// MinIO Cloud Storage, (C) 2015, 2016, 2017, 2018 MinIO, Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package crypto import ( "context" "encoding/base64" "errors" "github.com/minio/minio/cmd/logger" ) // IsMultiPart returns true if the object metadata indicates // that it was uploaded using some form of server-side-encryption // and the S3 multipart API. func IsMultiPart(metadata map[string]string) bool { if _, ok := metadata[SSEMultipart]; ok { return true } return false } // RemoveSensitiveEntries removes confidential encryption // information - e.g. the SSE-C key - from the metadata map. // It has the same semantics as RemoveSensitiveHeaders. func RemoveSensitiveEntries(metadata map[string]string) { // The functions is tested in TestRemoveSensitiveHeaders for compatibility reasons delete(metadata, SSECKey) delete(metadata, SSECopyKey) } // RemoveSSEHeaders removes all crypto-specific SSE // header entries from the metadata map. func RemoveSSEHeaders(metadata map[string]string) { delete(metadata, SSEHeader) delete(metadata, SSECKeyMD5) delete(metadata, SSECAlgorithm) } // RemoveInternalEntries removes all crypto-specific internal // metadata entries from the metadata map. func RemoveInternalEntries(metadata map[string]string) { delete(metadata, SSEMultipart) delete(metadata, SSEIV) delete(metadata, SSESealAlgorithm) delete(metadata, SSECSealedKey) delete(metadata, S3SealedKey) delete(metadata, S3KMSKeyID) delete(metadata, S3KMSSealedKey) } // IsEncrypted returns true if the object metadata indicates // that it was uploaded using some form of server-side-encryption. // // IsEncrypted only checks whether the metadata contains at least // one entry indicating SSE-C or SSE-S3. func IsEncrypted(metadata map[string]string) bool { if _, ok := metadata[SSEIV]; ok { return true } if _, ok := metadata[SSESealAlgorithm]; ok { return true } if IsMultiPart(metadata) { return true } if S3.IsEncrypted(metadata) { return true } if SSEC.IsEncrypted(metadata) { return true } return false } // IsEncrypted returns true if the object metadata indicates // that the object was uploaded using SSE-S3. func (s3) IsEncrypted(metadata map[string]string) bool { if _, ok := metadata[S3SealedKey]; ok { return true } if _, ok := metadata[S3KMSKeyID]; ok { return true } if _, ok := metadata[S3KMSSealedKey]; ok { return true } return false } // IsEncrypted returns true if the object metadata indicates // that the object was uploaded using SSE-C. func (ssec) IsEncrypted(metadata map[string]string) bool { if _, ok := metadata[SSECSealedKey]; ok { return true } return false } // CreateMultipartMetadata adds the multipart flag entry to metadata // and returns modifed metadata. It allocates a new metadata map if // metadata is nil. func CreateMultipartMetadata(metadata map[string]string) map[string]string { if metadata == nil { metadata = map[string]string{} } metadata[SSEMultipart] = "" return metadata } // CreateMetadata encodes the sealed object key into the metadata and returns // the modified metadata. If the keyID and the kmsKey is not empty it encodes // both into the metadata as well. It allocates a new metadata map if metadata // is nil. func (s3) CreateMetadata(metadata map[string]string, keyID string, kmsKey []byte, sealedKey SealedKey) map[string]string { if sealedKey.Algorithm != SealAlgorithm { logger.CriticalIf(context.Background(), Errorf("The seal algorithm '%s' is invalid for SSE-S3", sealedKey.Algorithm)) } // There are two possibilites: // - We use a KMS -> There must be non-empty key ID and a KMS data key. // - We use a K/V -> There must be no key ID and no KMS data key. // Otherwise, the caller has passed an invalid argument combination. if keyID == "" && len(kmsKey) != 0 { logger.CriticalIf(context.Background(), errors.New("The key ID must not be empty if a KMS data key is present")) } if keyID != "" && len(kmsKey) == 0 { logger.CriticalIf(context.Background(), errors.New("The KMS data key must not be empty if a key ID is present")) } if metadata == nil { metadata = map[string]string{} } metadata[SSESealAlgorithm] = sealedKey.Algorithm metadata[SSEIV] = base64.StdEncoding.EncodeToString(sealedKey.IV[:]) metadata[S3SealedKey] = base64.StdEncoding.EncodeToString(sealedKey.Key[:]) if len(kmsKey) > 0 && keyID != "" { // We use a KMS -> Store key ID and sealed KMS data key. metadata[S3KMSKeyID] = keyID metadata[S3KMSSealedKey] = base64.StdEncoding.EncodeToString(kmsKey) } return metadata } // ParseMetadata extracts all SSE-S3 related values from the object metadata // and checks whether they are well-formed. It returns the sealed object key // on success. If the metadata contains both, a KMS master key ID and a sealed // KMS data key it returns both. If the metadata does not contain neither a // KMS master key ID nor a sealed KMS data key it returns an empty keyID and // KMS data key. Otherwise, it returns an error. func (s3) ParseMetadata(metadata map[string]string) (keyID string, kmsKey []byte, sealedKey SealedKey, err error) { // Extract all required values from object metadata b64IV, ok := metadata[SSEIV] if !ok { return keyID, kmsKey, sealedKey, errMissingInternalIV } algorithm, ok := metadata[SSESealAlgorithm] if !ok { return keyID, kmsKey, sealedKey, errMissingInternalSealAlgorithm } b64SealedKey, ok := metadata[S3SealedKey] if !ok { return keyID, kmsKey, sealedKey, Errorf("The object metadata is missing the internal sealed key for SSE-S3") } // There are two possibilites: // - We use a KMS -> There must be a key ID and a KMS data key. // - We use a K/V -> There must be no key ID and no KMS data key. // Otherwise, the metadata is corrupted. keyID, idPresent := metadata[S3KMSKeyID] b64KMSSealedKey, kmsKeyPresent := metadata[S3KMSSealedKey] if !idPresent && kmsKeyPresent { return keyID, kmsKey, sealedKey, Errorf("The object metadata is missing the internal KMS key-ID for SSE-S3") } if idPresent && !kmsKeyPresent { return keyID, kmsKey, sealedKey, Errorf("The object metadata is missing the internal sealed KMS data key for SSE-S3") } // Check whether all extracted values are well-formed iv, err := base64.StdEncoding.DecodeString(b64IV) if err != nil || len(iv) != 32 { return keyID, kmsKey, sealedKey, errInvalidInternalIV } if algorithm != SealAlgorithm { return keyID, kmsKey, sealedKey, errInvalidInternalSealAlgorithm } encryptedKey, err := base64.StdEncoding.DecodeString(b64SealedKey) if err != nil || len(encryptedKey) != 64 { return keyID, kmsKey, sealedKey, Errorf("The internal sealed key for SSE-S3 is invalid") } if idPresent && kmsKeyPresent { // We are using a KMS -> parse the sealed KMS data key. kmsKey, err = base64.StdEncoding.DecodeString(b64KMSSealedKey) if err != nil { return keyID, kmsKey, sealedKey, Errorf("The internal sealed KMS data key for SSE-S3 is invalid") } } sealedKey.Algorithm = algorithm copy(sealedKey.IV[:], iv) copy(sealedKey.Key[:], encryptedKey) return keyID, kmsKey, sealedKey, nil } // CreateMetadata encodes the sealed key into the metadata and returns the modified metadata. // It allocates a new metadata map if metadata is nil. func (ssec) CreateMetadata(metadata map[string]string, sealedKey SealedKey) map[string]string { if sealedKey.Algorithm != SealAlgorithm { logger.CriticalIf(context.Background(), Errorf("The seal algorithm '%s' is invalid for SSE-C", sealedKey.Algorithm)) } if metadata == nil { metadata = map[string]string{} } metadata[SSESealAlgorithm] = SealAlgorithm metadata[SSEIV] = base64.StdEncoding.EncodeToString(sealedKey.IV[:]) metadata[SSECSealedKey] = base64.StdEncoding.EncodeToString(sealedKey.Key[:]) return metadata } // ParseMetadata extracts all SSE-C related values from the object metadata // and checks whether they are well-formed. It returns the sealed object key // on success. func (ssec) ParseMetadata(metadata map[string]string) (sealedKey SealedKey, err error) { // Extract all required values from object metadata b64IV, ok := metadata[SSEIV] if !ok { return sealedKey, errMissingInternalIV } algorithm, ok := metadata[SSESealAlgorithm] if !ok { return sealedKey, errMissingInternalSealAlgorithm } b64SealedKey, ok := metadata[SSECSealedKey] if !ok { return sealedKey, Errorf("The object metadata is missing the internal sealed key for SSE-C") } // Check whether all extracted values are well-formed iv, err := base64.StdEncoding.DecodeString(b64IV) if err != nil || len(iv) != 32 { return sealedKey, errInvalidInternalIV } if algorithm != SealAlgorithm && algorithm != InsecureSealAlgorithm { return sealedKey, errInvalidInternalSealAlgorithm } encryptedKey, err := base64.StdEncoding.DecodeString(b64SealedKey) if err != nil || len(encryptedKey) != 64 { return sealedKey, Errorf("The internal sealed key for SSE-C is invalid") } sealedKey.Algorithm = algorithm copy(sealedKey.IV[:], iv) copy(sealedKey.Key[:], encryptedKey) return sealedKey, nil } // IsETagSealed returns true if the etag seems to be encrypted. func IsETagSealed(etag []byte) bool { return len(etag) > 16 }