pulumi/sdk/nodejs/proto/provider_grpc_pb.js

416 lines
16 KiB
JavaScript
Raw Normal View History

Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
// GENERATED CODE -- DO NOT EDIT!
// Original file comments:
// Copyright 2016-2018, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
//
'use strict';
var grpc = require('@grpc/grpc-js');
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
var provider_pb = require('./provider_pb.js');
var plugin_pb = require('./plugin_pb.js');
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
var google_protobuf_empty_pb = require('google-protobuf/google/protobuf/empty_pb.js');
var google_protobuf_struct_pb = require('google-protobuf/google/protobuf/struct_pb.js');
function serialize_google_protobuf_Empty(arg) {
if (!(arg instanceof google_protobuf_empty_pb.Empty)) {
throw new Error('Expected argument of type google.protobuf.Empty');
}
return Buffer.from(arg.serializeBinary());
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
function deserialize_google_protobuf_Empty(buffer_arg) {
return google_protobuf_empty_pb.Empty.deserializeBinary(new Uint8Array(buffer_arg));
}
function serialize_pulumirpc_CheckRequest(arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
if (!(arg instanceof provider_pb.CheckRequest)) {
throw new Error('Expected argument of type pulumirpc.CheckRequest');
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
return Buffer.from(arg.serializeBinary());
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
function deserialize_pulumirpc_CheckRequest(buffer_arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
return provider_pb.CheckRequest.deserializeBinary(new Uint8Array(buffer_arg));
}
function serialize_pulumirpc_CheckResponse(arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
if (!(arg instanceof provider_pb.CheckResponse)) {
throw new Error('Expected argument of type pulumirpc.CheckResponse');
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
return Buffer.from(arg.serializeBinary());
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
function deserialize_pulumirpc_CheckResponse(buffer_arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
return provider_pb.CheckResponse.deserializeBinary(new Uint8Array(buffer_arg));
}
function serialize_pulumirpc_ConfigureRequest(arg) {
if (!(arg instanceof provider_pb.ConfigureRequest)) {
throw new Error('Expected argument of type pulumirpc.ConfigureRequest');
}
return Buffer.from(arg.serializeBinary());
}
function deserialize_pulumirpc_ConfigureRequest(buffer_arg) {
return provider_pb.ConfigureRequest.deserializeBinary(new Uint8Array(buffer_arg));
}
2019-04-12 20:27:18 +02:00
function serialize_pulumirpc_ConfigureResponse(arg) {
if (!(arg instanceof provider_pb.ConfigureResponse)) {
throw new Error('Expected argument of type pulumirpc.ConfigureResponse');
}
return Buffer.from(arg.serializeBinary());
}
function deserialize_pulumirpc_ConfigureResponse(buffer_arg) {
return provider_pb.ConfigureResponse.deserializeBinary(new Uint8Array(buffer_arg));
}
function serialize_pulumirpc_CreateRequest(arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
if (!(arg instanceof provider_pb.CreateRequest)) {
throw new Error('Expected argument of type pulumirpc.CreateRequest');
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
return Buffer.from(arg.serializeBinary());
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
function deserialize_pulumirpc_CreateRequest(buffer_arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
return provider_pb.CreateRequest.deserializeBinary(new Uint8Array(buffer_arg));
}
function serialize_pulumirpc_CreateResponse(arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
if (!(arg instanceof provider_pb.CreateResponse)) {
throw new Error('Expected argument of type pulumirpc.CreateResponse');
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
return Buffer.from(arg.serializeBinary());
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
function deserialize_pulumirpc_CreateResponse(buffer_arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
return provider_pb.CreateResponse.deserializeBinary(new Uint8Array(buffer_arg));
}
function serialize_pulumirpc_DeleteRequest(arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
if (!(arg instanceof provider_pb.DeleteRequest)) {
throw new Error('Expected argument of type pulumirpc.DeleteRequest');
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
return Buffer.from(arg.serializeBinary());
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
function deserialize_pulumirpc_DeleteRequest(buffer_arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
return provider_pb.DeleteRequest.deserializeBinary(new Uint8Array(buffer_arg));
}
function serialize_pulumirpc_DiffRequest(arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
if (!(arg instanceof provider_pb.DiffRequest)) {
throw new Error('Expected argument of type pulumirpc.DiffRequest');
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
return Buffer.from(arg.serializeBinary());
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
function deserialize_pulumirpc_DiffRequest(buffer_arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
return provider_pb.DiffRequest.deserializeBinary(new Uint8Array(buffer_arg));
}
function serialize_pulumirpc_DiffResponse(arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
if (!(arg instanceof provider_pb.DiffResponse)) {
throw new Error('Expected argument of type pulumirpc.DiffResponse');
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
return Buffer.from(arg.serializeBinary());
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
function deserialize_pulumirpc_DiffResponse(buffer_arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
return provider_pb.DiffResponse.deserializeBinary(new Uint8Array(buffer_arg));
}
function serialize_pulumirpc_GetSchemaRequest(arg) {
if (!(arg instanceof provider_pb.GetSchemaRequest)) {
throw new Error('Expected argument of type pulumirpc.GetSchemaRequest');
}
return Buffer.from(arg.serializeBinary());
}
function deserialize_pulumirpc_GetSchemaRequest(buffer_arg) {
return provider_pb.GetSchemaRequest.deserializeBinary(new Uint8Array(buffer_arg));
}
function serialize_pulumirpc_GetSchemaResponse(arg) {
if (!(arg instanceof provider_pb.GetSchemaResponse)) {
throw new Error('Expected argument of type pulumirpc.GetSchemaResponse');
}
return Buffer.from(arg.serializeBinary());
}
function deserialize_pulumirpc_GetSchemaResponse(buffer_arg) {
return provider_pb.GetSchemaResponse.deserializeBinary(new Uint8Array(buffer_arg));
}
function serialize_pulumirpc_InvokeRequest(arg) {
if (!(arg instanceof provider_pb.InvokeRequest)) {
throw new Error('Expected argument of type pulumirpc.InvokeRequest');
}
return Buffer.from(arg.serializeBinary());
}
function deserialize_pulumirpc_InvokeRequest(buffer_arg) {
return provider_pb.InvokeRequest.deserializeBinary(new Uint8Array(buffer_arg));
}
function serialize_pulumirpc_InvokeResponse(arg) {
if (!(arg instanceof provider_pb.InvokeResponse)) {
throw new Error('Expected argument of type pulumirpc.InvokeResponse');
}
return Buffer.from(arg.serializeBinary());
}
function deserialize_pulumirpc_InvokeResponse(buffer_arg) {
return provider_pb.InvokeResponse.deserializeBinary(new Uint8Array(buffer_arg));
}
function serialize_pulumirpc_PluginInfo(arg) {
if (!(arg instanceof plugin_pb.PluginInfo)) {
throw new Error('Expected argument of type pulumirpc.PluginInfo');
}
return Buffer.from(arg.serializeBinary());
}
function deserialize_pulumirpc_PluginInfo(buffer_arg) {
return plugin_pb.PluginInfo.deserializeBinary(new Uint8Array(buffer_arg));
}
function serialize_pulumirpc_ReadRequest(arg) {
if (!(arg instanceof provider_pb.ReadRequest)) {
throw new Error('Expected argument of type pulumirpc.ReadRequest');
}
return Buffer.from(arg.serializeBinary());
}
function deserialize_pulumirpc_ReadRequest(buffer_arg) {
return provider_pb.ReadRequest.deserializeBinary(new Uint8Array(buffer_arg));
}
function serialize_pulumirpc_ReadResponse(arg) {
if (!(arg instanceof provider_pb.ReadResponse)) {
throw new Error('Expected argument of type pulumirpc.ReadResponse');
}
return Buffer.from(arg.serializeBinary());
}
function deserialize_pulumirpc_ReadResponse(buffer_arg) {
return provider_pb.ReadResponse.deserializeBinary(new Uint8Array(buffer_arg));
}
function serialize_pulumirpc_UpdateRequest(arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
if (!(arg instanceof provider_pb.UpdateRequest)) {
throw new Error('Expected argument of type pulumirpc.UpdateRequest');
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
return Buffer.from(arg.serializeBinary());
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
function deserialize_pulumirpc_UpdateRequest(buffer_arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
return provider_pb.UpdateRequest.deserializeBinary(new Uint8Array(buffer_arg));
}
function serialize_pulumirpc_UpdateResponse(arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
if (!(arg instanceof provider_pb.UpdateResponse)) {
throw new Error('Expected argument of type pulumirpc.UpdateResponse');
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
return Buffer.from(arg.serializeBinary());
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
}
function deserialize_pulumirpc_UpdateResponse(buffer_arg) {
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
return provider_pb.UpdateResponse.deserializeBinary(new Uint8Array(buffer_arg));
}
// ResourceProvider is a service that understands how to create, read, update, or delete resources for types defined
// within a single package. It is driven by the overall planning engine in response to resource diffs.
var ResourceProviderService = exports.ResourceProviderService = {
// GetSchema fetches the schema for this resource provider.
2020-02-28 12:53:47 +01:00
getSchema: {
path: '/pulumirpc.ResourceProvider/GetSchema',
requestStream: false,
responseStream: false,
requestType: provider_pb.GetSchemaRequest,
responseType: provider_pb.GetSchemaResponse,
requestSerialize: serialize_pulumirpc_GetSchemaRequest,
requestDeserialize: deserialize_pulumirpc_GetSchemaRequest,
responseSerialize: serialize_pulumirpc_GetSchemaResponse,
responseDeserialize: deserialize_pulumirpc_GetSchemaResponse,
},
// CheckConfig validates the configuration for this resource provider.
2020-02-28 12:53:47 +01:00
checkConfig: {
path: '/pulumirpc.ResourceProvider/CheckConfig',
requestStream: false,
responseStream: false,
requestType: provider_pb.CheckRequest,
responseType: provider_pb.CheckResponse,
requestSerialize: serialize_pulumirpc_CheckRequest,
requestDeserialize: deserialize_pulumirpc_CheckRequest,
responseSerialize: serialize_pulumirpc_CheckResponse,
responseDeserialize: deserialize_pulumirpc_CheckResponse,
},
// DiffConfig checks the impact a hypothetical change to this provider's configuration will have on the provider.
2020-02-28 12:53:47 +01:00
diffConfig: {
path: '/pulumirpc.ResourceProvider/DiffConfig',
requestStream: false,
responseStream: false,
requestType: provider_pb.DiffRequest,
responseType: provider_pb.DiffResponse,
requestSerialize: serialize_pulumirpc_DiffRequest,
requestDeserialize: deserialize_pulumirpc_DiffRequest,
responseSerialize: serialize_pulumirpc_DiffResponse,
responseDeserialize: deserialize_pulumirpc_DiffResponse,
},
// Configure configures the resource provider with "globals" that control its behavior.
2020-02-28 12:53:47 +01:00
configure: {
path: '/pulumirpc.ResourceProvider/Configure',
requestStream: false,
responseStream: false,
requestType: provider_pb.ConfigureRequest,
2019-04-12 20:27:18 +02:00
responseType: provider_pb.ConfigureResponse,
requestSerialize: serialize_pulumirpc_ConfigureRequest,
requestDeserialize: deserialize_pulumirpc_ConfigureRequest,
2019-04-12 20:27:18 +02:00
responseSerialize: serialize_pulumirpc_ConfigureResponse,
responseDeserialize: deserialize_pulumirpc_ConfigureResponse,
},
// Invoke dynamically executes a built-in function in the provider.
2020-02-28 12:53:47 +01:00
invoke: {
path: '/pulumirpc.ResourceProvider/Invoke',
requestStream: false,
responseStream: false,
requestType: provider_pb.InvokeRequest,
responseType: provider_pb.InvokeResponse,
requestSerialize: serialize_pulumirpc_InvokeRequest,
requestDeserialize: deserialize_pulumirpc_InvokeRequest,
responseSerialize: serialize_pulumirpc_InvokeResponse,
responseDeserialize: deserialize_pulumirpc_InvokeResponse,
},
// StreamInvoke dynamically executes a built-in function in the provider, which returns a stream
2020-02-28 12:53:47 +01:00
// of responses.
streamInvoke: {
path: '/pulumirpc.ResourceProvider/StreamInvoke',
requestStream: false,
responseStream: true,
requestType: provider_pb.InvokeRequest,
responseType: provider_pb.InvokeResponse,
requestSerialize: serialize_pulumirpc_InvokeRequest,
requestDeserialize: deserialize_pulumirpc_InvokeRequest,
responseSerialize: serialize_pulumirpc_InvokeResponse,
responseDeserialize: deserialize_pulumirpc_InvokeResponse,
},
// Check validates that the given property bag is valid for a resource of the given type and returns the inputs
2020-02-28 12:53:47 +01:00
// that should be passed to successive calls to Diff, Create, or Update for this resource. As a rule, the provider
// inputs returned by a call to Check should preserve the original representation of the properties as present in
// the program inputs. Though this rule is not required for correctness, violations thereof can negatively impact
// the end-user experience, as the provider inputs are using for detecting and rendering diffs.
check: {
path: '/pulumirpc.ResourceProvider/Check',
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
requestStream: false,
responseStream: false,
requestType: provider_pb.CheckRequest,
responseType: provider_pb.CheckResponse,
requestSerialize: serialize_pulumirpc_CheckRequest,
requestDeserialize: deserialize_pulumirpc_CheckRequest,
responseSerialize: serialize_pulumirpc_CheckResponse,
responseDeserialize: deserialize_pulumirpc_CheckResponse,
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
},
// Diff checks what impacts a hypothetical update will have on the resource's properties.
2020-02-28 12:53:47 +01:00
diff: {
path: '/pulumirpc.ResourceProvider/Diff',
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
requestStream: false,
responseStream: false,
requestType: provider_pb.DiffRequest,
responseType: provider_pb.DiffResponse,
requestSerialize: serialize_pulumirpc_DiffRequest,
requestDeserialize: deserialize_pulumirpc_DiffRequest,
responseSerialize: serialize_pulumirpc_DiffResponse,
responseDeserialize: deserialize_pulumirpc_DiffResponse,
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
},
// Create allocates a new instance of the provided resource and returns its unique ID afterwards. (The input ID
2020-02-28 12:53:47 +01:00
// must be blank.) If this call fails, the resource must not have been created (i.e., it is "transactional").
create: {
path: '/pulumirpc.ResourceProvider/Create',
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
requestStream: false,
responseStream: false,
requestType: provider_pb.CreateRequest,
responseType: provider_pb.CreateResponse,
requestSerialize: serialize_pulumirpc_CreateRequest,
requestDeserialize: deserialize_pulumirpc_CreateRequest,
responseSerialize: serialize_pulumirpc_CreateResponse,
responseDeserialize: deserialize_pulumirpc_CreateResponse,
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
},
// Read the current live state associated with a resource. Enough state must be include in the inputs to uniquely
2020-02-28 12:53:47 +01:00
// identify the resource; this is typically just the resource ID, but may also include some properties.
read: {
path: '/pulumirpc.ResourceProvider/Read',
requestStream: false,
responseStream: false,
requestType: provider_pb.ReadRequest,
responseType: provider_pb.ReadResponse,
requestSerialize: serialize_pulumirpc_ReadRequest,
requestDeserialize: deserialize_pulumirpc_ReadRequest,
responseSerialize: serialize_pulumirpc_ReadResponse,
responseDeserialize: deserialize_pulumirpc_ReadResponse,
},
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
// Update updates an existing resource with new values.
2020-02-28 12:53:47 +01:00
update: {
path: '/pulumirpc.ResourceProvider/Update',
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
requestStream: false,
responseStream: false,
requestType: provider_pb.UpdateRequest,
responseType: provider_pb.UpdateResponse,
requestSerialize: serialize_pulumirpc_UpdateRequest,
requestDeserialize: deserialize_pulumirpc_UpdateRequest,
responseSerialize: serialize_pulumirpc_UpdateResponse,
responseDeserialize: deserialize_pulumirpc_UpdateResponse,
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
},
// Delete tears down an existing resource with the given ID. If it fails, the resource is assumed to still exist.
2020-02-28 12:53:47 +01:00
delete: {
path: '/pulumirpc.ResourceProvider/Delete',
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
requestStream: false,
responseStream: false,
requestType: provider_pb.DeleteRequest,
responseType: google_protobuf_empty_pb.Empty,
requestSerialize: serialize_pulumirpc_DeleteRequest,
requestDeserialize: deserialize_pulumirpc_DeleteRequest,
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
responseSerialize: serialize_google_protobuf_Empty,
responseDeserialize: deserialize_google_protobuf_Empty,
},
// Cancel signals the provider to abort all outstanding resource operations.
2020-02-28 12:53:47 +01:00
cancel: {
path: '/pulumirpc.ResourceProvider/Cancel',
requestStream: false,
responseStream: false,
requestType: google_protobuf_empty_pb.Empty,
responseType: google_protobuf_empty_pb.Empty,
requestSerialize: serialize_google_protobuf_Empty,
requestDeserialize: deserialize_google_protobuf_Empty,
responseSerialize: serialize_google_protobuf_Empty,
responseDeserialize: deserialize_google_protobuf_Empty,
},
// GetPluginInfo returns generic information about this plugin, like its version.
2020-02-28 12:53:47 +01:00
getPluginInfo: {
path: '/pulumirpc.ResourceProvider/GetPluginInfo',
requestStream: false,
responseStream: false,
requestType: google_protobuf_empty_pb.Empty,
responseType: plugin_pb.PluginInfo,
requestSerialize: serialize_google_protobuf_Empty,
requestDeserialize: deserialize_google_protobuf_Empty,
responseSerialize: serialize_pulumirpc_PluginInfo,
responseDeserialize: deserialize_pulumirpc_PluginInfo,
},
Implement initial Lumi-as-a-library This is the initial step towards redefining Lumi as a library that runs atop vanilla Node.js/V8, rather than as its own runtime. This change is woefully incomplete but this includes some of the more stable pieces of my current work-in-progress. The new structure is that within the sdk/ directory we will have a client library per language. This client library contains the object model for Lumi (resources, properties, assets, config, etc), in addition to the "language runtime host" components required to interoperate with the Lumi resource monitor. This resource monitor is effectively what we call "Lumi" today, in that it's the thing orchestrating plans and deployments. Inside the sdk/ directory, you will find nodejs/, the Node.js client library, alongside proto/, the definitions for RPC interop between the different pieces of the system. This includes existing RPC definitions for resource providers, etc., in addition to the new ones for hosting different language runtimes from within Lumi. These new interfaces are surprisingly simple. There is effectively a bidirectional RPC channel between the Lumi resource monitor, represented by the lumirpc.ResourceMonitor interface, and each language runtime, represented by the lumirpc.LanguageRuntime interface. The overall orchestration goes as follows: 1) Lumi decides it needs to run a program written in language X, so it dynamically loads the language runtime plugin for language X. 2) Lumi passes that runtime a loopback address to its ResourceMonitor service, while language X will publish a connection back to its LanguageRuntime service, which Lumi will talk to. 3) Lumi then invokes LanguageRuntime.Run, passing information like the desired working directory, program name, arguments, and optional configuration variables to make available to the program. 4) The language X runtime receives this, unpacks it and sets up the necessary context, and then invokes the program. The program then calls into Lumi object model abstractions that internally communicate back to Lumi using the ResourceMonitor interface. 5) The key here is ResourceMonitor.NewResource, which Lumi uses to serialize state about newly allocated resources. Lumi receives these and registers them as part of the plan, doing the usual diffing, etc., to decide how to proceed. This interface is perhaps one of the most subtle parts of the new design, as it necessitates the use of promises internally to allow parallel evaluation of the resource plan, letting dataflow determine the available concurrency. 6) The program exits, and Lumi continues on its merry way. If the program fails, the RunResponse will include information about the failure. Due to (5), all properties on resources are now instances of a new Property<T> type. A Property<T> is just a thin wrapper over a T, but it encodes the special properties of Lumi resource properties. Namely, it is possible to create one out of a T, other Property<T>, Promise<T>, or to freshly allocate one. In all cases, the Property<T> does not "settle" until its final state is known. This cannot occur before the deployment actually completes, and so in general it's not safe to depend on concrete resolutions of values (unlike ordinary Promise<T>s which are usually expected to resolve). As a result, all derived computations are meant to use the `then` function (as in `someValue.then(v => v+x)`). Although this change includes tests that may be run in isolation to test the various RPC interactions, we are nowhere near finished. The remaining work primarily boils down to three things: 1) Wiring all of this up to the Lumi code. 2) Fixing the handful of known loose ends required to make this work, primarily around the serialization of properties (waiting on unresolved ones, serializing assets properly, etc). 3) Implementing lambda closure serialization as a native extension. This ongoing work is part of pulumi/pulumi-fabric#311.
2017-08-26 21:07:54 +02:00
};
exports.ResourceProviderClient = grpc.makeGenericClientConstructor(ResourceProviderService);