pulumi/sdk/go/common/resource/properties.go

649 lines
21 KiB
Go
Raw Normal View History

// Copyright 2016-2021, Pulumi Corporation.
2018-05-22 21:43:36 +02:00
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package resource
import (
"fmt"
"reflect"
"sort"
"strings"
"github.com/pulumi/pulumi/sdk/v3/go/common/tokens"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/mapper"
)
// PropertyKey is the name of a property.
type PropertyKey tokens.Name
Initial support for output properties (1 of 3) This change includes approximately 1/3rd of the change necessary to support output properties, as per pulumi/lumi#90. In short, the runtime now has a new hidden type, Latent<T>, which represents a "speculative" value, whose eventual type will be T, that we can use during evaluation in various ways. Namely, operations against Latent<T>s generally produce new Latent<U>s. During planning, any Latent<T>s that end up in resource properties are transformed into "unknown" property values. An unknown property value is legal only during planning-time activities, such as Check, Name, and InspectChange. As a result, those RPC interfaces have been updated to include lookaside maps indicating which properties have unknown values. My intent is to add some helper functions to make dealing with this circumstance more correct-by-construction. For now, using an unresolved Latent<T> in a conditional will lead to an error. See pulumi/lumi#67. Speculating beyond these -- by supporting iterative planning and application -- is something we want to support eventually, but it makes sense to do that as an additive change beyond this initial support. That is a missing 1/3. Finally, the other missing 1/3rd which will happen much sooner than the rest is restructuing plan application so that it will correctly observe resolution of Latent<T> values. Right now, the evaluation happens in one single pass, prior to the application, and so Latent<T>s never actually get witnessed in a resolved state.
2017-05-24 02:32:59 +02:00
// PropertySet is a simple set keyed by property name.
type PropertySet map[PropertyKey]bool
// PropertyMap is a simple map keyed by property name with "JSON-like" values.
type PropertyMap map[PropertyKey]PropertyValue
// NewPropertyMap turns a struct into a property map, using any JSON tags inside to determine naming.
func NewPropertyMap(s interface{}) PropertyMap {
return NewPropertyMapRepl(s, nil, nil)
}
// NewPropertyMapRepl turns a struct into a property map, using any JSON tags inside to determine naming. If non-nil
// replk or replv function(s) are provided, key and/or value transformations are performed during the mapping.
func NewPropertyMapRepl(s interface{},
replk func(string) (PropertyKey, bool), replv func(interface{}) (PropertyValue, bool)) PropertyMap {
m, err := mapper.Unmap(s)
contract.Assertf(err == nil, "Struct of properties failed to map correctly: %v", err)
return NewPropertyMapFromMapRepl(m, replk, replv)
}
// NewPropertyMapFromMap creates a resource map from a regular weakly typed JSON-like map.
func NewPropertyMapFromMap(m map[string]interface{}) PropertyMap {
return NewPropertyMapFromMapRepl(m, nil, nil)
}
// NewPropertyMapFromMapRepl optionally replaces keys/values in an existing map while creating a new resource map.
func NewPropertyMapFromMapRepl(m map[string]interface{},
replk func(string) (PropertyKey, bool), replv func(interface{}) (PropertyValue, bool)) PropertyMap {
result := make(PropertyMap)
for k, v := range m {
key := PropertyKey(k)
if replk != nil {
if rk, repl := replk(k); repl {
key = rk
}
}
result[key] = NewPropertyValueRepl(v, replk, replv)
}
return result
}
// PropertyValue is the value of a property, limited to a select few types (see below).
type PropertyValue struct {
V interface{}
}
// Computed represents the absence of a property value, because it will be computed at some point in the future. It
// contains a property value which represents the underlying expected type of the eventual property value.
type Computed struct {
Element PropertyValue // the eventual value (type) of the computed property.
}
// Output is a property value that will eventually be computed by the resource provider. If an output property is
// encountered, it means the resource has not yet been created, and so the output value is unavailable. Note that an
// output property is a special case of computed, but carries additional semantic meaning.
type Output struct {
Element PropertyValue // the value of this output if it is resolved.
Known bool `json:"-"` // true if this output's value is known.
Secret bool `json:"-"` // true if this output's value is secret.
Dependencies []URN `json:"-"` // the dependencies associated with this output.
Initial support for output properties (1 of 3) This change includes approximately 1/3rd of the change necessary to support output properties, as per pulumi/lumi#90. In short, the runtime now has a new hidden type, Latent<T>, which represents a "speculative" value, whose eventual type will be T, that we can use during evaluation in various ways. Namely, operations against Latent<T>s generally produce new Latent<U>s. During planning, any Latent<T>s that end up in resource properties are transformed into "unknown" property values. An unknown property value is legal only during planning-time activities, such as Check, Name, and InspectChange. As a result, those RPC interfaces have been updated to include lookaside maps indicating which properties have unknown values. My intent is to add some helper functions to make dealing with this circumstance more correct-by-construction. For now, using an unresolved Latent<T> in a conditional will lead to an error. See pulumi/lumi#67. Speculating beyond these -- by supporting iterative planning and application -- is something we want to support eventually, but it makes sense to do that as an additive change beyond this initial support. That is a missing 1/3. Finally, the other missing 1/3rd which will happen much sooner than the rest is restructuing plan application so that it will correctly observe resolution of Latent<T> values. Right now, the evaluation happens in one single pass, prior to the application, and so Latent<T>s never actually get witnessed in a resolved state.
2017-05-24 02:32:59 +02:00
}
// Secret indicates that the underlying value should be persisted securely.
//
// In order to facilitate the ability to distinguish secrets with identical plaintext in downstream code that may
// want to cache a secret's ciphertext, secret PropertyValues hold the address of the Secret. If a secret must be
// copied, its value--not its address--should be copied.
type Secret struct {
Element PropertyValue
}
// ResourceReference is a property value that represents a reference to a Resource. The reference captures the
// resource's URN, ID, and the version of its containing package. Note that there are several cases to consider with
// respect to the ID:
//
// - The reference may not contain an ID if the referenced resource is a component resource. In this case, the ID will
// be null.
// - The ID may be unknown (in which case it will be the unknown property value)
// - Otherwise, the ID must be a string.
//
2021-09-21 19:00:44 +02:00
//nolint: revive
type ResourceReference struct {
URN URN
ID PropertyValue
PackageVersion string
}
func (ref ResourceReference) IDString() (value string, hasID bool) {
switch {
case ref.ID.IsComputed():
return "", true
case ref.ID.IsString():
return ref.ID.StringValue(), true
default:
return "", false
}
}
type ReqError struct {
K PropertyKey
}
func IsReqError(err error) bool {
_, isreq := err.(*ReqError)
return isreq
}
func (err *ReqError) Error() string {
return fmt.Sprintf("required property '%v' is missing", err.K)
}
// HasValue returns true if the slot associated with the given property key contains a real value. It returns false
// if a value is null or an output property that is awaiting a value to be assigned. That is to say, HasValue indicates
// a semantically meaningful value is present (even if it's a computed one whose concrete value isn't yet evaluated).
func (m PropertyMap) HasValue(k PropertyKey) bool {
v, has := m[k]
return has && v.HasValue()
}
// ContainsUnknowns returns true if the property map contains at least one unknown value.
func (m PropertyMap) ContainsUnknowns() bool {
for _, v := range m {
if v.ContainsUnknowns() {
return true
}
}
return false
}
// ContainsSecrets returns true if the property map contains at least one secret value.
func (m PropertyMap) ContainsSecrets() bool {
for _, v := range m {
if v.ContainsSecrets() {
return true
}
}
return false
}
// Mappable returns a mapper-compatible object map, suitable for deserialization into structures.
func (m PropertyMap) Mappable() map[string]interface{} {
return m.MapRepl(nil, nil)
}
// MapRepl returns a mapper-compatible object map, suitable for deserialization into structures. A key and/or value
// replace function, replk/replv, may be passed that will replace elements using custom logic if appropriate.
func (m PropertyMap) MapRepl(replk func(string) (string, bool),
replv func(PropertyValue) (interface{}, bool)) map[string]interface{} {
obj := make(map[string]interface{})
for _, k := range m.StableKeys() {
key := string(k)
if replk != nil {
if rk, repk := replk(key); repk {
key = rk
}
}
obj[key] = m[k].MapRepl(replk, replv)
}
return obj
}
// Copy makes a shallow copy of the map.
func (m PropertyMap) Copy() PropertyMap {
new := make(PropertyMap)
for k, v := range m {
new[k] = v
}
return new
}
// StableKeys returns all of the map's keys in a stable order.
func (m PropertyMap) StableKeys() []PropertyKey {
sorted := make([]PropertyKey, 0, len(m))
for k := range m {
sorted = append(sorted, k)
}
sort.Slice(sorted, func(i, j int) bool { return sorted[i] < sorted[j] })
return sorted
}
func NewNullProperty() PropertyValue { return PropertyValue{nil} }
func NewBoolProperty(v bool) PropertyValue { return PropertyValue{v} }
func NewNumberProperty(v float64) PropertyValue { return PropertyValue{v} }
func NewStringProperty(v string) PropertyValue { return PropertyValue{v} }
func NewArrayProperty(v []PropertyValue) PropertyValue { return PropertyValue{v} }
func NewAssetProperty(v *Asset) PropertyValue { return PropertyValue{v} }
func NewArchiveProperty(v *Archive) PropertyValue { return PropertyValue{v} }
func NewObjectProperty(v PropertyMap) PropertyValue { return PropertyValue{v} }
func NewComputedProperty(v Computed) PropertyValue { return PropertyValue{v} }
func NewOutputProperty(v Output) PropertyValue { return PropertyValue{v} }
func NewSecretProperty(v *Secret) PropertyValue { return PropertyValue{v} }
func NewResourceReferenceProperty(v ResourceReference) PropertyValue { return PropertyValue{v} }
func MakeComputed(v PropertyValue) PropertyValue {
return NewComputedProperty(Computed{Element: v})
}
func MakeOutput(v PropertyValue) PropertyValue {
return NewOutputProperty(Output{Element: v})
}
func MakeSecret(v PropertyValue) PropertyValue {
return NewSecretProperty(&Secret{Element: v})
}
// MakeComponentResourceReference creates a reference to a component resource.
func MakeComponentResourceReference(urn URN, packageVersion string) PropertyValue {
return NewResourceReferenceProperty(ResourceReference{
URN: urn,
PackageVersion: packageVersion,
})
}
// MakeCustomResourceReference creates a reference to a custom resource. If the resource's ID is the empty string, it
// will be treated as unknown.
func MakeCustomResourceReference(urn URN, id ID, packageVersion string) PropertyValue {
idProp := NewStringProperty(string(id))
if id == "" {
idProp = MakeComputed(NewStringProperty(""))
}
return NewResourceReferenceProperty(ResourceReference{
ID: idProp,
URN: urn,
PackageVersion: packageVersion,
})
}
// NewPropertyValue turns a value into a property value, provided it is of a legal "JSON-like" kind.
func NewPropertyValue(v interface{}) PropertyValue {
return NewPropertyValueRepl(v, nil, nil)
}
// NewPropertyValueRepl turns a value into a property value, provided it is of a legal "JSON-like" kind. The
// replacement functions, replk and replv, may be supplied to transform keys and/or values as the mapping takes place.
func NewPropertyValueRepl(v interface{},
replk func(string) (PropertyKey, bool), replv func(interface{}) (PropertyValue, bool)) PropertyValue {
// If a replacement routine is supplied, use that.
if replv != nil {
if rv, repl := replv(v); repl {
return rv
}
}
// If nil, easy peasy, just return a null.
if v == nil {
return NewNullProperty()
}
// Else, check for some known primitive types.
switch t := v.(type) {
case bool:
return NewBoolProperty(t)
case int:
return NewNumberProperty(float64(t))
case uint:
return NewNumberProperty(float64(t))
case int32:
return NewNumberProperty(float64(t))
case uint32:
return NewNumberProperty(float64(t))
case int64:
return NewNumberProperty(float64(t))
case uint64:
return NewNumberProperty(float64(t))
case float32:
return NewNumberProperty(float64(t))
case float64:
return NewNumberProperty(t)
case string:
return NewStringProperty(t)
case *Asset:
return NewAssetProperty(t)
case *Archive:
return NewArchiveProperty(t)
case Computed:
return NewComputedProperty(t)
case Output:
return NewOutputProperty(t)
case *Secret:
return NewSecretProperty(t)
case ResourceReference:
return NewResourceReferenceProperty(t)
}
// Next, see if it's an array, slice, pointer or struct, and handle each accordingly.
rv := reflect.ValueOf(v)
switch rk := rv.Type().Kind(); rk {
case reflect.Array, reflect.Slice:
// If an array or slice, just create an array out of it.
arr := []PropertyValue{}
for i := 0; i < rv.Len(); i++ {
elem := rv.Index(i)
arr = append(arr, NewPropertyValueRepl(elem.Interface(), replk, replv))
}
return NewArrayProperty(arr)
case reflect.Ptr:
// If a pointer, recurse and return the underlying value.
if rv.IsNil() {
return NewNullProperty()
}
return NewPropertyValueRepl(rv.Elem().Interface(), replk, replv)
case reflect.Map:
// If a map, create a new property map, provided the keys and values are okay.
obj := PropertyMap{}
for _, key := range rv.MapKeys() {
var pk PropertyKey
switch k := key.Interface().(type) {
case string:
pk = PropertyKey(k)
case PropertyKey:
pk = k
default:
contract.Failf("Unrecognized PropertyMap key type: %v", reflect.TypeOf(key))
}
if replk != nil {
if rk, repl := replk(string(pk)); repl {
pk = rk
}
}
val := rv.MapIndex(key)
pv := NewPropertyValueRepl(val.Interface(), replk, replv)
obj[pk] = pv
}
return NewObjectProperty(obj)
case reflect.String:
return NewStringProperty(rv.String())
case reflect.Struct:
obj := NewPropertyMapRepl(v, replk, replv)
return NewObjectProperty(obj)
default:
contract.Failf("Unrecognized value type: type=%v kind=%v", rv.Type(), rk)
}
return NewNullProperty()
}
// HasValue returns true if a value is semantically meaningful.
func (v PropertyValue) HasValue() bool {
if v.IsOutput() {
return v.OutputValue().Known
}
return !v.IsNull()
}
// ContainsUnknowns returns true if the property value contains at least one unknown (deeply).
func (v PropertyValue) ContainsUnknowns() bool {
if v.IsComputed() || (v.IsOutput() && !v.OutputValue().Known) {
return true
} else if v.IsArray() {
for _, e := range v.ArrayValue() {
if e.ContainsUnknowns() {
return true
}
}
} else if v.IsObject() {
return v.ObjectValue().ContainsUnknowns()
} else if v.IsSecret() {
return v.SecretValue().Element.ContainsUnknowns()
}
return false
}
// ContainsSecrets returns true if the property value contains at least one secret (deeply).
func (v PropertyValue) ContainsSecrets() bool {
if v.IsSecret() {
return true
} else if v.IsComputed() {
return v.Input().Element.ContainsSecrets()
} else if v.IsOutput() {
return v.OutputValue().Secret || v.OutputValue().Element.ContainsSecrets()
} else if v.IsArray() {
for _, e := range v.ArrayValue() {
if e.ContainsSecrets() {
return true
}
}
} else if v.IsObject() {
return v.ObjectValue().ContainsSecrets()
}
return false
}
// BoolValue fetches the underlying bool value (panicking if it isn't a bool).
func (v PropertyValue) BoolValue() bool { return v.V.(bool) }
// NumberValue fetches the underlying number value (panicking if it isn't a number).
func (v PropertyValue) NumberValue() float64 { return v.V.(float64) }
// StringValue fetches the underlying string value (panicking if it isn't a string).
func (v PropertyValue) StringValue() string { return v.V.(string) }
// ArrayValue fetches the underlying array value (panicking if it isn't a array).
func (v PropertyValue) ArrayValue() []PropertyValue { return v.V.([]PropertyValue) }
// AssetValue fetches the underlying asset value (panicking if it isn't an asset).
func (v PropertyValue) AssetValue() *Asset { return v.V.(*Asset) }
// ArchiveValue fetches the underlying archive value (panicking if it isn't an archive).
func (v PropertyValue) ArchiveValue() *Archive { return v.V.(*Archive) }
// ObjectValue fetches the underlying object value (panicking if it isn't a object).
func (v PropertyValue) ObjectValue() PropertyMap { return v.V.(PropertyMap) }
// Input fetches the underlying computed value (panicking if it isn't a computed).
func (v PropertyValue) Input() Computed { return v.V.(Computed) }
// OutputValue fetches the underlying output value (panicking if it isn't a output).
func (v PropertyValue) OutputValue() Output { return v.V.(Output) }
// SecretValue fetches the underlying secret value (panicking if it isn't a secret).
func (v PropertyValue) SecretValue() *Secret { return v.V.(*Secret) }
// ResourceReferenceValue fetches the underlying resource reference value (panicking if it isn't a resource reference).
func (v PropertyValue) ResourceReferenceValue() ResourceReference { return v.V.(ResourceReference) }
// IsNull returns true if the underlying value is a null.
func (v PropertyValue) IsNull() bool {
return v.V == nil
}
// IsBool returns true if the underlying value is a bool.
func (v PropertyValue) IsBool() bool {
_, is := v.V.(bool)
return is
}
// IsNumber returns true if the underlying value is a number.
func (v PropertyValue) IsNumber() bool {
_, is := v.V.(float64)
return is
}
// IsString returns true if the underlying value is a string.
func (v PropertyValue) IsString() bool {
_, is := v.V.(string)
return is
}
// IsArray returns true if the underlying value is an array.
func (v PropertyValue) IsArray() bool {
_, is := v.V.([]PropertyValue)
return is
}
// IsAsset returns true if the underlying value is an object.
func (v PropertyValue) IsAsset() bool {
_, is := v.V.(*Asset)
return is
}
// IsArchive returns true if the underlying value is an object.
func (v PropertyValue) IsArchive() bool {
_, is := v.V.(*Archive)
return is
}
// IsObject returns true if the underlying value is an object.
func (v PropertyValue) IsObject() bool {
_, is := v.V.(PropertyMap)
return is
}
// IsComputed returns true if the underlying value is a computed value.
func (v PropertyValue) IsComputed() bool {
_, is := v.V.(Computed)
return is
}
// IsOutput returns true if the underlying value is an output value.
func (v PropertyValue) IsOutput() bool {
_, is := v.V.(Output)
Initial support for output properties (1 of 3) This change includes approximately 1/3rd of the change necessary to support output properties, as per pulumi/lumi#90. In short, the runtime now has a new hidden type, Latent<T>, which represents a "speculative" value, whose eventual type will be T, that we can use during evaluation in various ways. Namely, operations against Latent<T>s generally produce new Latent<U>s. During planning, any Latent<T>s that end up in resource properties are transformed into "unknown" property values. An unknown property value is legal only during planning-time activities, such as Check, Name, and InspectChange. As a result, those RPC interfaces have been updated to include lookaside maps indicating which properties have unknown values. My intent is to add some helper functions to make dealing with this circumstance more correct-by-construction. For now, using an unresolved Latent<T> in a conditional will lead to an error. See pulumi/lumi#67. Speculating beyond these -- by supporting iterative planning and application -- is something we want to support eventually, but it makes sense to do that as an additive change beyond this initial support. That is a missing 1/3. Finally, the other missing 1/3rd which will happen much sooner than the rest is restructuing plan application so that it will correctly observe resolution of Latent<T> values. Right now, the evaluation happens in one single pass, prior to the application, and so Latent<T>s never actually get witnessed in a resolved state.
2017-05-24 02:32:59 +02:00
return is
}
// IsSecret returns true if the underlying value is a secret value.
func (v PropertyValue) IsSecret() bool {
_, is := v.V.(*Secret)
return is
}
// IsResourceReference returns true if the underlying value is a resource reference value.
func (v PropertyValue) IsResourceReference() bool {
_, is := v.V.(ResourceReference)
return is
}
// TypeString returns a type representation of the property value's holder type.
Initial support for output properties (1 of 3) This change includes approximately 1/3rd of the change necessary to support output properties, as per pulumi/lumi#90. In short, the runtime now has a new hidden type, Latent<T>, which represents a "speculative" value, whose eventual type will be T, that we can use during evaluation in various ways. Namely, operations against Latent<T>s generally produce new Latent<U>s. During planning, any Latent<T>s that end up in resource properties are transformed into "unknown" property values. An unknown property value is legal only during planning-time activities, such as Check, Name, and InspectChange. As a result, those RPC interfaces have been updated to include lookaside maps indicating which properties have unknown values. My intent is to add some helper functions to make dealing with this circumstance more correct-by-construction. For now, using an unresolved Latent<T> in a conditional will lead to an error. See pulumi/lumi#67. Speculating beyond these -- by supporting iterative planning and application -- is something we want to support eventually, but it makes sense to do that as an additive change beyond this initial support. That is a missing 1/3. Finally, the other missing 1/3rd which will happen much sooner than the rest is restructuing plan application so that it will correctly observe resolution of Latent<T> values. Right now, the evaluation happens in one single pass, prior to the application, and so Latent<T>s never actually get witnessed in a resolved state.
2017-05-24 02:32:59 +02:00
func (v PropertyValue) TypeString() string {
if v.IsNull() {
return "null"
} else if v.IsBool() {
return "bool"
} else if v.IsNumber() {
return "number"
} else if v.IsString() {
return "string"
} else if v.IsArray() {
return "[]"
} else if v.IsAsset() {
return "asset"
} else if v.IsArchive() {
return "archive"
Initial support for output properties (1 of 3) This change includes approximately 1/3rd of the change necessary to support output properties, as per pulumi/lumi#90. In short, the runtime now has a new hidden type, Latent<T>, which represents a "speculative" value, whose eventual type will be T, that we can use during evaluation in various ways. Namely, operations against Latent<T>s generally produce new Latent<U>s. During planning, any Latent<T>s that end up in resource properties are transformed into "unknown" property values. An unknown property value is legal only during planning-time activities, such as Check, Name, and InspectChange. As a result, those RPC interfaces have been updated to include lookaside maps indicating which properties have unknown values. My intent is to add some helper functions to make dealing with this circumstance more correct-by-construction. For now, using an unresolved Latent<T> in a conditional will lead to an error. See pulumi/lumi#67. Speculating beyond these -- by supporting iterative planning and application -- is something we want to support eventually, but it makes sense to do that as an additive change beyond this initial support. That is a missing 1/3. Finally, the other missing 1/3rd which will happen much sooner than the rest is restructuing plan application so that it will correctly observe resolution of Latent<T> values. Right now, the evaluation happens in one single pass, prior to the application, and so Latent<T>s never actually get witnessed in a resolved state.
2017-05-24 02:32:59 +02:00
} else if v.IsObject() {
return "object"
} else if v.IsComputed() {
return "output<" + v.Input().Element.TypeString() + ">"
} else if v.IsOutput() {
if !v.OutputValue().Known {
return MakeComputed(v.OutputValue().Element).TypeString()
} else if v.OutputValue().Secret {
return MakeSecret(v.OutputValue().Element).TypeString()
}
return v.OutputValue().Element.TypeString()
} else if v.IsSecret() {
return "secret<" + v.SecretValue().Element.TypeString() + ">"
} else if v.IsResourceReference() {
ref := v.ResourceReferenceValue()
return fmt.Sprintf("resourceReference(%q, %q, %q)", ref.URN, ref.ID, ref.PackageVersion)
Initial support for output properties (1 of 3) This change includes approximately 1/3rd of the change necessary to support output properties, as per pulumi/lumi#90. In short, the runtime now has a new hidden type, Latent<T>, which represents a "speculative" value, whose eventual type will be T, that we can use during evaluation in various ways. Namely, operations against Latent<T>s generally produce new Latent<U>s. During planning, any Latent<T>s that end up in resource properties are transformed into "unknown" property values. An unknown property value is legal only during planning-time activities, such as Check, Name, and InspectChange. As a result, those RPC interfaces have been updated to include lookaside maps indicating which properties have unknown values. My intent is to add some helper functions to make dealing with this circumstance more correct-by-construction. For now, using an unresolved Latent<T> in a conditional will lead to an error. See pulumi/lumi#67. Speculating beyond these -- by supporting iterative planning and application -- is something we want to support eventually, but it makes sense to do that as an additive change beyond this initial support. That is a missing 1/3. Finally, the other missing 1/3rd which will happen much sooner than the rest is restructuing plan application so that it will correctly observe resolution of Latent<T> values. Right now, the evaluation happens in one single pass, prior to the application, and so Latent<T>s never actually get witnessed in a resolved state.
2017-05-24 02:32:59 +02:00
}
contract.Failf("Unrecognized PropertyValue type")
return ""
}
Implement updates This change is a first whack at implementing updates. Creation and deletion plans are pretty straightforward; we just take a single graph, topologically sort it, and perform the operations in the right order. For creation, this is in dependency order (things that are depended upon must be created before dependents); for deletion, this is in reverse-dependency order (things that depend on others must be deleted before dependencies). These are just special cases of the more general idea of performing DAG operations in dependency order. Updates must work in terms of this more general notion. For example: * It is an error to delete a resource while another refers to it; thus, resources are deleted after deleting dependents, or after updating dependent properties that reference the resource to new values. * It is an error to depend on a create a resource before it is created; thus, resources must be created before dependents are created, and/or before updates to existing resource properties that would cause them to refer to the new resource. Of course, all of this is tangled up in a graph of dependencies. As a result, we must create a DAG of the dependencies between creates, updates, and deletes, and then topologically sort this DAG, in order to determine the proper order of update operations. To do this, we slightly generalize the existing graph infrastructure, while also specializing two kinds of graphs; the existing one becomes a heapstate.ObjectGraph, while this new one is resource.planGraph (internal).
2017-02-23 23:56:23 +01:00
// Mappable returns a mapper-compatible value, suitable for deserialization into structures.
func (v PropertyValue) Mappable() interface{} {
return v.MapRepl(nil, nil)
}
// MapRepl returns a mapper-compatible object map, suitable for deserialization into structures. A key and/or value
// replace function, replk/replv, may be passed that will replace elements using custom logic if appropriate.
func (v PropertyValue) MapRepl(replk func(string) (string, bool),
replv func(PropertyValue) (interface{}, bool)) interface{} {
if replv != nil {
if rv, repv := replv(v); repv {
return rv
}
}
if v.IsNull() {
return nil
} else if v.IsBool() {
return v.BoolValue()
} else if v.IsNumber() {
return v.NumberValue()
} else if v.IsString() {
return v.StringValue()
} else if v.IsArray() {
arr := []interface{}{}
for _, e := range v.ArrayValue() {
arr = append(arr, e.MapRepl(replk, replv))
}
return arr
} else if v.IsAsset() {
return v.AssetValue()
} else if v.IsArchive() {
return v.ArchiveValue()
} else if v.IsComputed() {
return v.Input()
} else if v.IsOutput() {
return v.OutputValue()
} else if v.IsSecret() {
return v.SecretValue()
} else if v.IsResourceReference() {
return v.ResourceReferenceValue()
}
contract.Assertf(v.IsObject(), "v is not Object '%v' instead", v.TypeString())
return v.ObjectValue().MapRepl(replk, replv)
}
// String implements the fmt.Stringer interface to add slightly more information to the output.
func (v PropertyValue) String() string {
if v.IsComputed() {
// For computed properties, show the type followed by an empty object string.
return fmt.Sprintf("%v{}", v.TypeString())
} else if v.IsOutput() {
if !v.OutputValue().Known {
return MakeComputed(v.OutputValue().Element).String()
} else if v.OutputValue().Secret {
return MakeSecret(v.OutputValue().Element).String()
}
return v.OutputValue().Element.String()
}
// For all others, just display the underlying property value.
return fmt.Sprintf("{%v}", v.V)
}
// Property is a pair of key and value.
type Property struct {
Key PropertyKey
Value PropertyValue
}
// SigKey is sometimes used to encode type identity inside of a map. This is required when flattening into ordinary
// maps, like we do when performing serialization, to ensure recoverability of type identities later on.
const SigKey = "4dabf18193072939515e22adb298388d"
// HasSig checks to see if the given property map contains the specific signature match.
func HasSig(obj PropertyMap, match string) bool {
if sig, hassig := obj[SigKey]; hassig {
return sig.IsString() && sig.StringValue() == match
}
return false
}
// SecretSig is the unique secret signature.
const SecretSig = "1b47061264138c4ac30d75fd1eb44270"
// ResourceReferenceSig is the unique resource reference signature.
const ResourceReferenceSig = "5cf8f73096256a8f31e491e813e4eb8e"
// OutputValueSig is the unique output value signature.
const OutputValueSig = "d0e6a833031e9bbcd3f4e8bde6ca49a4"
// IsInternalPropertyKey returns true if the given property key is an internal key that should not be displayed to
// users.
func IsInternalPropertyKey(key PropertyKey) bool {
return strings.HasPrefix(string(key), "__")
}