minio/cmd/erasure-readfile.go

161 lines
5.6 KiB
Go

/*
* Minio Cloud Storage, (C) 2016 Minio, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package cmd
import (
"io"
"github.com/minio/minio/pkg/errors"
)
// ReadFile reads as much data as requested from the file under the given volume and path and writes the data to the provided writer.
// The algorithm and the keys/checksums are used to verify the integrity of the given file. ReadFile will read data from the given offset
// up to the given length. If parts of the file are corrupted ReadFile tries to reconstruct the data.
func (s ErasureStorage) ReadFile(writer io.Writer, volume, path string, offset, length int64, totalLength int64, checksums [][]byte, algorithm BitrotAlgorithm, blocksize int64) (f ErasureFileInfo, err error) {
if offset < 0 || length < 0 {
return f, errors.Trace(errUnexpected)
}
if offset+length > totalLength {
return f, errors.Trace(errUnexpected)
}
if !algorithm.Available() {
return f, errors.Trace(errBitrotHashAlgoInvalid)
}
f.Checksums = make([][]byte, len(s.disks))
verifiers := make([]*BitrotVerifier, len(s.disks))
for i, disk := range s.disks {
if disk == OfflineDisk {
continue
}
verifiers[i] = NewBitrotVerifier(algorithm, checksums[i])
}
errChans := make([]chan error, len(s.disks))
for i := range errChans {
errChans[i] = make(chan error, 1)
}
lastBlock := totalLength / blocksize
startOffset := offset % blocksize
chunksize := getChunkSize(blocksize, s.dataBlocks)
blocks := make([][]byte, len(s.disks))
for i := range blocks {
blocks[i] = make([]byte, chunksize)
}
for off := offset / blocksize; length > 0; off++ {
blockOffset := off * chunksize
if currentBlock := (offset + f.Size) / blocksize; currentBlock == lastBlock {
blocksize = totalLength % blocksize
chunksize = getChunkSize(blocksize, s.dataBlocks)
for i := range blocks {
blocks[i] = blocks[i][:chunksize]
}
}
err = s.readConcurrent(volume, path, blockOffset, blocks, verifiers, errChans)
if err != nil {
return f, errors.Trace(errXLReadQuorum)
}
writeLength := blocksize - startOffset
if length < writeLength {
writeLength = length
}
n, err := writeDataBlocks(writer, blocks, s.dataBlocks, startOffset, writeLength)
if err != nil {
return f, err
}
startOffset = 0
f.Size += n
length -= n
}
f.Algorithm = algorithm
for i, disk := range s.disks {
if disk == OfflineDisk {
continue
}
f.Checksums[i] = verifiers[i].Sum(nil)
}
return f, nil
}
func erasureCountMissingBlocks(blocks [][]byte, limit int) int {
missing := 0
for i := range blocks[:limit] {
if len(blocks[i]) == 0 {
missing++
}
}
return missing
}
// readConcurrent reads all requested data concurrently from the disks into blocks. It returns an error if
// too many disks failed while reading.
func (s *ErasureStorage) readConcurrent(volume, path string, offset int64, blocks [][]byte, verifiers []*BitrotVerifier, errChans []chan error) (err error) {
errs := make([]error, len(s.disks))
erasureReadBlocksConcurrent(s.disks[:s.dataBlocks], volume, path, offset, blocks[:s.dataBlocks], verifiers[:s.dataBlocks], errs[:s.dataBlocks], errChans[:s.dataBlocks])
missingDataBlocks := erasureCountMissingBlocks(blocks, s.dataBlocks)
mustReconstruct := missingDataBlocks > 0
if mustReconstruct {
requiredReads := s.dataBlocks + missingDataBlocks
if requiredReads > s.dataBlocks+s.parityBlocks {
return errXLReadQuorum
}
erasureReadBlocksConcurrent(s.disks[s.dataBlocks:requiredReads], volume, path, offset, blocks[s.dataBlocks:requiredReads], verifiers[s.dataBlocks:requiredReads], errs[s.dataBlocks:requiredReads], errChans[s.dataBlocks:requiredReads])
if erasureCountMissingBlocks(blocks, requiredReads) > 0 {
erasureReadBlocksConcurrent(s.disks[requiredReads:], volume, path, offset, blocks[requiredReads:], verifiers[requiredReads:], errs[requiredReads:], errChans[requiredReads:])
}
}
if err = reduceReadQuorumErrs(errs, []error{}, s.dataBlocks); err != nil {
return err
}
if mustReconstruct {
if err = s.ErasureDecodeDataBlocks(blocks); err != nil {
return err
}
}
return nil
}
// erasureReadBlocksConcurrent reads all data from each disk to each data block in parallel.
// Therefore disks, blocks, verifiers errors and locks must have the same length.
func erasureReadBlocksConcurrent(disks []StorageAPI, volume, path string, offset int64, blocks [][]byte, verifiers []*BitrotVerifier, errors []error, errChans []chan error) {
for i := range errChans {
go erasureReadFromFile(disks[i], volume, path, offset, blocks[i], verifiers[i], errChans[i])
}
for i := range errChans {
errors[i] = <-errChans[i] // blocks until the go routine 'i' is done - no data race
if errors[i] != nil {
disks[i] = OfflineDisk
blocks[i] = blocks[i][:0] // mark shard as missing
}
}
}
// erasureReadFromFile reads data from the disk to buffer in parallel.
// It sends the returned error through the error channel.
func erasureReadFromFile(disk StorageAPI, volume, path string, offset int64, buffer []byte, verifier *BitrotVerifier, errChan chan<- error) {
if disk == OfflineDisk {
errChan <- errors.Trace(errDiskNotFound)
return
}
_, err := disk.ReadFile(volume, path, offset, buffer, verifier)
errChan <- err
}