pulumi/pkg/resource/deploy/plan_apply.go

564 lines
22 KiB
Go
Raw Normal View History

// Copyright 2016-2018, Pulumi Corporation. All rights reserved.
package deploy
import (
"reflect"
"github.com/golang/glog"
"github.com/pkg/errors"
"github.com/pulumi/pulumi/pkg/diag"
"github.com/pulumi/pulumi/pkg/resource"
"github.com/pulumi/pulumi/pkg/resource/plugin"
"github.com/pulumi/pulumi/pkg/tokens"
"github.com/pulumi/pulumi/pkg/util/contract"
)
// Options controls the planning and deployment process.
type Options struct {
Events Events // an optional events callback interface.
Parallel int // the degree of parallelism for resource operations (<=1 for serial).
}
// Events is an interface that can be used to hook interesting engine/planning events.
type Events interface {
OnResourceStepPre(step Step) (interface{}, error)
OnResourceStepPost(ctx interface{}, step Step, status resource.Status, err error) error
OnResourceOutputs(step Step) error
}
// Start initializes and returns an iterator that can be used to step through a plan's individual steps.
func (p *Plan) Start(opts Options) (*PlanIterator, error) {
// Ask the source for its iterator.
src, err := p.source.Iterate(opts)
if err != nil {
return nil, err
}
// Create an iterator that can be used to perform the planning process.
return &PlanIterator{
p: p,
opts: opts,
src: src,
urns: make(map[resource.URN]bool),
creates: make(map[resource.URN]bool),
updates: make(map[resource.URN]bool),
replaces: make(map[resource.URN]bool),
deletes: make(map[resource.URN]bool),
sames: make(map[resource.URN]bool),
pendingNews: make(map[resource.URN]Step),
dones: make(map[*resource.State]bool),
}, nil
}
// PlanSummary is an interface for summarizing the progress of a plan.
type PlanSummary interface {
Steps() int
Creates() map[resource.URN]bool
Updates() map[resource.URN]bool
Replaces() map[resource.URN]bool
Deletes() map[resource.URN]bool
Sames() map[resource.URN]bool
Resources() []*resource.State
}
// PlanIterator can be used to step through and/or execute a plan's proposed actions.
type PlanIterator struct {
p *Plan // the plan to which this iterator belongs.
opts Options // the options this iterator was created with.
src SourceIterator // the iterator that fetches source resources.
urns map[resource.URN]bool // URNs discovered.
creates map[resource.URN]bool // URNs discovered to be created.
updates map[resource.URN]bool // URNs discovered to be updated.
replaces map[resource.URN]bool // URNs discovered to be replaced.
deletes map[resource.URN]bool // URNs discovered to be deleted.
sames map[resource.URN]bool // URNs discovered to be the same.
pendingNews map[resource.URN]Step // a map of logical steps currently active.
stepqueue []Step // a queue of steps to drain.
delqueue []Step // a queue of deletes left to perform.
resources []*resource.State // the resulting ordered resource states.
dones map[*resource.State]bool // true for each old state we're done with.
srcdone bool // true if the source interpreter has been run to completion.
done bool // true if the planning and associated iteration has finished.
}
func (iter *PlanIterator) Plan() *Plan { return iter.p }
func (iter *PlanIterator) Steps() int {
return len(iter.creates) + len(iter.updates) + len(iter.replaces) + len(iter.deletes)
}
func (iter *PlanIterator) Creates() map[resource.URN]bool { return iter.creates }
func (iter *PlanIterator) Updates() map[resource.URN]bool { return iter.updates }
func (iter *PlanIterator) Replaces() map[resource.URN]bool { return iter.replaces }
func (iter *PlanIterator) Deletes() map[resource.URN]bool { return iter.deletes }
func (iter *PlanIterator) Sames() map[resource.URN]bool { return iter.sames }
func (iter *PlanIterator) Resources() []*resource.State { return iter.resources }
2017-06-12 16:16:08 +02:00
func (iter *PlanIterator) Dones() map[*resource.State]bool { return iter.dones }
func (iter *PlanIterator) Done() bool { return iter.done }
// Apply performs a plan's step and records its result in the iterator's state.
func (iter *PlanIterator) Apply(step Step, preview bool) (resource.Status, error) {
urn := step.URN()
// If there is a pre-event, raise it.
var eventctx interface{}
if e := iter.opts.Events; e != nil {
var eventerr error
eventctx, eventerr = e.OnResourceStepPre(step)
if eventerr != nil {
return resource.StatusOK, errors.Wrapf(eventerr, "pre-step event returned an error")
}
}
// Apply the step.
glog.V(9).Infof("Applying step %v on %v (preview %v)", step.Op(), urn, preview)
status, err := step.Apply(preview)
// If there is no error, proceed to save the state; otherwise, go straight to the exit codepath.
if err == nil {
// If we have a state object, and this is a create or update, remember it, as we may need to update it later.
if step.Logical() && step.New() != nil {
if prior, has := iter.pendingNews[urn]; has {
return resource.StatusOK,
errors.Errorf("resource '%s' registered twice (%s and %s)", urn, prior.Op(), step.Op())
}
iter.pendingNews[urn] = step
}
}
// If there is a post-event, raise it, and in any case, return the results.
if e := iter.opts.Events; e != nil {
if eventerr := e.OnResourceStepPost(eventctx, step, status, err); eventerr != nil {
return status, errors.Wrapf(eventerr, "post-step event returned an error")
}
}
// At this point, if err is not nil, we've already issued an error message through our
// diag subsystem and we need to bail.
//
// This error message is ultimately what's going to be presented to the user at the top
// level, so the message here is intentionally vague; we should have already presented
// a more specific error message.
if err != nil {
if preview {
return status, errors.New("preview failed")
}
return status, errors.New("update failed")
}
return status, nil
}
// Close terminates the iteration of this plan.
func (iter *PlanIterator) Close() error {
return iter.src.Close()
}
// Next advances the plan by a single step, and returns the next step to be performed. In doing so, it will perform
// evaluation of the program as much as necessary to determine the next step. If there is no further action to be
// taken, Next will return a nil step pointer.
Implement `get` functions on all resources This change implements the `get` function for resources. Per pulumi/lumi#83, this allows Lumi scripts to actually read from the target environment. For example, we can now look up a SecurityGroup from its ARN: let group = aws.ec2.SecurityGroup.get( "arn:aws:ec2:us-west-2:153052954103:security-group:sg-02150d79"); The returned object is a fully functional resource object. So, we can then link it up with an EC2 instance, for example, in the usual ways: let instance = new aws.ec2.Instance(..., { securityGroups: [ group ], }); This didn't require any changes to the RPC or provider model, since we already implement the Get function. There are a few loose ends; two are short term: 1) URNs are not rehydrated. 2) Query is not yet implemented. One is mid-term: 3) We probably want a URN-based lookup function. But we will likely wait until we tackle pulumi/lumi#109 before adding this. And one is long term (and subtle): 4) These amount to I/O and are not repeatable! A change in the target environment may cause a script to generate a different plan intermittently. Most likely we want to apply a different kind of deployment "policy" for such scripts. These are inching towards the scripting model of pulumi/lumi#121, which is an entirely different beast than the repeatable immutable infrastructure deployments. Finally, it is worth noting that with this, we have some of the fundamental underpinnings required to finally tackle "inference" (pulumi/lumi#142).
2017-06-20 02:24:00 +02:00
func (iter *PlanIterator) Next() (Step, error) {
outer:
for !iter.done {
if len(iter.stepqueue) > 0 {
step := iter.stepqueue[0]
iter.stepqueue = iter.stepqueue[1:]
return step, nil
} else if !iter.srcdone {
event, err := iter.src.Next()
if err != nil {
return nil, err
} else if event != nil {
// If we have an event, drive the behavior based on which kind it is.
switch e := event.(type) {
case RegisterResourceEvent:
// If the intent is to register a resource, compute the plan steps necessary to do so.
steps, steperr := iter.makeRegisterResourceSteps(e)
2017-11-30 19:45:49 +01:00
if steperr != nil {
return nil, steperr
}
contract.Assert(len(steps) > 0)
if len(steps) > 1 {
iter.stepqueue = steps[1:]
}
return steps[0], nil
case RegisterResourceOutputsEvent:
// If the intent is to complete a prior resource registration, do so. We do this by just
// processing the request from the existing state, and do not expose our callers to it.
if err := iter.registerResourceOutputs(e); err != nil {
return nil, err
}
continue outer
default:
contract.Failf("Unrecognized intent from source iterator: %v", reflect.TypeOf(event))
}
}
Implement `get` functions on all resources This change implements the `get` function for resources. Per pulumi/lumi#83, this allows Lumi scripts to actually read from the target environment. For example, we can now look up a SecurityGroup from its ARN: let group = aws.ec2.SecurityGroup.get( "arn:aws:ec2:us-west-2:153052954103:security-group:sg-02150d79"); The returned object is a fully functional resource object. So, we can then link it up with an EC2 instance, for example, in the usual ways: let instance = new aws.ec2.Instance(..., { securityGroups: [ group ], }); This didn't require any changes to the RPC or provider model, since we already implement the Get function. There are a few loose ends; two are short term: 1) URNs are not rehydrated. 2) Query is not yet implemented. One is mid-term: 3) We probably want a URN-based lookup function. But we will likely wait until we tackle pulumi/lumi#109 before adding this. And one is long term (and subtle): 4) These amount to I/O and are not repeatable! A change in the target environment may cause a script to generate a different plan intermittently. Most likely we want to apply a different kind of deployment "policy" for such scripts. These are inching towards the scripting model of pulumi/lumi#121, which is an entirely different beast than the repeatable immutable infrastructure deployments. Finally, it is worth noting that with this, we have some of the fundamental underpinnings required to finally tackle "inference" (pulumi/lumi#142).
2017-06-20 02:24:00 +02:00
// If all returns are nil, the source is done, note it, and don't go back for more. Add any deletions to be
// performed, and then keep going 'round the next iteration of the loop so we can wrap up the planning.
iter.srcdone = true
iter.delqueue = iter.computeDeletes()
} else {
// The interpreter has finished, so we need to now drain any deletions that piled up.
Implement `get` functions on all resources This change implements the `get` function for resources. Per pulumi/lumi#83, this allows Lumi scripts to actually read from the target environment. For example, we can now look up a SecurityGroup from its ARN: let group = aws.ec2.SecurityGroup.get( "arn:aws:ec2:us-west-2:153052954103:security-group:sg-02150d79"); The returned object is a fully functional resource object. So, we can then link it up with an EC2 instance, for example, in the usual ways: let instance = new aws.ec2.Instance(..., { securityGroups: [ group ], }); This didn't require any changes to the RPC or provider model, since we already implement the Get function. There are a few loose ends; two are short term: 1) URNs are not rehydrated. 2) Query is not yet implemented. One is mid-term: 3) We probably want a URN-based lookup function. But we will likely wait until we tackle pulumi/lumi#109 before adding this. And one is long term (and subtle): 4) These amount to I/O and are not repeatable! A change in the target environment may cause a script to generate a different plan intermittently. Most likely we want to apply a different kind of deployment "policy" for such scripts. These are inching towards the scripting model of pulumi/lumi#121, which is an entirely different beast than the repeatable immutable infrastructure deployments. Finally, it is worth noting that with this, we have some of the fundamental underpinnings required to finally tackle "inference" (pulumi/lumi#142).
2017-06-20 02:24:00 +02:00
if step := iter.nextDeleteStep(); step != nil {
return step, nil
}
// Otherwise, if the deletes have quiesced, there is nothing remaining in this plan; leave.
iter.done = true
break
}
}
return nil, nil
}
// diff returns a DiffResult for the given resource.
func (iter *PlanIterator) diff(urn resource.URN, id resource.ID, oldInputs, oldOutputs, newInputs, newOutputs,
newProps resource.PropertyMap, prov plugin.Provider, refresh, allowUnknowns bool) (plugin.DiffResult, error) {
// Workaround #1251: unexpected replaces.
//
// The legacy/desired behavior here is that if the provider-calculated inputs for a resource did not change,
// then the resource itself should not change. Unfortunately, we (correctly?) pass the entire current state
// of the resource to Diff, which includes calculated/output properties that may differ from those present
// in the input properties. This can cause unexpected diffs.
//
// For now, simply apply the legacy diffing behavior before deferring to the provider.
var hasChanges bool
if refresh {
hasChanges = !oldOutputs.DeepEquals(newOutputs)
} else {
hasChanges = !oldInputs.DeepEquals(newInputs)
}
if !hasChanges {
return plugin.DiffResult{Changes: plugin.DiffNone}, nil
}
// If there is no provider for this resource, simply return a "diffs exist" result.
if prov == nil {
return plugin.DiffResult{Changes: plugin.DiffSome}, nil
}
// Grab the diff from the provider. At this point we know that there were changes to the Pulumi inputs, so if the
// provider returns an "unknown" diff result, pretend it returned "diffs exist".
diff, err := prov.Diff(urn, id, oldOutputs, newProps, allowUnknowns)
if err != nil {
return plugin.DiffResult{}, err
}
if diff.Changes == plugin.DiffUnknown {
diff.Changes = plugin.DiffSome
}
return diff, nil
}
// makeRegisterResourceSteps produces one or more steps required to achieve the desired resource goal state, or nil if
// there aren't any steps to perform (in other words, the actual known state is equivalent to the goal state). It is
// possible to return multiple steps if the current resource state necessitates it (e.g., replacements).
func (iter *PlanIterator) makeRegisterResourceSteps(e RegisterResourceEvent) ([]Step, error) {
var invalid bool // will be set to true if this object fails validation.
// Use the resource goal state name to produce a globally unique URN.
goal := e.Goal()
parentType := tokens.Type("")
if p := goal.Parent; p != "" && p.Type() != resource.RootStackType {
// Skip empty parents and don't use the root stack type; otherwise, use the full qualified type.
parentType = p.QualifiedType()
}
urn := resource.NewURN(iter.p.Target().Name, iter.p.source.Project(), parentType, goal.Type, goal.Name)
if iter.urns[urn] {
invalid = true
// TODO[pulumi/pulumi-framework#19]: improve this error message!
iter.p.Diag().Errorf(diag.GetDuplicateResourceURNError(urn), urn)
}
iter.urns[urn] = true
// Check for an old resource so that we can figure out if this is a create, delete, etc., and/or to diff.
old, hasOld := iter.p.Olds()[urn]
var oldInputs resource.PropertyMap
var oldOutputs resource.PropertyMap
if hasOld {
oldInputs = old.Inputs
oldOutputs = old.Outputs
}
// Produce a new state object that we'll build up as operations are performed. Ultimately, this is what will
// get serialized into the checkpoint file. Normally there are no outputs, unless this is a refresh.
props, inputs, outputs, new := iter.getResourcePropertyStates(urn, goal)
Implement components This change implements core support for "components" in the Pulumi Fabric. This work is described further in pulumi/pulumi#340, where we are still discussing some of the finer points. In a nutshell, resources no longer imply external providers. It's entirely possible to have a resource that logically represents something but without having a physical manifestation that needs to be tracked and managed by our typical CRUD operations. For example, the aws/serverless/Function helper is one such type. It aggregates Lambda-related resources and exposes a nice interface. All of the Pulumi Cloud Framework resources are also examples. To indicate that a resource does participate in the usual CRUD resource provider, it simply derives from ExternalResource instead of Resource. All resources now have the ability to adopt children. This is purely a metadata/tagging thing, and will help us roll up displays, provide attribution to the developer, and even hide aspects of the resource graph as appropriate (e.g., when they are implementation details). Our use of this capability is ultra limited right now; in fact, the only place we display children is in the CLI output. For instance: + aws:serverless:Function: (create) [urn=urn:pulumi:demo::serverless::aws:serverless:Function::mylambda] => urn:pulumi:demo::serverless::aws:iam/role:Role::mylambda-iamrole => urn:pulumi:demo::serverless::aws:iam/rolePolicyAttachment:RolePolicyAttachment::mylambda-iampolicy-0 => urn:pulumi:demo::serverless::aws:lambda/function:Function::mylambda The bit indicating whether a resource is external or not is tracked in the resulting checkpoint file, along with any of its children.
2017-10-14 23:18:43 +02:00
// Fetch the provider for this resource type, assuming it isn't just a logical one.
var prov plugin.Provider
var err error
if goal.Custom {
if prov, err = iter.Provider(goal.Type); err != nil {
Implement components This change implements core support for "components" in the Pulumi Fabric. This work is described further in pulumi/pulumi#340, where we are still discussing some of the finer points. In a nutshell, resources no longer imply external providers. It's entirely possible to have a resource that logically represents something but without having a physical manifestation that needs to be tracked and managed by our typical CRUD operations. For example, the aws/serverless/Function helper is one such type. It aggregates Lambda-related resources and exposes a nice interface. All of the Pulumi Cloud Framework resources are also examples. To indicate that a resource does participate in the usual CRUD resource provider, it simply derives from ExternalResource instead of Resource. All resources now have the ability to adopt children. This is purely a metadata/tagging thing, and will help us roll up displays, provide attribution to the developer, and even hide aspects of the resource graph as appropriate (e.g., when they are implementation details). Our use of this capability is ultra limited right now; in fact, the only place we display children is in the CLI output. For instance: + aws:serverless:Function: (create) [urn=urn:pulumi:demo::serverless::aws:serverless:Function::mylambda] => urn:pulumi:demo::serverless::aws:iam/role:Role::mylambda-iamrole => urn:pulumi:demo::serverless::aws:iam/rolePolicyAttachment:RolePolicyAttachment::mylambda-iampolicy-0 => urn:pulumi:demo::serverless::aws:lambda/function:Function::mylambda The bit indicating whether a resource is external or not is tracked in the resulting checkpoint file, along with any of its children.
2017-10-14 23:18:43 +02:00
return nil, err
}
}
// See if we're performing a refresh update, which takes slightly different code-paths.
refresh := iter.p.IsRefresh()
// We only allow unknown property values to be exposed to the provider if we are performing an update preview.
allowUnknowns := iter.p.preview && !refresh
// If this isn't a refresh, ensure the provider is okay with this resource and fetch the inputs to pass to
// subsequent methods. If these are not inputs, we are just going to blindly store the outputs, so skip this.
if prov != nil && !refresh {
Implement components This change implements core support for "components" in the Pulumi Fabric. This work is described further in pulumi/pulumi#340, where we are still discussing some of the finer points. In a nutshell, resources no longer imply external providers. It's entirely possible to have a resource that logically represents something but without having a physical manifestation that needs to be tracked and managed by our typical CRUD operations. For example, the aws/serverless/Function helper is one such type. It aggregates Lambda-related resources and exposes a nice interface. All of the Pulumi Cloud Framework resources are also examples. To indicate that a resource does participate in the usual CRUD resource provider, it simply derives from ExternalResource instead of Resource. All resources now have the ability to adopt children. This is purely a metadata/tagging thing, and will help us roll up displays, provide attribution to the developer, and even hide aspects of the resource graph as appropriate (e.g., when they are implementation details). Our use of this capability is ultra limited right now; in fact, the only place we display children is in the CLI output. For instance: + aws:serverless:Function: (create) [urn=urn:pulumi:demo::serverless::aws:serverless:Function::mylambda] => urn:pulumi:demo::serverless::aws:iam/role:Role::mylambda-iamrole => urn:pulumi:demo::serverless::aws:iam/rolePolicyAttachment:RolePolicyAttachment::mylambda-iampolicy-0 => urn:pulumi:demo::serverless::aws:lambda/function:Function::mylambda The bit indicating whether a resource is external or not is tracked in the resulting checkpoint file, along with any of its children.
2017-10-14 23:18:43 +02:00
var failures []plugin.CheckFailure
inputs, failures, err = prov.Check(urn, oldInputs, inputs, allowUnknowns)
Implement components This change implements core support for "components" in the Pulumi Fabric. This work is described further in pulumi/pulumi#340, where we are still discussing some of the finer points. In a nutshell, resources no longer imply external providers. It's entirely possible to have a resource that logically represents something but without having a physical manifestation that needs to be tracked and managed by our typical CRUD operations. For example, the aws/serverless/Function helper is one such type. It aggregates Lambda-related resources and exposes a nice interface. All of the Pulumi Cloud Framework resources are also examples. To indicate that a resource does participate in the usual CRUD resource provider, it simply derives from ExternalResource instead of Resource. All resources now have the ability to adopt children. This is purely a metadata/tagging thing, and will help us roll up displays, provide attribution to the developer, and even hide aspects of the resource graph as appropriate (e.g., when they are implementation details). Our use of this capability is ultra limited right now; in fact, the only place we display children is in the CLI output. For instance: + aws:serverless:Function: (create) [urn=urn:pulumi:demo::serverless::aws:serverless:Function::mylambda] => urn:pulumi:demo::serverless::aws:iam/role:Role::mylambda-iamrole => urn:pulumi:demo::serverless::aws:iam/rolePolicyAttachment:RolePolicyAttachment::mylambda-iampolicy-0 => urn:pulumi:demo::serverless::aws:lambda/function:Function::mylambda The bit indicating whether a resource is external or not is tracked in the resulting checkpoint file, along with any of its children.
2017-10-14 23:18:43 +02:00
if err != nil {
return nil, err
} else if iter.issueCheckErrors(new, urn, failures) {
invalid = true
}
props = inputs
new.Inputs = inputs
}
// Next, give each analyzer -- if any -- a chance to inspect the resource too.
for _, a := range iter.p.analyzers {
Implement components This change implements core support for "components" in the Pulumi Fabric. This work is described further in pulumi/pulumi#340, where we are still discussing some of the finer points. In a nutshell, resources no longer imply external providers. It's entirely possible to have a resource that logically represents something but without having a physical manifestation that needs to be tracked and managed by our typical CRUD operations. For example, the aws/serverless/Function helper is one such type. It aggregates Lambda-related resources and exposes a nice interface. All of the Pulumi Cloud Framework resources are also examples. To indicate that a resource does participate in the usual CRUD resource provider, it simply derives from ExternalResource instead of Resource. All resources now have the ability to adopt children. This is purely a metadata/tagging thing, and will help us roll up displays, provide attribution to the developer, and even hide aspects of the resource graph as appropriate (e.g., when they are implementation details). Our use of this capability is ultra limited right now; in fact, the only place we display children is in the CLI output. For instance: + aws:serverless:Function: (create) [urn=urn:pulumi:demo::serverless::aws:serverless:Function::mylambda] => urn:pulumi:demo::serverless::aws:iam/role:Role::mylambda-iamrole => urn:pulumi:demo::serverless::aws:iam/rolePolicyAttachment:RolePolicyAttachment::mylambda-iampolicy-0 => urn:pulumi:demo::serverless::aws:lambda/function:Function::mylambda The bit indicating whether a resource is external or not is tracked in the resulting checkpoint file, along with any of its children.
2017-10-14 23:18:43 +02:00
var analyzer plugin.Analyzer
analyzer, err = iter.p.ctx.Host.Analyzer(a)
if err != nil {
return nil, err
} else if analyzer == nil {
return nil, errors.Errorf("analyzer '%v' could not be loaded from your $PATH", a)
}
Implement components This change implements core support for "components" in the Pulumi Fabric. This work is described further in pulumi/pulumi#340, where we are still discussing some of the finer points. In a nutshell, resources no longer imply external providers. It's entirely possible to have a resource that logically represents something but without having a physical manifestation that needs to be tracked and managed by our typical CRUD operations. For example, the aws/serverless/Function helper is one such type. It aggregates Lambda-related resources and exposes a nice interface. All of the Pulumi Cloud Framework resources are also examples. To indicate that a resource does participate in the usual CRUD resource provider, it simply derives from ExternalResource instead of Resource. All resources now have the ability to adopt children. This is purely a metadata/tagging thing, and will help us roll up displays, provide attribution to the developer, and even hide aspects of the resource graph as appropriate (e.g., when they are implementation details). Our use of this capability is ultra limited right now; in fact, the only place we display children is in the CLI output. For instance: + aws:serverless:Function: (create) [urn=urn:pulumi:demo::serverless::aws:serverless:Function::mylambda] => urn:pulumi:demo::serverless::aws:iam/role:Role::mylambda-iamrole => urn:pulumi:demo::serverless::aws:iam/rolePolicyAttachment:RolePolicyAttachment::mylambda-iampolicy-0 => urn:pulumi:demo::serverless::aws:lambda/function:Function::mylambda The bit indicating whether a resource is external or not is tracked in the resulting checkpoint file, along with any of its children.
2017-10-14 23:18:43 +02:00
var failures []plugin.AnalyzeFailure
failures, err = analyzer.Analyze(new.Type, props)
if err != nil {
return nil, err
}
for _, failure := range failures {
invalid = true
iter.p.Diag().Errorf(
diag.GetAnalyzeResourceFailureError(urn), a, urn, failure.Property, failure.Reason)
}
}
// If the resource isn't valid, don't proceed any further.
if invalid {
return nil, errors.New("One or more resource validation errors occurred; refusing to proceed")
}
// Now decide what to do, step-wise:
//
// * If the URN exists in the old snapshot, and it has been updated,
// - Check whether the update requires replacement.
// - If yes, create a new copy, and mark it as having been replaced.
// - If no, simply update the existing resource in place.
//
// * If the URN does not exist in the old snapshot, create the resource anew.
//
if hasOld {
contract.Assert(old != nil && old.Type == new.Type)
// Determine whether the change resulted in a diff.
diff, err := iter.diff(urn, old.ID, oldInputs, oldOutputs, inputs, outputs, props, prov, refresh,
allowUnknowns)
if err != nil {
return nil, err
}
// Ensure that we received a sensible response.
if diff.Changes != plugin.DiffNone && diff.Changes != plugin.DiffSome {
return nil, errors.Errorf(
"unrecognized diff state for %s: %d", urn, diff.Changes)
}
Implement components This change implements core support for "components" in the Pulumi Fabric. This work is described further in pulumi/pulumi#340, where we are still discussing some of the finer points. In a nutshell, resources no longer imply external providers. It's entirely possible to have a resource that logically represents something but without having a physical manifestation that needs to be tracked and managed by our typical CRUD operations. For example, the aws/serverless/Function helper is one such type. It aggregates Lambda-related resources and exposes a nice interface. All of the Pulumi Cloud Framework resources are also examples. To indicate that a resource does participate in the usual CRUD resource provider, it simply derives from ExternalResource instead of Resource. All resources now have the ability to adopt children. This is purely a metadata/tagging thing, and will help us roll up displays, provide attribution to the developer, and even hide aspects of the resource graph as appropriate (e.g., when they are implementation details). Our use of this capability is ultra limited right now; in fact, the only place we display children is in the CLI output. For instance: + aws:serverless:Function: (create) [urn=urn:pulumi:demo::serverless::aws:serverless:Function::mylambda] => urn:pulumi:demo::serverless::aws:iam/role:Role::mylambda-iamrole => urn:pulumi:demo::serverless::aws:iam/rolePolicyAttachment:RolePolicyAttachment::mylambda-iampolicy-0 => urn:pulumi:demo::serverless::aws:lambda/function:Function::mylambda The bit indicating whether a resource is external or not is tracked in the resulting checkpoint file, along with any of its children.
2017-10-14 23:18:43 +02:00
// If there were changes, check for a replacement vs. an in-place update.
if diff.Changes == plugin.DiffSome {
if diff.Replace() {
iter.replaces[urn] = true
Implement components This change implements core support for "components" in the Pulumi Fabric. This work is described further in pulumi/pulumi#340, where we are still discussing some of the finer points. In a nutshell, resources no longer imply external providers. It's entirely possible to have a resource that logically represents something but without having a physical manifestation that needs to be tracked and managed by our typical CRUD operations. For example, the aws/serverless/Function helper is one such type. It aggregates Lambda-related resources and exposes a nice interface. All of the Pulumi Cloud Framework resources are also examples. To indicate that a resource does participate in the usual CRUD resource provider, it simply derives from ExternalResource instead of Resource. All resources now have the ability to adopt children. This is purely a metadata/tagging thing, and will help us roll up displays, provide attribution to the developer, and even hide aspects of the resource graph as appropriate (e.g., when they are implementation details). Our use of this capability is ultra limited right now; in fact, the only place we display children is in the CLI output. For instance: + aws:serverless:Function: (create) [urn=urn:pulumi:demo::serverless::aws:serverless:Function::mylambda] => urn:pulumi:demo::serverless::aws:iam/role:Role::mylambda-iamrole => urn:pulumi:demo::serverless::aws:iam/rolePolicyAttachment:RolePolicyAttachment::mylambda-iampolicy-0 => urn:pulumi:demo::serverless::aws:lambda/function:Function::mylambda The bit indicating whether a resource is external or not is tracked in the resulting checkpoint file, along with any of its children.
2017-10-14 23:18:43 +02:00
// If we are going to perform a replacement, we need to recompute the default values. The above logic
// had assumed that we were going to carry them over from the old resource, which is no longer true.
if prov != nil && !refresh {
Implement components This change implements core support for "components" in the Pulumi Fabric. This work is described further in pulumi/pulumi#340, where we are still discussing some of the finer points. In a nutshell, resources no longer imply external providers. It's entirely possible to have a resource that logically represents something but without having a physical manifestation that needs to be tracked and managed by our typical CRUD operations. For example, the aws/serverless/Function helper is one such type. It aggregates Lambda-related resources and exposes a nice interface. All of the Pulumi Cloud Framework resources are also examples. To indicate that a resource does participate in the usual CRUD resource provider, it simply derives from ExternalResource instead of Resource. All resources now have the ability to adopt children. This is purely a metadata/tagging thing, and will help us roll up displays, provide attribution to the developer, and even hide aspects of the resource graph as appropriate (e.g., when they are implementation details). Our use of this capability is ultra limited right now; in fact, the only place we display children is in the CLI output. For instance: + aws:serverless:Function: (create) [urn=urn:pulumi:demo::serverless::aws:serverless:Function::mylambda] => urn:pulumi:demo::serverless::aws:iam/role:Role::mylambda-iamrole => urn:pulumi:demo::serverless::aws:iam/rolePolicyAttachment:RolePolicyAttachment::mylambda-iampolicy-0 => urn:pulumi:demo::serverless::aws:lambda/function:Function::mylambda The bit indicating whether a resource is external or not is tracked in the resulting checkpoint file, along with any of its children.
2017-10-14 23:18:43 +02:00
var failures []plugin.CheckFailure
inputs, failures, err = prov.Check(urn, nil, goal.Properties, allowUnknowns)
Implement components This change implements core support for "components" in the Pulumi Fabric. This work is described further in pulumi/pulumi#340, where we are still discussing some of the finer points. In a nutshell, resources no longer imply external providers. It's entirely possible to have a resource that logically represents something but without having a physical manifestation that needs to be tracked and managed by our typical CRUD operations. For example, the aws/serverless/Function helper is one such type. It aggregates Lambda-related resources and exposes a nice interface. All of the Pulumi Cloud Framework resources are also examples. To indicate that a resource does participate in the usual CRUD resource provider, it simply derives from ExternalResource instead of Resource. All resources now have the ability to adopt children. This is purely a metadata/tagging thing, and will help us roll up displays, provide attribution to the developer, and even hide aspects of the resource graph as appropriate (e.g., when they are implementation details). Our use of this capability is ultra limited right now; in fact, the only place we display children is in the CLI output. For instance: + aws:serverless:Function: (create) [urn=urn:pulumi:demo::serverless::aws:serverless:Function::mylambda] => urn:pulumi:demo::serverless::aws:iam/role:Role::mylambda-iamrole => urn:pulumi:demo::serverless::aws:iam/rolePolicyAttachment:RolePolicyAttachment::mylambda-iampolicy-0 => urn:pulumi:demo::serverless::aws:lambda/function:Function::mylambda The bit indicating whether a resource is external or not is tracked in the resulting checkpoint file, along with any of its children.
2017-10-14 23:18:43 +02:00
if err != nil {
return nil, err
} else if iter.issueCheckErrors(new, urn, failures) {
return nil, errors.New("One or more resource validation errors occurred; refusing to proceed")
Implement components This change implements core support for "components" in the Pulumi Fabric. This work is described further in pulumi/pulumi#340, where we are still discussing some of the finer points. In a nutshell, resources no longer imply external providers. It's entirely possible to have a resource that logically represents something but without having a physical manifestation that needs to be tracked and managed by our typical CRUD operations. For example, the aws/serverless/Function helper is one such type. It aggregates Lambda-related resources and exposes a nice interface. All of the Pulumi Cloud Framework resources are also examples. To indicate that a resource does participate in the usual CRUD resource provider, it simply derives from ExternalResource instead of Resource. All resources now have the ability to adopt children. This is purely a metadata/tagging thing, and will help us roll up displays, provide attribution to the developer, and even hide aspects of the resource graph as appropriate (e.g., when they are implementation details). Our use of this capability is ultra limited right now; in fact, the only place we display children is in the CLI output. For instance: + aws:serverless:Function: (create) [urn=urn:pulumi:demo::serverless::aws:serverless:Function::mylambda] => urn:pulumi:demo::serverless::aws:iam/role:Role::mylambda-iamrole => urn:pulumi:demo::serverless::aws:iam/rolePolicyAttachment:RolePolicyAttachment::mylambda-iampolicy-0 => urn:pulumi:demo::serverless::aws:lambda/function:Function::mylambda The bit indicating whether a resource is external or not is tracked in the resulting checkpoint file, along with any of its children.
2017-10-14 23:18:43 +02:00
}
new.Inputs = inputs
}
Implement components This change implements core support for "components" in the Pulumi Fabric. This work is described further in pulumi/pulumi#340, where we are still discussing some of the finer points. In a nutshell, resources no longer imply external providers. It's entirely possible to have a resource that logically represents something but without having a physical manifestation that needs to be tracked and managed by our typical CRUD operations. For example, the aws/serverless/Function helper is one such type. It aggregates Lambda-related resources and exposes a nice interface. All of the Pulumi Cloud Framework resources are also examples. To indicate that a resource does participate in the usual CRUD resource provider, it simply derives from ExternalResource instead of Resource. All resources now have the ability to adopt children. This is purely a metadata/tagging thing, and will help us roll up displays, provide attribution to the developer, and even hide aspects of the resource graph as appropriate (e.g., when they are implementation details). Our use of this capability is ultra limited right now; in fact, the only place we display children is in the CLI output. For instance: + aws:serverless:Function: (create) [urn=urn:pulumi:demo::serverless::aws:serverless:Function::mylambda] => urn:pulumi:demo::serverless::aws:iam/role:Role::mylambda-iamrole => urn:pulumi:demo::serverless::aws:iam/rolePolicyAttachment:RolePolicyAttachment::mylambda-iampolicy-0 => urn:pulumi:demo::serverless::aws:lambda/function:Function::mylambda The bit indicating whether a resource is external or not is tracked in the resulting checkpoint file, along with any of its children.
2017-10-14 23:18:43 +02:00
if glog.V(7) {
glog.V(7).Infof("Planner decided to replace '%v' (oldprops=%v inputs=%v)",
urn, oldInputs, new.Inputs)
}
Implement components This change implements core support for "components" in the Pulumi Fabric. This work is described further in pulumi/pulumi#340, where we are still discussing some of the finer points. In a nutshell, resources no longer imply external providers. It's entirely possible to have a resource that logically represents something but without having a physical manifestation that needs to be tracked and managed by our typical CRUD operations. For example, the aws/serverless/Function helper is one such type. It aggregates Lambda-related resources and exposes a nice interface. All of the Pulumi Cloud Framework resources are also examples. To indicate that a resource does participate in the usual CRUD resource provider, it simply derives from ExternalResource instead of Resource. All resources now have the ability to adopt children. This is purely a metadata/tagging thing, and will help us roll up displays, provide attribution to the developer, and even hide aspects of the resource graph as appropriate (e.g., when they are implementation details). Our use of this capability is ultra limited right now; in fact, the only place we display children is in the CLI output. For instance: + aws:serverless:Function: (create) [urn=urn:pulumi:demo::serverless::aws:serverless:Function::mylambda] => urn:pulumi:demo::serverless::aws:iam/role:Role::mylambda-iamrole => urn:pulumi:demo::serverless::aws:iam/rolePolicyAttachment:RolePolicyAttachment::mylambda-iampolicy-0 => urn:pulumi:demo::serverless::aws:lambda/function:Function::mylambda The bit indicating whether a resource is external or not is tracked in the resulting checkpoint file, along with any of its children.
2017-10-14 23:18:43 +02:00
// We have two approaches to performing replacements:
//
// * CreateBeforeDelete: the default mode first creates a new instance of the resource, then
// updates all dependent resources to point to the new one, and finally after all of that,
// deletes the old resource. This ensures minimal downtime.
//
// * DeleteBeforeCreate: this mode can be used for resources that cannot be tolerate having
// side-by-side old and new instances alive at once. This first deletes the resource and
// then creates the new one. This may result in downtime, so is less preferred. Note that
// until pulumi/pulumi#624 is resolved, we cannot safely perform this operation on resources
// that have dependent resources (we try to delete the resource while they refer to it).
//
// The provider is responsible for requesting which of these two modes to use.
if diff.DeleteBeforeReplace {
return []Step{
NewDeleteReplacementStep(iter.p, old, false),
NewReplaceStep(iter.p, old, new, diff.ReplaceKeys, false),
NewCreateReplacementStep(iter.p, e, old, new, diff.ReplaceKeys, false),
}, nil
}
return []Step{
NewCreateReplacementStep(iter.p, e, old, new, diff.ReplaceKeys, true),
NewReplaceStep(iter.p, old, new, diff.ReplaceKeys, true),
// note that the delete step is generated "later" on, after all creates/updates finish.
}, nil
}
Implement components This change implements core support for "components" in the Pulumi Fabric. This work is described further in pulumi/pulumi#340, where we are still discussing some of the finer points. In a nutshell, resources no longer imply external providers. It's entirely possible to have a resource that logically represents something but without having a physical manifestation that needs to be tracked and managed by our typical CRUD operations. For example, the aws/serverless/Function helper is one such type. It aggregates Lambda-related resources and exposes a nice interface. All of the Pulumi Cloud Framework resources are also examples. To indicate that a resource does participate in the usual CRUD resource provider, it simply derives from ExternalResource instead of Resource. All resources now have the ability to adopt children. This is purely a metadata/tagging thing, and will help us roll up displays, provide attribution to the developer, and even hide aspects of the resource graph as appropriate (e.g., when they are implementation details). Our use of this capability is ultra limited right now; in fact, the only place we display children is in the CLI output. For instance: + aws:serverless:Function: (create) [urn=urn:pulumi:demo::serverless::aws:serverless:Function::mylambda] => urn:pulumi:demo::serverless::aws:iam/role:Role::mylambda-iamrole => urn:pulumi:demo::serverless::aws:iam/rolePolicyAttachment:RolePolicyAttachment::mylambda-iampolicy-0 => urn:pulumi:demo::serverless::aws:lambda/function:Function::mylambda The bit indicating whether a resource is external or not is tracked in the resulting checkpoint file, along with any of its children.
2017-10-14 23:18:43 +02:00
// If we fell through, it's an update.
iter.updates[urn] = true
if glog.V(7) {
glog.V(7).Infof("Planner decided to update '%v' (oldprops=%v inputs=%v", urn, oldInputs, new.Inputs)
}
return []Step{NewUpdateStep(iter.p, e, old, new, diff.StableKeys)}, nil
}
// No need to update anything, the properties didn't change.
iter.sames[urn] = true
if glog.V(7) {
glog.V(7).Infof("Planner decided not to update '%v' (same) (inputs=%v)", urn, new.Inputs)
}
return []Step{NewSameStep(iter.p, e, old, new)}, nil
}
// Otherwise, the resource isn't in the old map, so it must be a resource creation.
iter.creates[urn] = true
glog.V(7).Infof("Planner decided to create '%v' (inputs=%v)", urn, new.Inputs)
return []Step{NewCreateStep(iter.p, e, new)}, nil
}
// getResourcePropertyStates returns the properties, inputs, outputs, and new resource state, given a goal state.
func (iter *PlanIterator) getResourcePropertyStates(urn resource.URN, goal *resource.Goal) (resource.PropertyMap,
resource.PropertyMap, resource.PropertyMap, *resource.State) {
props := goal.Properties
var inputs resource.PropertyMap
var outputs resource.PropertyMap
if iter.p.IsRefresh() {
// In the case of a refresh, we will preserve the old inputs (since we won't have any new ones). Note
// that this can lead to a state in which inputs could not have possibly produced the outputs, but this
// will need to be reconciled manually by the programmer updating the program accordingly.
if old, ok := iter.p.Olds()[urn]; ok {
inputs = old.Inputs
}
outputs = props
} else {
// In the case of non-refreshes, outputs remain empty (they will be computed), but inputs are present.
inputs = props
}
return props, inputs, outputs,
resource.NewState(goal.Type, urn, goal.Custom, false, "",
inputs, outputs, goal.Parent, goal.Protect, goal.Dependencies)
}
// issueCheckErrors prints any check errors to the diagnostics sink.
func (iter *PlanIterator) issueCheckErrors(new *resource.State, urn resource.URN,
failures []plugin.CheckFailure) bool {
if len(failures) == 0 {
return false
}
inputs := new.Inputs
for _, failure := range failures {
if failure.Property != "" {
iter.p.Diag().Errorf(diag.GetResourcePropertyInvalidValueError(urn),
new.Type, urn.Name(), failure.Property, inputs[failure.Property], failure.Reason)
} else {
iter.p.Diag().Errorf(
diag.GetResourceInvalidError(urn), new.Type, urn.Name(), failure.Reason)
}
}
return true
}
func (iter *PlanIterator) registerResourceOutputs(e RegisterResourceOutputsEvent) error {
// Look up the final state in the pending registration list.
urn := e.URN()
reg, has := iter.pendingNews[urn]
contract.Assertf(has, "cannot complete a resource '%v' whose registration isn't pending", urn)
contract.Assertf(reg != nil, "expected a non-nil resource step ('%v')", urn)
delete(iter.pendingNews, urn)
// Unconditionally set the resource's outputs to what was provided. This intentionally overwrites whatever
// might already be there, since otherwise "deleting" outputs would have no affect.
outs := e.Outputs()
glog.V(7).Infof("Registered resource outputs %s: old=#%d, new=#%d", urn, len(reg.New().Outputs), len(outs))
reg.New().Outputs = e.Outputs()
// If there is an event subscription for finishing the resource, execute them.
if e := iter.opts.Events; e != nil {
if eventerr := e.OnResourceOutputs(reg); eventerr != nil {
return errors.Wrapf(eventerr, "resource complete event returned an error")
}
}
// Finally, let the language provider know that we're done processing the event.
e.Done()
return nil
}
// computeDeletes creates a list of deletes to perform. This will include any resources in the snapshot that were
// not encountered in the input, along with any resources that were replaced.
func (iter *PlanIterator) computeDeletes() []Step {
// To compute the deletion list, we must walk the list of old resources *backwards*. This is because the list is
// stored in dependency order, and earlier elements are possibly leaf nodes for later elements. We must not delete
// dependencies prior to their dependent nodes.
var dels []Step
if prev := iter.p.prev; prev != nil {
for i := len(prev.Resources) - 1; i >= 0; i-- {
// If this resource is explicitly marked for deletion or wasn't seen at all, delete it.
res := prev.Resources[i]
if res.Delete {
glog.V(7).Infof("Planner decided to delete '%v' due to replacement", res.URN)
iter.deletes[res.URN] = true
dels = append(dels, NewDeleteReplacementStep(iter.p, res, true))
} else if !iter.sames[res.URN] && !iter.updates[res.URN] && !iter.replaces[res.URN] {
glog.V(7).Infof("Planner decided to delete '%v'", res.URN)
iter.deletes[res.URN] = true
dels = append(dels, NewDeleteStep(iter.p, res))
}
}
}
return dels
}
// nextDeleteStep produces a new step that deletes a resource if necessary.
func (iter *PlanIterator) nextDeleteStep() Step {
if len(iter.delqueue) > 0 {
del := iter.delqueue[0]
iter.delqueue = iter.delqueue[1:]
return del
}
return nil
}
// Provider fetches the provider for a given resource type, possibly lazily allocating the plugins for it. If a
// provider could not be found, or an error occurred while creating it, a non-nil error is returned.
func (iter *PlanIterator) Provider(t tokens.Type) (plugin.Provider, error) {
pkg := t.Package()
prov, err := iter.p.Provider(pkg)
if err != nil {
return nil, err
} else if prov == nil {
return nil, errors.Errorf("could not load resource provider for package '%v' from $PATH", pkg)
}
return prov, nil
}