pulumi/sdk/nodejs/resource.ts

35 lines
1.8 KiB
TypeScript
Raw Normal View History

Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
// Copyright 2016-2017, Pulumi Corporation. All rights reserved.
import { Computed, MaybeComputed } from "./computed";
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
import * as runtime from "./runtime";
export type ID = string; // a provider-assigned ID.
export type URN = string; // an automatically generated logical URN, used to stably identify resources.
// Resource represents a class whose CRUD operations are implemented by a provider plugin.
export abstract class Resource {
// id is the provider-assigned unique ID for this object. It is set during deployments.
public readonly id: Computed<ID>;
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
// urn is the stable logical URN used to distinctly address an object, both before and after deployments.
public readonly urn: Computed<URN>;
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
// creates and registers a new resource object. t is the fully qualified type token and name is the "name" part
// to use in creating a stable and globally unique URN for the object. dependsOn is an optional list of other
// resources that this resource depends on, controlling the order in which we perform resource operations.
constructor(t: string, name: string,
props: {[key: string]: MaybeComputed<any> | undefined}, dependsOn?: Resource[]) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
if (t === undefined || t === "") {
throw new Error("Missing resource type argument");
}
if (name === undefined || name === "") {
throw new Error("Missing resource name argument (for URN creation)");
}
// Now kick off the resource registration. If we are actually performing a deployment, this resource's
// properties will be resolved asynchronously after the operation completes, so that dependent computations
// resolve normally. If we are just planning, on the other hand, values will never resolve.
runtime.registerResource(this, t, name, props, dependsOn);
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
}