minio/cmd/encryption-v1.go
Andreas Auernhammer 15771ebe8d Fix decrypted object size and key derivation in CopyObjectPart (#6141)
This commit fixes the size calculation for multipart
objects. The decrypted size of an encrypted multipart
object is the sum of the decrypted part sizes.

Also fixes the key derivation in CopyObjectPart.
Instead of using the same object-encryption-key for each
part now an unique per-part key is derived.

Updates #6139
2018-07-12 21:59:56 +05:30

876 lines
32 KiB
Go

/*
* Minio Cloud Storage, (C) 2017, 2018 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package cmd
import (
"bytes"
"context"
"crypto/hmac"
"crypto/md5"
"crypto/rand"
"crypto/subtle"
"encoding/base64"
"encoding/binary"
"errors"
"io"
"net/http"
"path"
"strconv"
"github.com/minio/minio/cmd/logger"
"github.com/minio/minio/pkg/ioutil"
sha256 "github.com/minio/sha256-simd"
"github.com/minio/sio"
)
var (
// AWS errors for invalid SSE-C requests.
errInsecureSSERequest = errors.New("SSE-C requests require TLS connections")
errEncryptedObject = errors.New("The object was stored using a form of SSE")
errInvalidSSEAlgorithm = errors.New("The SSE-C algorithm is not valid")
errMissingSSEKey = errors.New("The SSE-C request is missing the customer key")
errInvalidSSEKey = errors.New("The SSE-C key is invalid")
errMissingSSEKeyMD5 = errors.New("The SSE-C request is missing the customer key MD5")
errSSEKeyMD5Mismatch = errors.New("The key MD5 does not match the SSE-C key")
errSSEKeyMismatch = errors.New("The SSE-C key is not correct") // access denied
errInvalidSSEParameters = errors.New("The SSE-C key for key-rotation is not correct") // special access denied
// Additional Minio errors for SSE-C requests.
errObjectTampered = errors.New("The requested object was modified and may be compromised")
)
const (
// SSECustomerAlgorithm is the AWS SSE-C algorithm HTTP header key.
SSECustomerAlgorithm = "X-Amz-Server-Side-Encryption-Customer-Algorithm"
// SSECustomerKey is the AWS SSE-C encryption key HTTP header key.
SSECustomerKey = "X-Amz-Server-Side-Encryption-Customer-Key"
// SSECustomerKeyMD5 is the AWS SSE-C encryption key MD5 HTTP header key.
SSECustomerKeyMD5 = "X-Amz-Server-Side-Encryption-Customer-Key-MD5"
// SSECopyCustomerAlgorithm is the AWS SSE-C algorithm HTTP header key for CopyObject API.
SSECopyCustomerAlgorithm = "X-Amz-Copy-Source-Server-Side-Encryption-Customer-Algorithm"
// SSECopyCustomerKey is the AWS SSE-C encryption key HTTP header key for CopyObject API.
SSECopyCustomerKey = "X-Amz-Copy-Source-Server-Side-Encryption-Customer-Key"
// SSECopyCustomerKeyMD5 is the AWS SSE-C encryption key MD5 HTTP header key for CopyObject API.
SSECopyCustomerKeyMD5 = "X-Amz-Copy-Source-Server-Side-Encryption-Customer-Key-MD5"
)
const (
// SSECustomerKeySize is the size of valid client provided encryption keys in bytes.
// Currently AWS supports only AES256. So the SSE-C key size is fixed to 32 bytes.
SSECustomerKeySize = 32
// SSEIVSize is the size of the IV data
SSEIVSize = 32 // 32 bytes
// SSECustomerAlgorithmAES256 the only valid S3 SSE-C encryption algorithm identifier.
SSECustomerAlgorithmAES256 = "AES256"
// SSE dare package block size.
sseDAREPackageBlockSize = 64 * 1024 // 64KiB bytes
// SSE dare package meta padding bytes.
sseDAREPackageMetaSize = 32 // 32 bytes
)
// SSE-C key derivation, key verification and key update:
// H: Hash function [32 = |H(m)|]
// AE: authenticated encryption scheme, AD: authenticated decryption scheme [m = AD(k, AE(k, m))]
//
// Key derivation:
// Input:
// key := 32 bytes # client provided key
// Re, Rm := 32 bytes, 32 bytes # uniformly random
//
// Seal:
// k := H(key || Re) # object encryption key
// r := H(Rm) # save as object metadata [ServerSideEncryptionIV]
// KeK := H(key || r) # key encryption key
// K := AE(KeK, k) # save as object metadata [ServerSideEncryptionSealedKey]
// ------------------------------------------------------------------------------------------------
// Key verification:
// Input:
// key := 32 bytes # client provided key
// r := 32 bytes # object metadata [ServerSideEncryptionIV]
// K := 32 bytes # object metadata [ServerSideEncryptionSealedKey]
//
// Open:
// KeK := H(key || r) # key encryption key
// k := AD(Kek, K) # object encryption key
// -------------------------------------------------------------------------------------------------
// Key update:
// Input:
// key := 32 bytes # old client provided key
// key' := 32 bytes # new client provided key
// Rm := 32 bytes # uniformly random
// r := 32 bytes # object metadata [ServerSideEncryptionIV]
// K := 32 bytes # object metadata [ServerSideEncryptionSealedKey]
//
// Update:
// 1. open:
// KeK := H(key || r) # key encryption key
// k := AD(Kek, K) # object encryption key
// 2. seal:
// r' := H(Rm) # save as object metadata [ServerSideEncryptionIV]
// KeK' := H(key' || r') # new key encryption key
// K' := AE(KeK', k) # save as object metadata [ServerSideEncryptionSealedKey]
const (
// ServerSideEncryptionIV is a 32 byte randomly generated IV used to derive an
// unique key encryption key from the client provided key. The combination of this value
// and the client-provided key MUST be unique.
ServerSideEncryptionIV = ReservedMetadataPrefix + "Server-Side-Encryption-Iv"
// ServerSideEncryptionSealAlgorithm identifies a combination of a cryptographic hash function and
// an authenticated en/decryption scheme to seal the object encryption key.
ServerSideEncryptionSealAlgorithm = ReservedMetadataPrefix + "Server-Side-Encryption-Seal-Algorithm"
// ServerSideEncryptionSealedKey is the sealed object encryption key. The sealed key can be decrypted
// by the key encryption key derived from the client provided key and the server-side-encryption IV.
ServerSideEncryptionSealedKey = ReservedMetadataPrefix + "Server-Side-Encryption-Sealed-Key"
)
const (
// SSESealAlgorithmDareSha256 specifies DARE as authenticated en/decryption scheme and SHA256 as cryptographic
// hash function. The key derivation of DARE-SHA256 is not optimal and does not include the object path.
// It is considered legacy and should not be used anymore.
SSESealAlgorithmDareSha256 = "DARE-SHA256"
// SSESealAlgorithmDareV2HmacSha256 specifies DAREv2 as authenticated en/decryption scheme and SHA256 as cryptographic
// hash function for the HMAC PRF.
SSESealAlgorithmDareV2HmacSha256 = "DAREv2-HMAC-SHA256"
// SSEDomain specifies the domain for the derived key - in this case the
// key should be used for SSE-C.
SSEDomain = "SSE-C"
)
// hasSSECustomerHeader returns true if the given HTTP header
// contains server-side-encryption with customer provided key fields.
func hasSSECustomerHeader(header http.Header) bool {
return header.Get(SSECustomerAlgorithm) != "" || header.Get(SSECustomerKey) != "" || header.Get(SSECustomerKeyMD5) != ""
}
// hasSSECopyCustomerHeader returns true if the given HTTP header
// contains copy source server-side-encryption with customer provided key fields.
func hasSSECopyCustomerHeader(header http.Header) bool {
return header.Get(SSECopyCustomerAlgorithm) != "" || header.Get(SSECopyCustomerKey) != "" || header.Get(SSECopyCustomerKeyMD5) != ""
}
// ParseSSECopyCustomerRequest parses the SSE-C header fields of the provided request.
// It returns the client provided key on success.
func ParseSSECopyCustomerRequest(r *http.Request) (key []byte, err error) {
if !globalIsSSL { // minio only supports HTTP or HTTPS requests not both at the same time
// we cannot use r.TLS == nil here because Go's http implementation reflects on
// the net.Conn and sets the TLS field of http.Request only if it's an tls.Conn.
// Minio uses a BufConn (wrapping a tls.Conn) so the type check within the http package
// will always fail -> r.TLS is always nil even for TLS requests.
return nil, errInsecureSSERequest
}
header := r.Header
if algorithm := header.Get(SSECopyCustomerAlgorithm); algorithm != SSECustomerAlgorithmAES256 {
return nil, errInvalidSSEAlgorithm
}
if header.Get(SSECopyCustomerKey) == "" {
return nil, errMissingSSEKey
}
if header.Get(SSECopyCustomerKeyMD5) == "" {
return nil, errMissingSSEKeyMD5
}
key, err = base64.StdEncoding.DecodeString(header.Get(SSECopyCustomerKey))
if err != nil {
return nil, errInvalidSSEKey
}
if len(key) != SSECustomerKeySize {
return nil, errInvalidSSEKey
}
// Make sure we purged the keys from http headers by now.
header.Del(SSECopyCustomerKey)
keyMD5, err := base64.StdEncoding.DecodeString(header.Get(SSECopyCustomerKeyMD5))
if err != nil {
return nil, errSSEKeyMD5Mismatch
}
if md5Sum := md5.Sum(key); !bytes.Equal(md5Sum[:], keyMD5) {
return nil, errSSEKeyMD5Mismatch
}
return key, nil
}
// ParseSSECustomerRequest parses the SSE-C header fields of the provided request.
// It returns the client provided key on success.
func ParseSSECustomerRequest(r *http.Request) (key []byte, err error) {
return ParseSSECustomerHeader(r.Header)
}
// ParseSSECustomerHeader parses the SSE-C header fields and returns
// the client provided key on success.
func ParseSSECustomerHeader(header http.Header) (key []byte, err error) {
if !globalIsSSL { // minio only supports HTTP or HTTPS requests not both at the same time
// we cannot use r.TLS == nil here because Go's http implementation reflects on
// the net.Conn and sets the TLS field of http.Request only if it's an tls.Conn.
// Minio uses a BufConn (wrapping a tls.Conn) so the type check within the http package
// will always fail -> r.TLS is always nil even for TLS requests.
return nil, errInsecureSSERequest
}
if algorithm := header.Get(SSECustomerAlgorithm); algorithm != SSECustomerAlgorithmAES256 {
return nil, errInvalidSSEAlgorithm
}
if header.Get(SSECustomerKey) == "" {
return nil, errMissingSSEKey
}
if header.Get(SSECustomerKeyMD5) == "" {
return nil, errMissingSSEKeyMD5
}
key, err = base64.StdEncoding.DecodeString(header.Get(SSECustomerKey))
if err != nil {
return nil, errInvalidSSEKey
}
if len(key) != SSECustomerKeySize {
return nil, errInvalidSSEKey
}
// Make sure we purged the keys from http headers by now.
header.Del(SSECustomerKey)
keyMD5, err := base64.StdEncoding.DecodeString(header.Get(SSECustomerKeyMD5))
if err != nil {
return nil, errSSEKeyMD5Mismatch
}
if md5Sum := md5.Sum(key); !bytes.Equal(md5Sum[:], keyMD5) {
return nil, errSSEKeyMD5Mismatch
}
return key, nil
}
// This function rotates old to new key.
func rotateKey(oldKey []byte, newKey []byte, bucket, object string, metadata map[string]string) error {
delete(metadata, SSECustomerKey) // make sure we do not save the key by accident
algorithm := metadata[ServerSideEncryptionSealAlgorithm]
if algorithm != SSESealAlgorithmDareSha256 && algorithm != SSESealAlgorithmDareV2HmacSha256 {
return errObjectTampered
}
iv, err := base64.StdEncoding.DecodeString(metadata[ServerSideEncryptionIV])
if err != nil || len(iv) != SSEIVSize {
return errObjectTampered
}
sealedKey, err := base64.StdEncoding.DecodeString(metadata[ServerSideEncryptionSealedKey])
if err != nil || len(sealedKey) != 64 {
return errObjectTampered
}
var (
minDAREVersion byte
keyEncryptionKey [32]byte
)
switch algorithm {
default:
return errObjectTampered
case SSESealAlgorithmDareSha256: // legacy key-encryption-key derivation
minDAREVersion = sio.Version10
sha := sha256.New()
sha.Write(oldKey)
sha.Write(iv)
sha.Sum(keyEncryptionKey[:0])
case SSESealAlgorithmDareV2HmacSha256: // key-encryption-key derivation - See: crypto/doc.go
minDAREVersion = sio.Version20
mac := hmac.New(sha256.New, oldKey)
mac.Write(iv)
mac.Write([]byte(SSEDomain))
mac.Write([]byte(SSESealAlgorithmDareV2HmacSha256))
mac.Write([]byte(path.Join(bucket, object)))
mac.Sum(keyEncryptionKey[:0])
}
objectEncryptionKey := bytes.NewBuffer(nil) // decrypt object encryption key
n, err := sio.Decrypt(objectEncryptionKey, bytes.NewReader(sealedKey), sio.Config{
MinVersion: minDAREVersion,
Key: keyEncryptionKey[:],
})
if n != 32 || err != nil { // Either the provided key does not match or the object was tampered.
if subtle.ConstantTimeCompare(oldKey, newKey) == 1 {
return errInvalidSSEParameters // AWS returns special error for equal but invalid keys.
}
return errSSEKeyMismatch // To provide strict AWS S3 compatibility we return: access denied.
}
if subtle.ConstantTimeCompare(oldKey, newKey) == 1 && algorithm != SSESealAlgorithmDareSha256 {
return nil // we don't need to rotate keys if newKey == oldKey but we may have to upgrade KDF algorithm
}
mac := hmac.New(sha256.New, newKey) // key-encryption-key derivation - See: crypto/doc.go
mac.Write(iv)
mac.Write([]byte(SSEDomain))
mac.Write([]byte(SSESealAlgorithmDareV2HmacSha256))
mac.Write([]byte(path.Join(bucket, object)))
mac.Sum(keyEncryptionKey[:0])
sealedKeyW := bytes.NewBuffer(nil) // sealedKey := 16 byte header + 32 byte payload + 16 byte tag
n, err = sio.Encrypt(sealedKeyW, bytes.NewReader(objectEncryptionKey.Bytes()), sio.Config{
Key: keyEncryptionKey[:],
})
if n != 64 || err != nil {
return errors.New("failed to seal object encryption key") // if this happens there's a bug in the code (may panic ?)
}
metadata[ServerSideEncryptionIV] = base64.StdEncoding.EncodeToString(iv[:])
metadata[ServerSideEncryptionSealAlgorithm] = SSESealAlgorithmDareV2HmacSha256
metadata[ServerSideEncryptionSealedKey] = base64.StdEncoding.EncodeToString(sealedKeyW.Bytes())
return nil
}
func newEncryptMetadata(key []byte, bucket, object string, metadata map[string]string) ([]byte, error) {
delete(metadata, SSECustomerKey) // make sure we do not save the key by accident
// See crypto/doc.go for detailed description
nonce := make([]byte, 32+SSEIVSize) // generate random values for key derivation
if _, err := io.ReadFull(rand.Reader, nonce); err != nil {
return nil, err
}
sha := sha256.New() // derive object encryption key
sha.Write(key)
sha.Write(nonce[:32])
objectEncryptionKey := sha.Sum(nil)
iv := sha256.Sum256(nonce[32:]) // key-encryption-key derivation - See: crypto/doc.go
mac := hmac.New(sha256.New, key)
mac.Write(iv[:])
mac.Write([]byte(SSEDomain))
mac.Write([]byte(SSESealAlgorithmDareV2HmacSha256))
mac.Write([]byte(path.Join(bucket, object)))
keyEncryptionKey := mac.Sum(nil)
sealedKey := bytes.NewBuffer(nil) // sealedKey := 16 byte header + 32 byte payload + 16 byte tag
n, err := sio.Encrypt(sealedKey, bytes.NewReader(objectEncryptionKey), sio.Config{
Key: keyEncryptionKey,
})
if n != 64 || err != nil {
return nil, errors.New("failed to seal object encryption key") // if this happens there's a bug in the code (may panic ?)
}
metadata[ServerSideEncryptionIV] = base64.StdEncoding.EncodeToString(iv[:])
metadata[ServerSideEncryptionSealAlgorithm] = SSESealAlgorithmDareV2HmacSha256
metadata[ServerSideEncryptionSealedKey] = base64.StdEncoding.EncodeToString(sealedKey.Bytes())
return objectEncryptionKey, nil
}
func newEncryptReader(content io.Reader, key []byte, bucket, object string, metadata map[string]string) (io.Reader, error) {
objectEncryptionKey, err := newEncryptMetadata(key, bucket, object, metadata)
if err != nil {
return nil, err
}
reader, err := sio.EncryptReader(content, sio.Config{Key: objectEncryptionKey})
if err != nil {
return nil, errInvalidSSEKey
}
return reader, nil
}
// EncryptRequest takes the client provided content and encrypts the data
// with the client provided key. It also marks the object as client-side-encrypted
// and sets the correct headers.
func EncryptRequest(content io.Reader, r *http.Request, bucket, object string, metadata map[string]string) (io.Reader, error) {
key, err := ParseSSECustomerRequest(r)
if err != nil {
return nil, err
}
return newEncryptReader(content, key, bucket, object, metadata)
}
// DecryptCopyRequest decrypts the object with the client provided key. It also removes
// the client-side-encryption metadata from the object and sets the correct headers.
func DecryptCopyRequest(client io.Writer, r *http.Request, bucket, object string, metadata map[string]string) (io.WriteCloser, error) {
key, err := ParseSSECopyCustomerRequest(r)
if err != nil {
return nil, err
}
delete(metadata, SSECopyCustomerKey) // make sure we do not save the key by accident
return newDecryptWriter(client, key, bucket, object, 0, metadata)
}
func decryptObjectInfo(key []byte, bucket, object string, metadata map[string]string) ([]byte, error) {
iv, err := base64.StdEncoding.DecodeString(metadata[ServerSideEncryptionIV])
if err != nil || len(iv) != SSEIVSize {
return nil, errObjectTampered
}
sealedKey, err := base64.StdEncoding.DecodeString(metadata[ServerSideEncryptionSealedKey])
if err != nil || len(sealedKey) != 64 {
return nil, errObjectTampered
}
var (
minDAREVersion byte
keyEncryptionKey [32]byte
)
switch algorithm := metadata[ServerSideEncryptionSealAlgorithm]; algorithm {
default:
return nil, errObjectTampered
case SSESealAlgorithmDareSha256: // legacy key-encryption-key derivation
minDAREVersion = sio.Version10
sha := sha256.New()
sha.Write(key)
sha.Write(iv)
sha.Sum(keyEncryptionKey[:0])
case SSESealAlgorithmDareV2HmacSha256: // key-encryption-key derivation - See: crypto/doc.go
minDAREVersion = sio.Version20
mac := hmac.New(sha256.New, key)
mac.Write(iv)
mac.Write([]byte(SSEDomain))
mac.Write([]byte(SSESealAlgorithmDareV2HmacSha256))
mac.Write([]byte(path.Join(bucket, object)))
mac.Sum(keyEncryptionKey[:0])
}
objectEncryptionKey := bytes.NewBuffer(nil) // decrypt object encryption key
n, err := sio.Decrypt(objectEncryptionKey, bytes.NewReader(sealedKey), sio.Config{
MinVersion: minDAREVersion,
Key: keyEncryptionKey[:],
})
if n != 32 || err != nil {
// Either the provided key does not match or the object was tampered.
// To provide strict AWS S3 compatibility we return: access denied.
return nil, errSSEKeyMismatch
}
return objectEncryptionKey.Bytes(), nil
}
func newDecryptWriter(client io.Writer, key []byte, bucket, object string, seqNumber uint32, metadata map[string]string) (io.WriteCloser, error) {
objectEncryptionKey, err := decryptObjectInfo(key, bucket, object, metadata)
if err != nil {
return nil, err
}
return newDecryptWriterWithObjectKey(client, objectEncryptionKey, seqNumber, metadata)
}
func newDecryptWriterWithObjectKey(client io.Writer, objectEncryptionKey []byte, seqNumber uint32, metadata map[string]string) (io.WriteCloser, error) {
writer, err := sio.DecryptWriter(client, sio.Config{
Key: objectEncryptionKey,
SequenceNumber: seqNumber,
})
if err != nil {
return nil, errInvalidSSEKey
}
delete(metadata, ServerSideEncryptionIV)
delete(metadata, ServerSideEncryptionSealAlgorithm)
delete(metadata, ServerSideEncryptionSealedKey)
delete(metadata, ReservedMetadataPrefix+"Encrypted-Multipart")
return writer, nil
}
// DecryptRequestWithSequenceNumber decrypts the object with the client provided key. It also removes
// the client-side-encryption metadata from the object and sets the correct headers.
func DecryptRequestWithSequenceNumber(client io.Writer, r *http.Request, bucket, object string, seqNumber uint32, metadata map[string]string) (io.WriteCloser, error) {
key, err := ParseSSECustomerRequest(r)
if err != nil {
return nil, err
}
delete(metadata, SSECustomerKey) // make sure we do not save the key by accident
return newDecryptWriter(client, key, bucket, object, seqNumber, metadata)
}
// DecryptRequest decrypts the object with the client provided key. It also removes
// the client-side-encryption metadata from the object and sets the correct headers.
func DecryptRequest(client io.Writer, r *http.Request, bucket, object string, metadata map[string]string) (io.WriteCloser, error) {
return DecryptRequestWithSequenceNumber(client, r, bucket, object, 0, metadata)
}
// DecryptBlocksWriter - decrypts multipart parts, while implementing a io.Writer compatible interface.
type DecryptBlocksWriter struct {
// Original writer where the plain data will be written
writer io.Writer
// Current decrypter for the current encrypted data block
decrypter io.WriteCloser
// Start sequence number
startSeqNum uint32
// Current part index
partIndex int
// Parts information
parts []objectPartInfo
req *http.Request
bucket, object string
metadata map[string]string
partEncRelOffset int64
copySource bool
// Customer Key
customerKeyHeader string
}
func (w *DecryptBlocksWriter) buildDecrypter(partID int) error {
m := make(map[string]string)
for k, v := range w.metadata {
m[k] = v
}
// Initialize the first decrypter, new decrypters will be initialized in Write() operation as needed.
var key []byte
var err error
if w.copySource {
w.req.Header.Set(SSECopyCustomerKey, w.customerKeyHeader)
key, err = ParseSSECopyCustomerRequest(w.req)
} else {
w.req.Header.Set(SSECustomerKey, w.customerKeyHeader)
key, err = ParseSSECustomerRequest(w.req)
}
if err != nil {
return err
}
objectEncryptionKey, err := decryptObjectInfo(key, w.bucket, w.object, m)
if err != nil {
return err
}
var partIDbin [4]byte
binary.LittleEndian.PutUint32(partIDbin[:], uint32(partID)) // marshal part ID
mac := hmac.New(sha256.New, objectEncryptionKey) // derive part encryption key from part ID and object key
mac.Write(partIDbin[:])
partEncryptionKey := mac.Sum(nil)
// make sure we do not save the key by accident
if w.copySource {
delete(m, SSECopyCustomerKey)
} else {
delete(m, SSECustomerKey)
}
// make sure to provide a NopCloser such that a Close
// on sio.decryptWriter doesn't close the underlying writer's
// close which perhaps can close the stream prematurely.
decrypter, err := newDecryptWriterWithObjectKey(ioutil.NopCloser(w.writer), partEncryptionKey, w.startSeqNum, m)
if err != nil {
return err
}
if w.decrypter != nil {
// Pro-actively close the writer such that any pending buffers
// are flushed already before we allocate a new decrypter.
err = w.decrypter.Close()
if err != nil {
return err
}
}
w.decrypter = decrypter
return nil
}
func (w *DecryptBlocksWriter) Write(p []byte) (int, error) {
var err error
var n1 int
if int64(len(p)) < w.parts[w.partIndex].Size-w.partEncRelOffset {
n1, err = w.decrypter.Write(p)
if err != nil {
return 0, err
}
w.partEncRelOffset += int64(n1)
} else {
n1, err = w.decrypter.Write(p[:w.parts[w.partIndex].Size-w.partEncRelOffset])
if err != nil {
return 0, err
}
// We should now proceed to next part, reset all values appropriately.
w.partEncRelOffset = 0
w.startSeqNum = 0
w.partIndex++
err = w.buildDecrypter(w.partIndex + 1)
if err != nil {
return 0, err
}
n1, err = w.decrypter.Write(p[n1:])
if err != nil {
return 0, err
}
w.partEncRelOffset += int64(n1)
}
return len(p), nil
}
// Close closes the LimitWriter. It behaves like io.Closer.
func (w *DecryptBlocksWriter) Close() error {
if w.decrypter != nil {
err := w.decrypter.Close()
if err != nil {
return err
}
}
if closer, ok := w.writer.(io.Closer); ok {
return closer.Close()
}
return nil
}
// DecryptAllBlocksCopyRequest - setup a struct which can decrypt many concatenated encrypted data
// parts information helps to know the boundaries of each encrypted data block, this function decrypts
// all parts starting from part-1.
func DecryptAllBlocksCopyRequest(client io.Writer, r *http.Request, bucket, object string, objInfo ObjectInfo) (io.WriteCloser, int64, error) {
w, _, size, err := DecryptBlocksRequest(client, r, bucket, object, 0, objInfo.Size, objInfo, true)
return w, size, err
}
// DecryptBlocksRequest - setup a struct which can decrypt many concatenated encrypted data
// parts information helps to know the boundaries of each encrypted data block.
func DecryptBlocksRequest(client io.Writer, r *http.Request, bucket, object string, startOffset, length int64, objInfo ObjectInfo, copySource bool) (io.WriteCloser, int64, int64, error) {
seqNumber, encStartOffset, encLength := getEncryptedStartOffset(startOffset, length)
// Encryption length cannot be bigger than the file size, if it is
// which is allowed in AWS S3, we simply default to EncryptedSize().
if encLength+encStartOffset > objInfo.EncryptedSize() {
encLength = objInfo.EncryptedSize() - encStartOffset
}
if len(objInfo.Parts) == 0 || !objInfo.IsEncryptedMultipart() {
var writer io.WriteCloser
var err error
if copySource {
writer, err = DecryptCopyRequest(client, r, bucket, object, objInfo.UserDefined)
} else {
writer, err = DecryptRequestWithSequenceNumber(client, r, bucket, object, seqNumber, objInfo.UserDefined)
}
if err != nil {
return nil, 0, 0, err
}
return writer, encStartOffset, encLength, nil
}
var partStartIndex int
var partStartOffset = startOffset
// Skip parts until final offset maps to a particular part offset.
for i, part := range objInfo.Parts {
decryptedSize, err := sio.DecryptedSize(uint64(part.Size))
if err != nil {
return nil, -1, -1, errObjectTampered
}
partStartIndex = i
// Offset is smaller than size we have reached the
// proper part offset, break out we start from
// this part index.
if partStartOffset < int64(decryptedSize) {
break
}
// Continue to look for next part.
partStartOffset -= int64(decryptedSize)
}
startSeqNum := partStartOffset / sseDAREPackageBlockSize
partEncRelOffset := int64(startSeqNum) * (sseDAREPackageBlockSize + sseDAREPackageMetaSize)
w := &DecryptBlocksWriter{
writer: client,
startSeqNum: uint32(startSeqNum),
partEncRelOffset: partEncRelOffset,
parts: objInfo.Parts,
partIndex: partStartIndex,
req: r,
bucket: bucket,
object: object,
customerKeyHeader: r.Header.Get(SSECustomerKey),
copySource: copySource,
}
w.metadata = map[string]string{}
// Copy encryption metadata for internal use.
for k, v := range objInfo.UserDefined {
w.metadata[k] = v
}
// Purge all the encryption headers.
delete(objInfo.UserDefined, ServerSideEncryptionIV)
delete(objInfo.UserDefined, ServerSideEncryptionSealAlgorithm)
delete(objInfo.UserDefined, ServerSideEncryptionSealedKey)
delete(objInfo.UserDefined, ReservedMetadataPrefix+"Encrypted-Multipart")
if w.copySource {
w.customerKeyHeader = r.Header.Get(SSECopyCustomerKey)
}
if err := w.buildDecrypter(partStartIndex + 1); err != nil {
return nil, 0, 0, err
}
return w, encStartOffset, encLength, nil
}
// getEncryptedStartOffset - fetch sequence number, encrypted start offset and encrypted length.
func getEncryptedStartOffset(offset, length int64) (seqNumber uint32, encOffset int64, encLength int64) {
onePkgSize := int64(sseDAREPackageBlockSize + sseDAREPackageMetaSize)
seqNumber = uint32(offset / sseDAREPackageBlockSize)
encOffset = int64(seqNumber) * onePkgSize
// The math to compute the encrypted length is always
// originalLength i.e (offset+length-1) to be divided under
// 64KiB blocks which is the payload size for each encrypted
// block. This is then multiplied by final package size which
// is basically 64KiB + 32. Finally negate the encrypted offset
// to get the final encrypted length on disk.
encLength = ((offset+length)/sseDAREPackageBlockSize)*onePkgSize - encOffset
// Check for the remainder, to figure if we need one extract package to read from.
if (offset+length)%sseDAREPackageBlockSize > 0 {
encLength += onePkgSize
}
return seqNumber, encOffset, encLength
}
// IsEncryptedMultipart - is the encrypted content multiparted?
func (o *ObjectInfo) IsEncryptedMultipart() bool {
_, ok := o.UserDefined[ReservedMetadataPrefix+"Encrypted-Multipart"]
return ok
}
// IsEncrypted returns true if the object is marked as encrypted.
func (o *ObjectInfo) IsEncrypted() bool {
if _, ok := o.UserDefined[ServerSideEncryptionIV]; ok {
return true
}
if _, ok := o.UserDefined[ServerSideEncryptionSealAlgorithm]; ok {
return true
}
if _, ok := o.UserDefined[ServerSideEncryptionSealedKey]; ok {
return true
}
return false
}
// IsEncrypted returns true if the object is marked as encrypted.
func (li *ListPartsInfo) IsEncrypted() bool {
if _, ok := li.UserDefined[ServerSideEncryptionIV]; ok {
return true
}
if _, ok := li.UserDefined[ServerSideEncryptionSealAlgorithm]; ok {
return true
}
if _, ok := li.UserDefined[ServerSideEncryptionSealedKey]; ok {
return true
}
return false
}
// DecryptedSize returns the size of the object after decryption in bytes.
// It returns an error if the object is not encrypted or marked as encrypted
// but has an invalid size.
func (o *ObjectInfo) DecryptedSize() (int64, error) {
if !o.IsEncrypted() {
return 0, errors.New("Cannot compute decrypted size of an unencrypted object")
}
if len(o.Parts) == 0 {
size, err := sio.DecryptedSize(uint64(o.Size))
if err != nil {
err = errObjectTampered // assign correct error type
}
return int64(size), err
}
var size int64
for _, part := range o.Parts {
partSize, err := sio.DecryptedSize(uint64(part.Size))
if err != nil {
return 0, errObjectTampered
}
size += int64(partSize)
}
return size, nil
}
// EncryptedSize returns the size of the object after encryption.
// An encrypted object is always larger than a plain object
// except for zero size objects.
func (o *ObjectInfo) EncryptedSize() int64 {
size, err := sio.EncryptedSize(uint64(o.Size))
if err != nil {
// This cannot happen since AWS S3 allows parts to be 5GB at most
// sio max. size is 256 TB
reqInfo := (&logger.ReqInfo{}).AppendTags("size", strconv.FormatUint(size, 10))
ctx := logger.SetReqInfo(context.Background(), reqInfo)
logger.CriticalIf(ctx, err)
}
return int64(size)
}
// DecryptCopyObjectInfo tries to decrypt the provided object if it is encrypted.
// It fails if the object is encrypted and the HTTP headers don't contain
// SSE-C headers or the object is not encrypted but SSE-C headers are provided. (AWS behavior)
// DecryptObjectInfo returns 'ErrNone' if the object is not encrypted or the
// decryption succeeded.
//
// DecryptCopyObjectInfo also returns whether the object is encrypted or not.
func DecryptCopyObjectInfo(info *ObjectInfo, headers http.Header) (apiErr APIErrorCode, encrypted bool) {
// Directories are never encrypted.
if info.IsDir {
return ErrNone, false
}
if apiErr, encrypted = ErrNone, info.IsEncrypted(); !encrypted && hasSSECopyCustomerHeader(headers) {
apiErr = ErrInvalidEncryptionParameters
} else if encrypted {
if !hasSSECopyCustomerHeader(headers) {
apiErr = ErrSSEEncryptedObject
return
}
var err error
if info.Size, err = info.DecryptedSize(); err != nil {
apiErr = toAPIErrorCode(err)
}
}
return
}
// DecryptObjectInfo tries to decrypt the provided object if it is encrypted.
// It fails if the object is encrypted and the HTTP headers don't contain
// SSE-C headers or the object is not encrypted but SSE-C headers are provided. (AWS behavior)
// DecryptObjectInfo returns 'ErrNone' if the object is not encrypted or the
// decryption succeeded.
//
// DecryptObjectInfo also returns whether the object is encrypted or not.
func DecryptObjectInfo(info *ObjectInfo, headers http.Header) (apiErr APIErrorCode, encrypted bool) {
// Directories are never encrypted.
if info.IsDir {
return ErrNone, false
}
if apiErr, encrypted = ErrNone, info.IsEncrypted(); !encrypted && hasSSECustomerHeader(headers) {
apiErr = ErrInvalidEncryptionParameters
} else if encrypted {
if !hasSSECustomerHeader(headers) {
apiErr = ErrSSEEncryptedObject
return
}
var err error
if info.Size, err = info.DecryptedSize(); err != nil {
apiErr = toAPIErrorCode(err)
}
}
return
}