minio/vendor/golang.org/x/crypto/chacha20poly1305/chacha20poly1305_amd64.go
Andreas Auernhammer ca6b4773ed add SSE-C support for HEAD, GET, PUT (#4894)
This change adds server-side-encryption support for HEAD, GET and PUT
operations. This PR only addresses single-part PUTs and GETs without
HTTP ranges.

Further this change adds the concept of reserved object metadata which is required
to make encrypted objects tamper-proof and provide API compatibility to AWS S3.
This PR adds the following reserved metadata entries:
- X-Minio-Internal-Server-Side-Encryption-Iv          ('guarantees' tamper-proof property)
- X-Minio-Internal-Server-Side-Encryption-Kdf         (makes Key-MAC computation negotiable in future)
- X-Minio-Internal-Server-Side-Encryption-Key-Mac     (provides AWS S3 API compatibility)

The prefix `X-Minio_Internal` specifies an internal metadata entry which must not
send to clients. All client requests containing a metadata key starting with `X-Minio-Internal`
must also rejected. This is implemented by a generic-handler.

This PR implements SSE-C separated from client-side-encryption (CSE). This cannot decrypt
server-side-encrypted objects on the client-side. However, clients can encrypted the same object
with CSE and SSE-C.

This PR does not address:
 - SSE-C Copy and Copy part
 - SSE-C GET with HTTP ranges
 - SSE-C multipart PUT
 - SSE-C Gateway

Each point must be addressed in a separate PR.

Added to vendor dir:
 - x/crypto/chacha20poly1305
 - x/crypto/poly1305
 - github.com/minio/sio
2017-11-07 15:18:59 -08:00

127 lines
3.3 KiB
Go

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build go1.7,amd64,!gccgo,!appengine
package chacha20poly1305
import "encoding/binary"
//go:noescape
func chacha20Poly1305Open(dst []byte, key []uint32, src, ad []byte) bool
//go:noescape
func chacha20Poly1305Seal(dst []byte, key []uint32, src, ad []byte)
// cpuid is implemented in chacha20poly1305_amd64.s.
func cpuid(eaxArg, ecxArg uint32) (eax, ebx, ecx, edx uint32)
// xgetbv with ecx = 0 is implemented in chacha20poly1305_amd64.s.
func xgetbv() (eax, edx uint32)
var (
useASM bool
useAVX2 bool
)
func init() {
detectCPUFeatures()
}
// detectCPUFeatures is used to detect if cpu instructions
// used by the functions implemented in assembler in
// chacha20poly1305_amd64.s are supported.
func detectCPUFeatures() {
maxID, _, _, _ := cpuid(0, 0)
if maxID < 1 {
return
}
_, _, ecx1, _ := cpuid(1, 0)
haveSSSE3 := isSet(9, ecx1)
useASM = haveSSSE3
haveOSXSAVE := isSet(27, ecx1)
osSupportsAVX := false
// For XGETBV, OSXSAVE bit is required and sufficient.
if haveOSXSAVE {
eax, _ := xgetbv()
// Check if XMM and YMM registers have OS support.
osSupportsAVX = isSet(1, eax) && isSet(2, eax)
}
haveAVX := isSet(28, ecx1) && osSupportsAVX
if maxID < 7 {
return
}
_, ebx7, _, _ := cpuid(7, 0)
haveAVX2 := isSet(5, ebx7) && haveAVX
haveBMI2 := isSet(8, ebx7)
useAVX2 = haveAVX2 && haveBMI2
}
// isSet checks if bit at bitpos is set in value.
func isSet(bitpos uint, value uint32) bool {
return value&(1<<bitpos) != 0
}
// setupState writes a ChaCha20 input matrix to state. See
// https://tools.ietf.org/html/rfc7539#section-2.3.
func setupState(state *[16]uint32, key *[32]byte, nonce []byte) {
state[0] = 0x61707865
state[1] = 0x3320646e
state[2] = 0x79622d32
state[3] = 0x6b206574
state[4] = binary.LittleEndian.Uint32(key[:4])
state[5] = binary.LittleEndian.Uint32(key[4:8])
state[6] = binary.LittleEndian.Uint32(key[8:12])
state[7] = binary.LittleEndian.Uint32(key[12:16])
state[8] = binary.LittleEndian.Uint32(key[16:20])
state[9] = binary.LittleEndian.Uint32(key[20:24])
state[10] = binary.LittleEndian.Uint32(key[24:28])
state[11] = binary.LittleEndian.Uint32(key[28:32])
state[12] = 0
state[13] = binary.LittleEndian.Uint32(nonce[:4])
state[14] = binary.LittleEndian.Uint32(nonce[4:8])
state[15] = binary.LittleEndian.Uint32(nonce[8:12])
}
func (c *chacha20poly1305) seal(dst, nonce, plaintext, additionalData []byte) []byte {
if !useASM {
return c.sealGeneric(dst, nonce, plaintext, additionalData)
}
var state [16]uint32
setupState(&state, &c.key, nonce)
ret, out := sliceForAppend(dst, len(plaintext)+16)
chacha20Poly1305Seal(out[:], state[:], plaintext, additionalData)
return ret
}
func (c *chacha20poly1305) open(dst, nonce, ciphertext, additionalData []byte) ([]byte, error) {
if !useASM {
return c.openGeneric(dst, nonce, ciphertext, additionalData)
}
var state [16]uint32
setupState(&state, &c.key, nonce)
ciphertext = ciphertext[:len(ciphertext)-16]
ret, out := sliceForAppend(dst, len(ciphertext))
if !chacha20Poly1305Open(out, state[:], ciphertext, additionalData) {
for i := range out {
out[i] = 0
}
return nil, errOpen
}
return ret, nil
}