/* * Minio Cloud Storage, (C) 2016 Minio, Inc. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ package main import ( "bytes" "encoding/hex" "errors" "io" "sync" "github.com/klauspost/reedsolomon" ) // isSuccessDecodeBlocks - do we have all the blocks to be successfully decoded?. // input disks here are expected to be ordered i.e parityBlocks // are preceded by dataBlocks. For for information look at getOrderedDisks(). func isSuccessDecodeBlocks(disks []StorageAPI, dataBlocks int) bool { // Count number of data and parity blocks that were read. var successDataBlocksCount = 0 var successParityBlocksCount = 0 for index, disk := range disks { if disk == nil { continue } if index < dataBlocks { successDataBlocksCount++ continue } successParityBlocksCount++ } // Returns true if we have atleast dataBlocks + 1 parity. return successDataBlocksCount+successParityBlocksCount >= dataBlocks+1 } // isSuccessDataBlocks - do we have all the data blocks? // input disks here are expected to be ordered i.e parityBlocks // are preceded by dataBlocks. For for information look at getOrderedDisks(). func isSuccessDataBlocks(disks []StorageAPI, dataBlocks int) bool { // Count number of data blocks that were read. var successDataBlocksCount = 0 for index, disk := range disks[:dataBlocks] { if disk == nil { continue } if index < dataBlocks { successDataBlocksCount++ } } // Returns true if we have all the dataBlocks. return successDataBlocksCount >= dataBlocks } // getOrderedDisks - get ordered disks from erasure distribution. // returns ordered slice of disks from their actual distribution. func getOrderedDisks(distribution []int, disks []StorageAPI, blockCheckSums []checkSumInfo) (orderedDisks []StorageAPI, orderedBlockCheckSums []checkSumInfo) { orderedDisks = make([]StorageAPI, len(disks)) orderedBlockCheckSums = make([]checkSumInfo, len(disks)) // From disks gets ordered disks. for index := range disks { blockIndex := distribution[index] orderedDisks[blockIndex-1] = disks[index] orderedBlockCheckSums[blockIndex-1] = blockCheckSums[index] } return orderedDisks, orderedBlockCheckSums } // erasureReadFile - read bytes from erasure coded files and writes to given writer. // Erasure coded files are read block by block as per given erasureInfo and data chunks // are decoded into a data block. Data block is trimmed for given offset and length, // then written to given writer. This function also supports bit-rot detection by // verifying checksum of individual block's checksum. func erasureReadFile(writer io.Writer, disks []StorageAPI, volume string, path string, partName string, eInfos []erasureInfo, offset int64, length int64, totalLength int64) (int64, error) { // Pick one erasure info. eInfo := pickValidErasureInfo(eInfos) // Gather previously calculated block checksums. blockCheckSums := metaPartBlockChecksums(disks, eInfos, partName) // []orderedDisks will have first eInfo.DataBlocks disks as data // disks and rest will be parity. orderedDisks, orderedBlockCheckSums := getOrderedDisks(eInfo.Distribution, disks, blockCheckSums) // bitrotVerify verifies if the file on a particular disk doesn't have bitrot // by verifying the hash of the contents of the file. bitrotVerify := func() func(diskIndex int) bool { verified := make([]bool, len(orderedDisks)) // Return closure so that we have reference to []verified and // not recalculate the hash on it everytime the function is // called for the same disk. return func(diskIndex int) bool { if verified[diskIndex] { // Already validated. return true } // Is this a valid block? isValid := isValidBlock(orderedDisks[diskIndex], volume, path, orderedBlockCheckSums[diskIndex]) verified[diskIndex] = isValid return isValid } }() // Total bytes written to writer bytesWritten := int64(0) // Each element of enBlocks holds curChunkSize'd amount of data read from its corresponding disk. enBlocks := make([][]byte, len(orderedDisks)) // chunkSize is roughly BlockSize/DataBlocks. // chunkSize is calculated such that chunkSize*DataBlocks accommodates BlockSize bytes. // So chunkSize*DataBlocks can be slightly larger than BlockSize if BlockSize is not divisible by // DataBlocks. The extra space will have 0-padding. chunkSize := getEncodedBlockLen(eInfo.BlockSize, eInfo.DataBlocks) // Get start and end block, also bytes to be skipped based on the input offset. startBlock, endBlock, bytesToSkip := getBlockInfo(offset, totalLength, eInfo.BlockSize) // For each block, read chunk from each disk. If we are able to read all the data disks then we don't // need to read parity disks. If one of the data disk is missing we need to read DataBlocks+1 number // of disks. Once read, we Reconstruct() missing data if needed and write it to the given writer. for block := startBlock; bytesWritten < length; block++ { // curChunkSize is chunkSize until end block. curChunkSize := chunkSize if block == endBlock && (totalLength%eInfo.BlockSize != 0) { // If this is the last block and size of the block is < BlockSize. curChunkSize = getEncodedBlockLen(totalLength%eInfo.BlockSize, eInfo.DataBlocks) } // Block offset. // NOTE: That for the offset calculation we have to use chunkSize and // not curChunkSize. If we use curChunkSize for offset calculation // then it can result in wrong offset for the last block. blockOffset := block * chunkSize // Figure out the number of disks that are needed for the read. // We will need DataBlocks number of disks if all the data disks are up. // We will need DataBlocks+1 number of disks even if one of the data disks is down. readableDiskCount := 0 // Count the number of data disks that are up. for _, disk := range orderedDisks[:eInfo.DataBlocks] { if disk == nil { continue } readableDiskCount++ } // Readable disks.. if readableDiskCount < eInfo.DataBlocks { // Not enough data disks up, so we need DataBlocks+1 number // of disks for reed-solomon Reconstruct() readableDiskCount = eInfo.DataBlocks + 1 } // Initialize wait group. var wg = &sync.WaitGroup{} // Current disk index from which to read, this will be used later // in case one of the parallel reads fails. index := 0 // Read from the disks in parallel. for _, disk := range orderedDisks { if disk == nil { index++ continue } // Increment wait group. wg.Add(1) // Start reading from disk in a go-routine. go func(index int, disk StorageAPI) { defer wg.Done() // Verify bit rot for this disk slice. if !bitrotVerify(index) { // So that we don't read from this disk for the next block. orderedDisks[index] = nil return } // Chunk writer. chunkWriter := bytes.NewBuffer(make([]byte, 0, curChunkSize)) // CopyN copies until current chunk size. err := copyN(chunkWriter, disk, volume, path, blockOffset, curChunkSize) if err != nil { // So that we don't read from this disk for the next block. orderedDisks[index] = nil return } // Copy the read blocks. enBlocks[index] = chunkWriter.Bytes() // Reset the buffer. chunkWriter.Reset() // Successfully read. }(index, disk) index++ readableDiskCount-- // We have read all the readable disks. if readableDiskCount == 0 { break } } // Wait for all the reads to finish. wg.Wait() // FIXME: make this parallel. // If we have all the data blocks no need to decode. if !isSuccessDataBlocks(orderedDisks, eInfo.DataBlocks) { // If we don't have DataBlocks number of data blocks we // will have to read enough parity blocks such that we // have DataBlocks+1 number for blocks for rs.Reconstruct(). // index is either dataBlocks or dataBlocks + 1. for ; index < len(orderedDisks); index++ { // We have enough blocks to decode, break out. if isSuccessDecodeBlocks(orderedDisks, eInfo.DataBlocks) { // We have DataBlocks+1 blocks, enough for rs.Reconstruct() break } // This disk was previously set to nil and ignored, do not read again. if orderedDisks[index] == nil { continue } // Verify bit-rot for this index. if !bitrotVerify(index) { // Mark nil so that we don't read from this disk for the next block. orderedDisks[index] = nil continue } // Chunk writer. chunkWriter := bytes.NewBuffer(make([]byte, 0, curChunkSize)) // CopyN copies until current chunk size. err := copyN(chunkWriter, orderedDisks[index], volume, path, blockOffset, curChunkSize) if err != nil { // ERROR: Mark nil so that we don't read from // this disk for the next block. orderedDisks[index] = nil continue } // Copy the read blocks. chunkWriter.Read(enBlocks[index]) // Reset the buffer. chunkWriter.Reset() } // Reconstruct the missing data blocks. err := decodeData(enBlocks, eInfo.DataBlocks, eInfo.ParityBlocks) if err != nil { return bytesWritten, err } // Success. } var outSize, outOffset int64 // enBlocks data can have 0-padding hence we need to figure the exact number // of bytes we want to read from enBlocks. blockSize := eInfo.BlockSize if block == endBlock && totalLength%eInfo.BlockSize != 0 { // For the last block, the block size can be less than BlockSize. blockSize = totalLength % eInfo.BlockSize } // If this is start block, skip unwanted bytes. if block == startBlock { outOffset = bytesToSkip } // Total data to be read. outSize = blockSize if length-bytesWritten < blockSize { // We should not send more data than what was requested. outSize = length - bytesWritten } // Write data blocks. n, err := writeDataBlocks(writer, enBlocks, eInfo.DataBlocks, outOffset, outSize) if err != nil { return bytesWritten, err } // Update total bytes written. bytesWritten += n } // Success. return bytesWritten, nil } // PartObjectChecksum - returns the checksum for the part name from the checksum slice. func (e erasureInfo) PartObjectChecksum(partName string) checkSumInfo { for _, checksum := range e.Checksum { if checksum.Name == partName { return checksum } } return checkSumInfo{} } // xlMetaPartBlockChecksums - get block checksums for a given part. func metaPartBlockChecksums(disks []StorageAPI, eInfos []erasureInfo, partName string) (blockCheckSums []checkSumInfo) { for index := range disks { if eInfos[index].IsValid() { // Save the read checksums for a given part. blockCheckSums = append(blockCheckSums, eInfos[index].PartObjectChecksum(partName)) } else { blockCheckSums = append(blockCheckSums, checkSumInfo{}) } } return blockCheckSums } // Takes block index and block distribution to get the disk index. func toDiskIndex(blockIdx int, distribution []int) int { // Find out the right disk index for the input block index. for index, blockIndex := range distribution { if blockIndex-1 == blockIdx { return index } } return -1 } // isValidBlock - calculates the checksum hash for the block and // validates if its correct returns true for valid cases, false otherwise. func isValidBlock(disk StorageAPI, volume, path string, blockCheckSum checkSumInfo) (ok bool) { ok = false if disk == nil { return false } // Read everything for a given block and calculate hash. hashWriter := newHash(blockCheckSum.Algorithm) hashBytes, err := hashSum(disk, volume, path, hashWriter) if err != nil { return ok } ok = hex.EncodeToString(hashBytes) == blockCheckSum.Hash return ok } // decodeData - decode encoded blocks. func decodeData(enBlocks [][]byte, dataBlocks, parityBlocks int) error { // Initialized reedsolomon. rs, err := reedsolomon.New(dataBlocks, parityBlocks) if err != nil { return err } // Reconstruct encoded blocks. err = rs.Reconstruct(enBlocks) if err != nil { return err } // Verify reconstructed blocks (parity). ok, err := rs.Verify(enBlocks) if err != nil { return err } if !ok { // Blocks cannot be reconstructed, corrupted data. err = errors.New("Verification failed after reconstruction, data likely corrupted.") return err } // Success. return nil }