables generated from coding coefficients in ec_init_tables(). Must be
of size 32∗k∗rows

data Array of pointers to source input buffers.
coding Array of pointers to coded output buffers.

5.1 erasure_code.h File Reference 12

Returns

none

5.1.2.4 void ec init tables (int k, int rows, unsigned char ∗ a, unsigned char ∗ gftbls)

Initialize tables for fast Erasure Code encode and decode.

Generates the expanded tables needed for fast encode or decode for erasure codes on blocks of data. 32bytes is
generated for each input coefficient.

Parameters
k The number of vector sources or rows in the generator matrix for coding.

rows The number of output vectors to concurrently encode/decode.
a Pointer to sets of arrays of input coefficients used to encode or decode data.

gftbls Pointer to start of space for concatenated output tables generated from input coefficients. Must
be of size 32∗k∗rows.

Returns

none

5.1.2.5 void gf 2vect dot prod avx (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char ∗∗
dest)

GF(2∧8) vector dot product with two outputs.

Vector dot product optimized to calculate two ouputs at a time. Does two GF(2∧8) dot products across each byte of the
input array and two constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding
encode and decode. Function requires pre-calculation of a 2∗32∗vlen byte constant array based on the two sets of
input coefficients.

Requires AVX

Parameters
len Length of each vector in bytes. Must be >= 16.

vlen Number of vector sources.
gftbls Pointer to 2∗32∗vlen byte array of pre-calculated constants based on the array of input coeffi-

cients.
src Array of pointers to source inputs.

dest Array of pointers to destination data buffers.

5.1 erasure_code.h File Reference 13

Returns

none

5.1.2.6 void gf 2vect dot prod avx2 (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char
∗∗ dest)

GF(2∧8) vector dot product with two outputs.

Vector dot product optimized to calculate two ouputs at a time. Does two GF(2∧8) dot products across each byte of the
input array and two constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding
encode and decode. Function requires pre-calculation of a 2∗32∗vlen byte constant array based on the two sets of
input coefficients.

Requires AVX2

Parameters
len Length of each vector in bytes. Must be >= 32.

vlen Number of vector sources.
gftbls Pointer to 2∗32∗vlen byte array of pre-calculated constants based on the array of input coeffi-

cients.
src Array of pointers to source inputs.

dest Array of pointers to destination data buffers.

Returns

none

5.1.2.7 void gf 2vect dot prod sse (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char ∗∗
dest)

GF(2∧8) vector dot product with two outputs.

Vector dot product optimized to calculate two ouputs at a time. Does two GF(2∧8) dot products across each byte of the
input array and two constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding
encode and decode. Function requires pre-calculation of a 2∗32∗vlen byte constant array based on the two sets of
input coefficients.

Requires SSE4.1

5.1 erasure_code.h File Reference 14

Parameters
len Length of each vector in bytes. Must be >= 16.

vlen Number of vector sources.
gftbls Pointer to 2∗32∗vlen byte array of pre-calculated constants based on the array of input coeffi-

cients.
src Array of pointers to source inputs.

dest Array of pointers to destination data buffers.

Returns

none

5.1.2.8 void gf 3vect dot prod avx (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char ∗∗
dest)

GF(2∧8) vector dot product with three outputs.

Vector dot product optimized to calculate three ouputs at a time. Does three GF(2∧8) dot products across each byte
of the input array and three constant sets of coefficients to produce each byte of the outputs. Can be used for erasure
coding encode and decode. Function requires pre-calculation of a 3∗32∗vlen byte constant array based on the three
sets of input coefficients.

Requires AVX

Parameters
len Length of each vector in bytes. Must be >= 16.

vlen Number of vector sources.
gftbls Pointer to 3∗32∗vlen byte array of pre-calculated constants based on the array of input coeffi-

cients.
src Array of pointers to source inputs.

dest Array of pointers to destination data buffers.

Returns

none

5.1.2.9 void gf 3vect dot prod avx2 (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char
∗∗ dest)

GF(2∧8) vector dot product with three outputs.

5.1 erasure_code.h File Reference 15

Vector dot product optimized to calculate three ouputs at a time. Does three GF(2∧8) dot products across each byte
of the input array and three constant sets of coefficients to produce each byte of the outputs. Can be used for erasure
coding encode and decode. Function requires pre-calculation of a 3∗32∗vlen byte constant array based on the three
sets of input coefficients.

Requires AVX2

Parameters
len Length of each vector in bytes. Must be >= 32.

vlen Number of vector sources.
gftbls Pointer to 3∗32∗vlen byte array of pre-calculated constants based on the array of input coeffi-

cients.
src Array of pointers to source inputs.

dest Array of pointers to destination data buffers.

Returns

none

5.1.2.10 void gf 3vect dot prod sse (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char
∗∗ dest)

GF(2∧8) vector dot product with three outputs.

Vector dot product optimized to calculate three ouputs at a time. Does three GF(2∧8) dot products across each byte
of the input array and three constant sets of coefficients to produce each byte of the outputs. Can be used for erasure
coding encode and decode. Function requires pre-calculation of a 3∗32∗vlen byte constant array based on the three
sets of input coefficients.

Requires SSE4.1

Parameters
len Length of each vector in bytes. Must be >= 16.

vlen Number of vector sources.
gftbls Pointer to 3∗32∗vlen byte array of pre-calculated constants based on the array of input coeffi-

cients.
src Array of pointers to source inputs.

dest Array of pointers to destination data buffers.

5.1 erasure_code.h File Reference 16

Returns

none

5.1.2.11 void gf 4vect dot prod avx (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char
∗∗ dest)

GF(2∧8) vector dot product with four outputs.

Vector dot product optimized to calculate four ouputs at a time. Does four GF(2∧8) dot products across each byte
of the input array and four constant sets of coefficients to produce each byte of the outputs. Can be used for erasure
coding encode and decode. Function requires pre-calculation of a 4∗32∗vlen byte constant array based on the four sets
of input coefficients.

Requires AVX

Parameters
len Length of each vector in bytes. Must be >= 16.

vlen Number of vector sources.
gftbls Pointer to 4∗32∗vlen byte array of pre-calculated constants based on the array of input coeffi-

cients.
src Array of pointers to source inputs.

dest Array of pointers to destination data buffers.

Returns

none

5.1.2.12 void gf 4vect dot prod avx2 (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char
∗∗ dest)

GF(2∧8) vector dot product with four outputs.

Vector dot product optimized to calculate four ouputs at a time. Does four GF(2∧8) dot products across each byte
of the input array and four constant sets of coefficients to produce each byte of the outputs. Can be used for erasure
coding encode and decode. Function requires pre-calculation of a 4∗32∗vlen byte constant array based on the four sets
of input coefficients.

Requires AVX2

5.1 erasure_code.h File Reference 17

Parameters
len Length of each vector in bytes. Must be >= 32.

vlen Number of vector sources.
gftbls Pointer to 4∗32∗vlen byte array of pre-calculated constants based on the array of input coeffi-

cients.
src Array of pointers to source inputs.

dest Array of pointers to destination data buffers.

Returns

none

5.1.2.13 void gf 4vect dot prod sse (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char
∗∗ dest)

GF(2∧8) vector dot product with four outputs.

Vector dot product optimized to calculate four ouputs at a time. Does four GF(2∧8) dot products across each byte
of the input array and four constant sets of coefficients to produce each byte of the outputs. Can be used for erasure
coding encode and decode. Function requires pre-calculation of a 4∗32∗vlen byte constant array based on the four sets
of input coefficients.

Requires SSE4.1

Parameters
len Length of each vector in bytes. Must be >= 16.

vlen Number of vector sources.
gftbls Pointer to 4∗32∗vlen byte array of pre-calculated constants based on the array of input coeffi-

cients.
src Array of pointers to source inputs.

dest Array of pointers to destination data buffers.

Returns

none

5.1.2.14 void gf 5vect dot prod avx (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char
∗∗ dest)

GF(2∧8) vector dot product with five outputs.

5.1 erasure_code.h File Reference 18

Vector dot product optimized to calculate five ouputs at a time. Does five GF(2∧8) dot products across each byte of the
input array and five constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding
encode and decode. Function requires pre-calculation of a 5∗32∗vlen byte constant array based on the five sets of
input coefficients.

Requires AVX

Parameters
len Length of each vector in bytes. Must >= 16.

vlen Number of vector sources.
gftbls Pointer to 5∗32∗vlen byte array of pre-calculated constants based on the array of input coeffi-

cients.
src Array of pointers to source inputs.

dest Array of pointers to destination data buffers.

Returns

none

5.1.2.15 void gf 5vect dot prod avx2 (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char
∗∗ dest)

GF(2∧8) vector dot product with five outputs.

Vector dot product optimized to calculate five ouputs at a time. Does five GF(2∧8) dot products across each byte of the
input array and five constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding
encode and decode. Function requires pre-calculation of a 5∗32∗vlen byte constant array based on the five sets of
input coefficients.

Requires AVX2

Parameters
len Length of each vector in bytes. Must >= 32.

vlen Number of vector sources.
gftbls Pointer to 5∗32∗vlen byte array of pre-calculated constants based on the array of input coeffi-

cients.
src Array of pointers to source inputs.

dest Array of pointers to destination data buffers.

5.1 erasure_code.h File Reference 19

Returns

none

5.1.2.16 void gf 5vect dot prod sse (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char
∗∗ dest)

GF(2∧8) vector dot product with five outputs.

Vector dot product optimized to calculate five ouputs at a time. Does five GF(2∧8) dot products across each byte of the
input array and five constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding
encode and decode. Function requires pre-calculation of a 5∗32∗vlen byte constant array based on the five sets of
input coefficients.

Requires SSE4.1

Parameters
len Length of each vector in bytes. Must >= 16.

vlen Number of vector sources.
gftbls Pointer to 5∗32∗vlen byte array of pre-calculated constants based on the array of input coeffi-

cients.
src Array of pointers to source inputs.

dest Array of pointers to destination data buffers.

Returns

none

5.1.2.17 void gf 6vect dot prod avx (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char
∗∗ dest)

GF(2∧8) vector dot product with six outputs.

Vector dot product optimized to calculate six ouputs at a time. Does six GF(2∧8) dot products across each byte of the
input array and six constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding
encode and decode. Function requires pre-calculation of a 6∗32∗vlen byte constant array based on the six sets of input
coefficients.

Requires AVX

5.1 erasure_code.h File Reference 20

Parameters
len Length of each vector in bytes. Must be >= 16.

vlen Number of vector sources.
gftbls Pointer to 6∗32∗vlen byte array of pre-calculated constants based on the array of input coeffi-

cients.
src Array of pointers to source inputs.

dest Array of pointers to destination data buffers.

Returns

none

5.1.2.18 void gf 6vect dot prod avx2 (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char
∗∗ dest)

GF(2∧8) vector dot product with six outputs.

Vector dot product optimized to calculate six ouputs at a time. Does six GF(2∧8) dot products across each byte of the
input array and six constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding
encode and decode. Function requires pre-calculation of a 6∗32∗vlen byte constant array based on the six sets of input
coefficients.

Requires AVX2

Parameters
len Length of each vector in bytes. Must be >= 32.

vlen Number of vector sources.
gftbls Pointer to 6∗32∗vlen byte array of pre-calculated constants based on the array of input coeffi-

cients.
src Array of pointers to source inputs.

dest Array of pointers to destination data buffers.

Returns

none

5.1.2.19 void gf 6vect dot prod sse (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char
∗∗ dest)

GF(2∧8) vector dot product with six outputs.

5.1 erasure_code.h File Reference 21

Vector dot product optimized to calculate six ouputs at a time. Does six GF(2∧8) dot products across each byte of the
input array and six constant sets of coefficients to produce each byte of the outputs. Can be used for erasure coding
encode and decode. Function requires pre-calculation of a 6∗32∗vlen byte constant array based on the six sets of input
coefficients.

Requires SSE4.1

Parameters
len Length of each vector in bytes. Must be >= 16.

vlen Number of vector sources.
gftbls Pointer to 6∗32∗vlen byte array of pre-calculated constants based on the array of input coeffi-

cients.
src Array of pointers to source inputs.

dest Array of pointers to destination data buffers.

Returns

none

5.1.2.20 void gf gen cauchy1 matrix (unsigned char ∗ a, int m, int k)

Generate a Cauchy matrix of coefficients to be used for encoding.

Cauchy matrix example of encoding coefficients where high portion of matrix is identity matrix I and lower portion is
constructed as 1/(i + j) | i != j, i:{0,k-1} j:{k,m-1}. Any sub-matrix of a Cauchy matrix should be invertable.

Parameters
a [mxk] array to hold coefficients
m number of rows in matrix corresponding to srcs + parity.
k number of columns in matrix corresponding to srcs.

Returns

none

5.1.2.21 void gf gen rs matrix (unsigned char ∗ a, int m, int k)

Generate a matrix of coefficients to be used for encoding.

Vandermonde matrix example of encoding coefficients where high portion of matrix is identity matrix I and lower
portion is constructed as 2∧{i∗(j-k+1)} i:{0,k-1} j:{k,m-1}. Commonly used method for choosing coefficients in

5.1 erasure_code.h File Reference 22

erasure encoding but does not guarantee invertable for every sub matrix. For large k it is possible to find cases where
the decode matrix chosen from sources and parity not in erasure are not invertable. Users may want to adjust for k >
5.

Parameters
a [mxk] array to hold coefficients
m number of rows in matrix corresponding to srcs + parity.
k number of columns in matrix corresponding to srcs.

Returns

none

5.1.2.22 unsigned char gf inv (unsigned char a)

Single element GF(2∧8) inverse.

Parameters
a Input element

Returns

Field element b such that a x b = {1}

5.1.2.23 int gf invert matrix (unsigned char ∗ in, unsigned char ∗ out, const int n)

Invert a matrix in GF(2∧8)

Parameters
in input matrix

out output matrix such that [in] x [out] = [I] - identity matrix
n size of matrix [nxn]

Returns

0 successful, other fail on singular input matrix

5.1.2.24 unsigned char gf mul (unsigned char a, unsigned char b)

Single element GF(2∧8) multiply.

5.1 erasure_code.h File Reference 23

Parameters
a Multiplicand a
b Multiplicand b

Returns

Product of a and b in GF(2∧8)

5.1.2.25 void gf vect dot prod (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char ∗ dest)

GF(2∧8) vector dot product, runs appropriate version.

Does a GF(2∧8) dot product across each byte of the input array and a constant set of coefficients to produce each byte
of the output. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 32∗vlen byte
constant array based on the input coefficients.

This function determines what instruction sets are enabled and selects the appropriate version at runtime.

Parameters
len Length of each vector in bytes. Must be >= 32.

vlen Number of vector sources.
gftbls Pointer to 32∗vlen byte array of pre-calculated constants based on the array of input coefficients.

src Array of pointers to source inputs.
dest Pointer to destination data array.

Returns

none

5.1.2.26 void gf vect dot prod avx (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char ∗
dest)

GF(2∧8) vector dot product.

Does a GF(2∧8) dot product across each byte of the input array and a constant set of coefficients to produce each byte
of the output. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 32∗vlen byte
constant array based on the input coefficients.

Requires AVX

5.1 erasure_code.h File Reference 24

Parameters
len Length of each vector in bytes. Must be >= 16.

vlen Number of vector sources.
gftbls Pointer to 32∗vlen byte array of pre-calculated constants based on the array of input coefficients.

src Array of pointers to source inputs.
dest Pointer to destination data array.

Returns

none

5.1.2.27 void gf vect dot prod avx2 (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char ∗
dest)

GF(2∧8) vector dot product.

Does a GF(2∧8) dot product across each byte of the input array and a constant set of coefficients to produce each byte
of the output. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 32∗vlen byte
constant array based on the input coefficients.

Requires AVX2

Parameters
len Length of each vector in bytes. Must be >= 32.

vlen Number of vector sources.
gftbls Pointer to 32∗vlen byte array of pre-calculated constants based on the array of input coefficients.

src Array of pointers to source inputs.
dest Pointer to destination data array.

Returns

none

5.1.2.28 void gf vect dot prod base (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char ∗
dest)

GF(2∧8) vector dot product, runs baseline version.

Does a GF(2∧8) dot product across each byte of the input array and a constant set of coefficients to produce each byte
of the output. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 32∗vlen byte
constant array based on the input coefficients.

5.2 gf_vect_mul.h File Reference 25

Parameters
len Length of each vector in bytes. Must be >= 16.

vlen Number of vector sources.
gftbls Pointer to 32∗vlen byte array of pre-calculated constants based on the array of input coefficients.

Only elements 32∗CONST∗j + 1 of this array are used, where j = (0, 1, 2...) and CONST is
the number of elements in the array of input coefficients. The elements used correspond to the
original input coefficients.

src Array of pointers to source inputs.
dest Pointer to destination data array.

Returns

none

5.1.2.29 void gf vect dot prod sse (int len, int vlen, unsigned char ∗ gftbls, unsigned char ∗∗ src, unsigned char ∗
dest)

GF(2∧8) vector dot product.

Does a GF(2∧8) dot product across each byte of the input array and a constant set of coefficients to produce each byte
of the output. Can be used for erasure coding encode and decode. Function requires pre-calculation of a 32∗vlen byte
constant array based on the input coefficients.

Requires SSE4.1

Parameters
len Length of each vector in bytes. Must be >= 16.

vlen Number of vector sources.
gftbls Pointer to 32∗vlen byte array of pre-calculated constants based on the array of input coefficients.

src Array of pointers to source inputs.
dest Pointer to destination data array.

Returns

none

5.2 gf vect mul.h File Reference

Interface to functions for vector (block) multiplication in GF(2∧8).

5.2 gf_vect_mul.h File Reference 26

Functions

• int gf_vect_mul_sse (int len, unsigned char ∗gftbl, void ∗src, void ∗dest)
GF(2∧8) vector multiply by constant.

• int gf_vect_mul_avx (int len, unsigned char ∗gftbl, void ∗src, void ∗dest)
GF(2∧8) vector multiply by constant.

• int gf_vect_mul (int len, unsigned char ∗gftbl, void ∗src, void ∗dest)
GF(2∧8) vector multiply by constant, runs appropriate version.

• void gf_vect_mul_init (unsigned char c, unsigned char ∗gftbl)
Initialize 32-byte constant array for GF(2∧8) vector multiply.

• void gf_vect_mul_base (int len, unsigned char ∗a, unsigned char ∗src, unsigned char ∗dest)
GF(2∧8) vector multiply by constant, runs baseline version.

5.2.1 Detailed Description

Interface to functions for vector (block) multiplication in GF(2∧8). This file defines the interface to routines used in
fast RAID rebuild and erasure codes.

5.2.2 Function Documentation

5.2.2.1 int gf vect mul (int len, unsigned char ∗ gftbl, void ∗ src, void ∗ dest)

GF(2∧8) vector multiply by constant, runs appropriate version.

Does a GF(2∧8) vector multiply b = Ca where a and b are arrays and C is a single field element in GF(2∧8). Can be
used for RAID6 rebuild and partial write functions. Function requires pre-calculation of a 32-element constant array
based on constant C. gftbl(C) = {C{00}, C{01}, C{02}, ... , C{0f} }, {C{00}, C{10}, C{20}, ... , C{f0} }. Len and
src must be aligned to 32B.

This function determines what instruction sets are enabled and selects the appropriate version at runtime.

Parameters
len Length of vector in bytes. Must be aligned to 32B.

gftbl Pointer to 32-byte array of pre-calculated constants based on C.
src Pointer to src data array. Must be aligned to 32B.

dest Pointer to destination data array. Must be aligned to 32B.

Returns

0 pass, other fail

5.2 gf_vect_mul.h File Reference 27

5.2.2.2 int gf vect mul avx (int len, unsigned char ∗ gftbl, void ∗ src, void ∗ dest)

GF(2∧8) vector multiply by constant.

Does a GF(2∧8) vector multiply b = Ca where a and b are arrays and C is a single field element in GF(2∧8). Can be
used for RAID6 rebuild and partial write functions. Function requires pre-calculation of a 32-element constant array
based on constant C. gftbl(C) = {C{00}, C{01}, C{02}, ... , C{0f} }, {C{00}, C{10}, C{20}, ... , C{f0} }. Len and
src must be aligned to 32B.

Requires AVX

Parameters
len Length of vector in bytes. Must be aligned to 32B.

gftbl Pointer to 32-byte array of pre-calculated constants based on C.
src Pointer to src data array. Must be aligned to 32B.

dest Pointer to destination data array. Must be aligned to 32B.

Returns

0 pass, other fail

5.2.2.3 void gf vect mul base (int len, unsigned char ∗ a, unsigned char ∗ src, unsigned char ∗ dest)

GF(2∧8) vector multiply by constant, runs baseline version.

Does a GF(2∧8) vector multiply b = Ca where a and b are arrays and C is a single field element in GF(2∧8). Can be
used for RAID6 rebuild and partial write functions. Function requires pre-calculation of a 32-element constant array
based on constant C. gftbl(C) = {C{00}, C{01}, C{02}, ... , C{0f} }, {C{00}, C{10}, C{20}, ... , C{f0} }. Len and
src must be aligned to 32B.

Parameters
len Length of vector in bytes. Must be aligned to 32B.

a Pointer to 32-byte array of pre-calculated constants based on C. only use 2nd element is used.
src Pointer to src data array. Must be aligned to 32B.

dest Pointer to destination data array. Must be aligned to 32B.

5.2.2.4 void gf vect mul init (unsigned char c, unsigned char ∗ gftbl)

Initialize 32-byte constant array for GF(2∧8) vector multiply.

Calculates array {C{00}, C{01}, C{02}, ... , C{0f} }, {C{00}, C{10}, C{20}, ... , C{f0} } as required by other fast
vector multiply functions.

5.3 types.h File Reference 28

Parameters
c Constant input.

gftbl Table output.

5.2.2.5 int gf vect mul sse (int len, unsigned char ∗ gftbl, void ∗ src, void ∗ dest)

GF(2∧8) vector multiply by constant.

Does a GF(2∧8) vector multiply b = Ca where a and b are arrays and C is a single field element in GF(2∧8). Can be
used for RAID6 rebuild and partial write functions. Function requires pre-calculation of a 32-element constant array
based on constant C. gftbl(C) = {C{00}, C{01}, C{02}, ... , C{0f} }, {C{00}, C{10}, C{20}, ... , C{f0} }. Len and
src must be aligned to 32B.

Requires SSE4.1

Parameters
len Length of vector in bytes. Must be aligned to 32B.

gftbl Pointer to 32-byte array of pre-calculated constants based on C.
src Pointer to src data array. Must be aligned to 32B.

dest Pointer to destination data array. Must be aligned to 32B.

Returns

0 pass, other fail

5.3 types.h File Reference

Defines standard width types.

5.3.1 Detailed Description

Defines standard width types.

	Storage Library
	About This Document
	Overview
	Erasure Code Functions
	System Requirements

	Function Version Numbers
	Function Version Numbers
	Function Version Numbers Tables

	Instruction Set Requirements
	File Index
	File List

	File Documentation
	erasure_code.h File Reference
	Detailed Description
	Function Documentation
	ec_encode_data
	ec_encode_data_base
	ec_encode_data_sse
	ec_init_tables
	gf_2vect_dot_prod_avx
	gf_2vect_dot_prod_avx2
	gf_2vect_dot_prod_sse
	gf_3vect_dot_prod_avx
	gf_3vect_dot_prod_avx2
	gf_3vect_dot_prod_sse
	gf_4vect_dot_prod_avx
	gf_4vect_dot_prod_avx2
	gf_4vect_dot_prod_sse
	gf_5vect_dot_prod_avx
	gf_5vect_dot_prod_avx2
	gf_5vect_dot_prod_sse
	gf_6vect_dot_prod_avx
	gf_6vect_dot_prod_avx2
	gf_6vect_dot_prod_sse
	gf_gen_cauchy1_matrix
	gf_gen_rs_matrix
	gf_inv
	gf_invert_matrix
	gf_mul
	gf_vect_dot_prod
	gf_vect_dot_prod_avx
	gf_vect_dot_prod_avx2
	gf_vect_dot_prod_base
	gf_vect_dot_prod_sse

	gf_vect_mul.h File Reference
	Detailed Description
	Function Documentation
	gf_vect_mul
	gf_vect_mul_avx
	gf_vect_mul_base
	gf_vect_mul_init
	gf_vect_mul_sse

	types.h File Reference
	Detailed Description

