pulumi/sdk/proto/go/resource.pb.go

591 lines
22 KiB
Go
Raw Normal View History

// Code generated by protoc-gen-go. DO NOT EDIT.
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
// source: resource.proto
package pulumirpc
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
import proto "github.com/golang/protobuf/proto"
import fmt "fmt"
import math "math"
import empty "github.com/golang/protobuf/ptypes/empty"
import _struct "github.com/golang/protobuf/ptypes/struct"
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
import (
context "golang.org/x/net/context"
grpc "google.golang.org/grpc"
)
// Reference imports to suppress errors if they are not otherwise used.
var _ = proto.Marshal
var _ = fmt.Errorf
var _ = math.Inf
// This is a compile-time assertion to ensure that this generated file
// is compatible with the proto package it is being compiled against.
// A compilation error at this line likely means your copy of the
// proto package needs to be updated.
const _ = proto.ProtoPackageIsVersion2 // please upgrade the proto package
// ReadResourceRequest contains enough information to uniquely qualify and read a resource's state.
type ReadResourceRequest struct {
Id string `protobuf:"bytes,1,opt,name=id" json:"id,omitempty"`
Type string `protobuf:"bytes,2,opt,name=type" json:"type,omitempty"`
Name string `protobuf:"bytes,3,opt,name=name" json:"name,omitempty"`
Parent string `protobuf:"bytes,4,opt,name=parent" json:"parent,omitempty"`
Properties *_struct.Struct `protobuf:"bytes,5,opt,name=properties" json:"properties,omitempty"`
Dependencies []string `protobuf:"bytes,6,rep,name=dependencies" json:"dependencies,omitempty"`
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 02:50:29 +02:00
Provider string `protobuf:"bytes,7,opt,name=provider" json:"provider,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *ReadResourceRequest) Reset() { *m = ReadResourceRequest{} }
func (m *ReadResourceRequest) String() string { return proto.CompactTextString(m) }
func (*ReadResourceRequest) ProtoMessage() {}
func (*ReadResourceRequest) Descriptor() ([]byte, []int) {
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 02:50:29 +02:00
return fileDescriptor_resource_5aa1dff965971124, []int{0}
}
func (m *ReadResourceRequest) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_ReadResourceRequest.Unmarshal(m, b)
}
func (m *ReadResourceRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_ReadResourceRequest.Marshal(b, m, deterministic)
}
func (dst *ReadResourceRequest) XXX_Merge(src proto.Message) {
xxx_messageInfo_ReadResourceRequest.Merge(dst, src)
}
func (m *ReadResourceRequest) XXX_Size() int {
return xxx_messageInfo_ReadResourceRequest.Size(m)
}
func (m *ReadResourceRequest) XXX_DiscardUnknown() {
xxx_messageInfo_ReadResourceRequest.DiscardUnknown(m)
}
var xxx_messageInfo_ReadResourceRequest proto.InternalMessageInfo
func (m *ReadResourceRequest) GetId() string {
if m != nil {
return m.Id
}
return ""
}
func (m *ReadResourceRequest) GetType() string {
if m != nil {
return m.Type
}
return ""
}
func (m *ReadResourceRequest) GetName() string {
if m != nil {
return m.Name
}
return ""
}
func (m *ReadResourceRequest) GetParent() string {
if m != nil {
return m.Parent
}
return ""
}
func (m *ReadResourceRequest) GetProperties() *_struct.Struct {
if m != nil {
return m.Properties
}
return nil
}
func (m *ReadResourceRequest) GetDependencies() []string {
if m != nil {
return m.Dependencies
}
return nil
}
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 02:50:29 +02:00
func (m *ReadResourceRequest) GetProvider() string {
if m != nil {
return m.Provider
}
return ""
}
// ReadResourceResponse contains the result of reading a resource's state.
type ReadResourceResponse struct {
Urn string `protobuf:"bytes,1,opt,name=urn" json:"urn,omitempty"`
Properties *_struct.Struct `protobuf:"bytes,2,opt,name=properties" json:"properties,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *ReadResourceResponse) Reset() { *m = ReadResourceResponse{} }
func (m *ReadResourceResponse) String() string { return proto.CompactTextString(m) }
func (*ReadResourceResponse) ProtoMessage() {}
func (*ReadResourceResponse) Descriptor() ([]byte, []int) {
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 02:50:29 +02:00
return fileDescriptor_resource_5aa1dff965971124, []int{1}
}
func (m *ReadResourceResponse) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_ReadResourceResponse.Unmarshal(m, b)
}
func (m *ReadResourceResponse) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_ReadResourceResponse.Marshal(b, m, deterministic)
}
func (dst *ReadResourceResponse) XXX_Merge(src proto.Message) {
xxx_messageInfo_ReadResourceResponse.Merge(dst, src)
}
func (m *ReadResourceResponse) XXX_Size() int {
return xxx_messageInfo_ReadResourceResponse.Size(m)
}
func (m *ReadResourceResponse) XXX_DiscardUnknown() {
xxx_messageInfo_ReadResourceResponse.DiscardUnknown(m)
}
var xxx_messageInfo_ReadResourceResponse proto.InternalMessageInfo
func (m *ReadResourceResponse) GetUrn() string {
if m != nil {
return m.Urn
}
return ""
}
func (m *ReadResourceResponse) GetProperties() *_struct.Struct {
if m != nil {
return m.Properties
}
return nil
}
// RegisterResourceRequest contains information about a resource object that was newly allocated.
type RegisterResourceRequest struct {
Type string `protobuf:"bytes,1,opt,name=type" json:"type,omitempty"`
Name string `protobuf:"bytes,2,opt,name=name" json:"name,omitempty"`
Parent string `protobuf:"bytes,3,opt,name=parent" json:"parent,omitempty"`
Custom bool `protobuf:"varint,4,opt,name=custom" json:"custom,omitempty"`
Object *_struct.Struct `protobuf:"bytes,5,opt,name=object" json:"object,omitempty"`
Protect bool `protobuf:"varint,6,opt,name=protect" json:"protect,omitempty"`
Dependencies []string `protobuf:"bytes,7,rep,name=dependencies" json:"dependencies,omitempty"`
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 02:50:29 +02:00
Provider string `protobuf:"bytes,8,opt,name=provider" json:"provider,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
}
func (m *RegisterResourceRequest) Reset() { *m = RegisterResourceRequest{} }
func (m *RegisterResourceRequest) String() string { return proto.CompactTextString(m) }
func (*RegisterResourceRequest) ProtoMessage() {}
func (*RegisterResourceRequest) Descriptor() ([]byte, []int) {
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 02:50:29 +02:00
return fileDescriptor_resource_5aa1dff965971124, []int{2}
}
func (m *RegisterResourceRequest) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_RegisterResourceRequest.Unmarshal(m, b)
}
func (m *RegisterResourceRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_RegisterResourceRequest.Marshal(b, m, deterministic)
}
func (dst *RegisterResourceRequest) XXX_Merge(src proto.Message) {
xxx_messageInfo_RegisterResourceRequest.Merge(dst, src)
}
func (m *RegisterResourceRequest) XXX_Size() int {
return xxx_messageInfo_RegisterResourceRequest.Size(m)
}
func (m *RegisterResourceRequest) XXX_DiscardUnknown() {
xxx_messageInfo_RegisterResourceRequest.DiscardUnknown(m)
}
var xxx_messageInfo_RegisterResourceRequest proto.InternalMessageInfo
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
func (m *RegisterResourceRequest) GetType() string {
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
if m != nil {
return m.Type
}
return ""
}
func (m *RegisterResourceRequest) GetName() string {
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
if m != nil {
return m.Name
}
return ""
}
func (m *RegisterResourceRequest) GetParent() string {
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
if m != nil {
return m.Parent
}
return ""
}
func (m *RegisterResourceRequest) GetCustom() bool {
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
if m != nil {
return m.Custom
}
return false
}
func (m *RegisterResourceRequest) GetObject() *_struct.Struct {
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
if m != nil {
return m.Object
}
return nil
}
func (m *RegisterResourceRequest) GetProtect() bool {
if m != nil {
return m.Protect
}
return false
}
func (m *RegisterResourceRequest) GetDependencies() []string {
if m != nil {
return m.Dependencies
}
return nil
}
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 02:50:29 +02:00
func (m *RegisterResourceRequest) GetProvider() string {
if m != nil {
return m.Provider
}
return ""
}
// RegisterResourceResponse is returned by the engine after a resource has finished being initialized. It includes the
// auto-assigned URN, the provider-assigned ID, and any other properties initialized by the engine.
type RegisterResourceResponse struct {
Urn string `protobuf:"bytes,1,opt,name=urn" json:"urn,omitempty"`
Id string `protobuf:"bytes,2,opt,name=id" json:"id,omitempty"`
Object *_struct.Struct `protobuf:"bytes,3,opt,name=object" json:"object,omitempty"`
Stable bool `protobuf:"varint,4,opt,name=stable" json:"stable,omitempty"`
Stables []string `protobuf:"bytes,5,rep,name=stables" json:"stables,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *RegisterResourceResponse) Reset() { *m = RegisterResourceResponse{} }
func (m *RegisterResourceResponse) String() string { return proto.CompactTextString(m) }
func (*RegisterResourceResponse) ProtoMessage() {}
func (*RegisterResourceResponse) Descriptor() ([]byte, []int) {
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 02:50:29 +02:00
return fileDescriptor_resource_5aa1dff965971124, []int{3}
}
func (m *RegisterResourceResponse) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_RegisterResourceResponse.Unmarshal(m, b)
}
func (m *RegisterResourceResponse) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_RegisterResourceResponse.Marshal(b, m, deterministic)
}
func (dst *RegisterResourceResponse) XXX_Merge(src proto.Message) {
xxx_messageInfo_RegisterResourceResponse.Merge(dst, src)
}
func (m *RegisterResourceResponse) XXX_Size() int {
return xxx_messageInfo_RegisterResourceResponse.Size(m)
}
func (m *RegisterResourceResponse) XXX_DiscardUnknown() {
xxx_messageInfo_RegisterResourceResponse.DiscardUnknown(m)
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
}
var xxx_messageInfo_RegisterResourceResponse proto.InternalMessageInfo
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
func (m *RegisterResourceResponse) GetUrn() string {
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
if m != nil {
return m.Urn
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
}
return ""
}
func (m *RegisterResourceResponse) GetId() string {
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
if m != nil {
return m.Id
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
}
return ""
}
func (m *RegisterResourceResponse) GetObject() *_struct.Struct {
if m != nil {
return m.Object
}
return nil
}
func (m *RegisterResourceResponse) GetStable() bool {
if m != nil {
return m.Stable
}
return false
}
func (m *RegisterResourceResponse) GetStables() []string {
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
if m != nil {
return m.Stables
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
}
return nil
}
// RegisterResourceOutputsRequest adds extra resource outputs created by the program after registration has occurred.
type RegisterResourceOutputsRequest struct {
Urn string `protobuf:"bytes,1,opt,name=urn" json:"urn,omitempty"`
Outputs *_struct.Struct `protobuf:"bytes,2,opt,name=outputs" json:"outputs,omitempty"`
XXX_NoUnkeyedLiteral struct{} `json:"-"`
XXX_unrecognized []byte `json:"-"`
XXX_sizecache int32 `json:"-"`
}
func (m *RegisterResourceOutputsRequest) Reset() { *m = RegisterResourceOutputsRequest{} }
func (m *RegisterResourceOutputsRequest) String() string { return proto.CompactTextString(m) }
func (*RegisterResourceOutputsRequest) ProtoMessage() {}
func (*RegisterResourceOutputsRequest) Descriptor() ([]byte, []int) {
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 02:50:29 +02:00
return fileDescriptor_resource_5aa1dff965971124, []int{4}
}
func (m *RegisterResourceOutputsRequest) XXX_Unmarshal(b []byte) error {
return xxx_messageInfo_RegisterResourceOutputsRequest.Unmarshal(m, b)
}
func (m *RegisterResourceOutputsRequest) XXX_Marshal(b []byte, deterministic bool) ([]byte, error) {
return xxx_messageInfo_RegisterResourceOutputsRequest.Marshal(b, m, deterministic)
}
func (dst *RegisterResourceOutputsRequest) XXX_Merge(src proto.Message) {
xxx_messageInfo_RegisterResourceOutputsRequest.Merge(dst, src)
}
func (m *RegisterResourceOutputsRequest) XXX_Size() int {
return xxx_messageInfo_RegisterResourceOutputsRequest.Size(m)
}
func (m *RegisterResourceOutputsRequest) XXX_DiscardUnknown() {
xxx_messageInfo_RegisterResourceOutputsRequest.DiscardUnknown(m)
}
var xxx_messageInfo_RegisterResourceOutputsRequest proto.InternalMessageInfo
func (m *RegisterResourceOutputsRequest) GetUrn() string {
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
if m != nil {
return m.Urn
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
}
return ""
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
}
func (m *RegisterResourceOutputsRequest) GetOutputs() *_struct.Struct {
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
if m != nil {
return m.Outputs
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
}
return nil
}
func init() {
proto.RegisterType((*ReadResourceRequest)(nil), "pulumirpc.ReadResourceRequest")
proto.RegisterType((*ReadResourceResponse)(nil), "pulumirpc.ReadResourceResponse")
proto.RegisterType((*RegisterResourceRequest)(nil), "pulumirpc.RegisterResourceRequest")
proto.RegisterType((*RegisterResourceResponse)(nil), "pulumirpc.RegisterResourceResponse")
proto.RegisterType((*RegisterResourceOutputsRequest)(nil), "pulumirpc.RegisterResourceOutputsRequest")
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
}
// Reference imports to suppress errors if they are not otherwise used.
var _ context.Context
var _ grpc.ClientConn
// This is a compile-time assertion to ensure that this generated file
// is compatible with the grpc package it is being compiled against.
const _ = grpc.SupportPackageIsVersion4
// Client API for ResourceMonitor service
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
type ResourceMonitorClient interface {
Invoke(ctx context.Context, in *InvokeRequest, opts ...grpc.CallOption) (*InvokeResponse, error)
ReadResource(ctx context.Context, in *ReadResourceRequest, opts ...grpc.CallOption) (*ReadResourceResponse, error)
RegisterResource(ctx context.Context, in *RegisterResourceRequest, opts ...grpc.CallOption) (*RegisterResourceResponse, error)
RegisterResourceOutputs(ctx context.Context, in *RegisterResourceOutputsRequest, opts ...grpc.CallOption) (*empty.Empty, error)
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
}
type resourceMonitorClient struct {
cc *grpc.ClientConn
}
func NewResourceMonitorClient(cc *grpc.ClientConn) ResourceMonitorClient {
return &resourceMonitorClient{cc}
}
func (c *resourceMonitorClient) Invoke(ctx context.Context, in *InvokeRequest, opts ...grpc.CallOption) (*InvokeResponse, error) {
out := new(InvokeResponse)
err := grpc.Invoke(ctx, "/pulumirpc.ResourceMonitor/Invoke", in, out, c.cc, opts...)
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
if err != nil {
return nil, err
}
return out, nil
}
func (c *resourceMonitorClient) ReadResource(ctx context.Context, in *ReadResourceRequest, opts ...grpc.CallOption) (*ReadResourceResponse, error) {
out := new(ReadResourceResponse)
err := grpc.Invoke(ctx, "/pulumirpc.ResourceMonitor/ReadResource", in, out, c.cc, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *resourceMonitorClient) RegisterResource(ctx context.Context, in *RegisterResourceRequest, opts ...grpc.CallOption) (*RegisterResourceResponse, error) {
out := new(RegisterResourceResponse)
err := grpc.Invoke(ctx, "/pulumirpc.ResourceMonitor/RegisterResource", in, out, c.cc, opts...)
if err != nil {
return nil, err
}
return out, nil
}
func (c *resourceMonitorClient) RegisterResourceOutputs(ctx context.Context, in *RegisterResourceOutputsRequest, opts ...grpc.CallOption) (*empty.Empty, error) {
out := new(empty.Empty)
err := grpc.Invoke(ctx, "/pulumirpc.ResourceMonitor/RegisterResourceOutputs", in, out, c.cc, opts...)
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
if err != nil {
return nil, err
}
return out, nil
}
// Server API for ResourceMonitor service
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
type ResourceMonitorServer interface {
Invoke(context.Context, *InvokeRequest) (*InvokeResponse, error)
ReadResource(context.Context, *ReadResourceRequest) (*ReadResourceResponse, error)
RegisterResource(context.Context, *RegisterResourceRequest) (*RegisterResourceResponse, error)
RegisterResourceOutputs(context.Context, *RegisterResourceOutputsRequest) (*empty.Empty, error)
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
}
func RegisterResourceMonitorServer(s *grpc.Server, srv ResourceMonitorServer) {
s.RegisterService(&_ResourceMonitor_serviceDesc, srv)
}
func _ResourceMonitor_Invoke_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(InvokeRequest)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(ResourceMonitorServer).Invoke(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/pulumirpc.ResourceMonitor/Invoke",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(ResourceMonitorServer).Invoke(ctx, req.(*InvokeRequest))
}
return interceptor(ctx, in, info, handler)
}
func _ResourceMonitor_ReadResource_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(ReadResourceRequest)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(ResourceMonitorServer).ReadResource(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/pulumirpc.ResourceMonitor/ReadResource",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(ResourceMonitorServer).ReadResource(ctx, req.(*ReadResourceRequest))
}
return interceptor(ctx, in, info, handler)
}
func _ResourceMonitor_RegisterResource_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(RegisterResourceRequest)
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(ResourceMonitorServer).RegisterResource(ctx, in)
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/pulumirpc.ResourceMonitor/RegisterResource",
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(ResourceMonitorServer).RegisterResource(ctx, req.(*RegisterResourceRequest))
}
return interceptor(ctx, in, info, handler)
}
func _ResourceMonitor_RegisterResourceOutputs_Handler(srv interface{}, ctx context.Context, dec func(interface{}) error, interceptor grpc.UnaryServerInterceptor) (interface{}, error) {
in := new(RegisterResourceOutputsRequest)
if err := dec(in); err != nil {
return nil, err
}
if interceptor == nil {
return srv.(ResourceMonitorServer).RegisterResourceOutputs(ctx, in)
}
info := &grpc.UnaryServerInfo{
Server: srv,
FullMethod: "/pulumirpc.ResourceMonitor/RegisterResourceOutputs",
}
handler := func(ctx context.Context, req interface{}) (interface{}, error) {
return srv.(ResourceMonitorServer).RegisterResourceOutputs(ctx, req.(*RegisterResourceOutputsRequest))
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
}
return interceptor(ctx, in, info, handler)
}
var _ResourceMonitor_serviceDesc = grpc.ServiceDesc{
ServiceName: "pulumirpc.ResourceMonitor",
HandlerType: (*ResourceMonitorServer)(nil),
Methods: []grpc.MethodDesc{
{
MethodName: "Invoke",
Handler: _ResourceMonitor_Invoke_Handler,
},
{
MethodName: "ReadResource",
Handler: _ResourceMonitor_ReadResource_Handler,
},
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
{
MethodName: "RegisterResource",
Handler: _ResourceMonitor_RegisterResource_Handler,
},
{
MethodName: "RegisterResourceOutputs",
Handler: _ResourceMonitor_RegisterResourceOutputs_Handler,
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
},
},
Streams: []grpc.StreamDesc{},
Metadata: "resource.proto",
}
Implement first-class providers. (#1695) ### First-Class Providers These changes implement support for first-class providers. First-class providers are provider plugins that are exposed as resources via the Pulumi programming model so that they may be explicitly and multiply instantiated. Each instance of a provider resource may be configured differently, and configuration parameters may be source from the outputs of other resources. ### Provider Plugin Changes In order to accommodate the need to verify and diff provider configuration and configure providers without complete configuration information, these changes adjust the high-level provider plugin interface. Two new methods for validating a provider's configuration and diffing changes to the same have been added (`CheckConfig` and `DiffConfig`, respectively), and the type of the configuration bag accepted by `Configure` has been changed to a `PropertyMap`. These changes have not yet been reflected in the provider plugin gRPC interface. We will do this in a set of follow-up changes. Until then, these methods are implemented by adapters: - `CheckConfig` validates that all configuration parameters are string or unknown properties. This is necessary because existing plugins only accept string-typed configuration values. - `DiffConfig` either returns "never replace" if all configuration values are known or "must replace" if any configuration value is unknown. The justification for this behavior is given [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106) - `Configure` converts the config bag to a legacy config map and configures the provider plugin if all config values are known. If any config value is unknown, the underlying plugin is not configured and the provider may only perform `Check`, `Read`, and `Invoke`, all of which return empty results. We justify this behavior becuase it is only possible during a preview and provides the best experience we can manage with the existing gRPC interface. ### Resource Model Changes Providers are now exposed as resources that participate in a stack's dependency graph. Like other resources, they are explicitly created, may have multiple instances, and may have dependencies on other resources. Providers are referred to using provider references, which are a combination of the provider's URN and its ID. This design addresses the need during a preview to refer to providers that have not yet been physically created and therefore have no ID. All custom resources that are not themselves providers must specify a single provider via a provider reference. The named provider will be used to manage that resource's CRUD operations. If a resource's provider reference changes, the resource must be replaced. Though its URN is not present in the resource's dependency list, the provider should be treated as a dependency of the resource when topologically sorting the dependency graph. Finally, `Invoke` operations must now specify a provider to use for the invocation via a provider reference. ### Engine Changes First-class providers support requires a few changes to the engine: - The engine must have some way to map from provider references to provider plugins. It must be possible to add providers from a stack's checkpoint to this map and to register new/updated providers during the execution of a plan in response to CRUD operations on provider resources. - In order to support updating existing stacks using existing Pulumi programs that may not explicitly instantiate providers, the engine must be able to manage the "default" providers for each package referenced by a checkpoint or Pulumi program. The configuration for a "default" provider is taken from the stack's configuration data. The former need is addressed by adding a provider registry type that is responsible for managing all of the plugins required by a plan. In addition to loading plugins froma checkpoint and providing the ability to map from a provider reference to a provider plugin, this type serves as the provider plugin for providers themselves (i.e. it is the "provider provider"). The latter need is solved via two relatively self-contained changes to plan setup and the eval source. During plan setup, the old checkpoint is scanned for custom resources that do not have a provider reference in order to compute the set of packages that require a default provider. Once this set has been computed, the required default provider definitions are conjured and prepended to the checkpoint's resource list. Each resource that requires a default provider is then updated to refer to the default provider for its package. While an eval source is running, each custom resource registration, resource read, and invoke that does not name a provider is trapped before being returned by the source iterator. If no default provider for the appropriate package has been registered, the eval source synthesizes an appropriate registration, waits for it to complete, and records the registered provider's reference. This reference is injected into the original request, which is then processed as usual. If a default provider was already registered, the recorded reference is used and no new registration occurs. ### SDK Changes These changes only expose first-class providers from the Node.JS SDK. - A new abstract class, `ProviderResource`, can be subclassed and used to instantiate first-class providers. - A new field in `ResourceOptions`, `provider`, can be used to supply a particular provider instance to manage a `CustomResource`'s CRUD operations. - A new type, `InvokeOptions`, can be used to specify options that control the behavior of a call to `pulumi.runtime.invoke`. This type includes a `provider` field that is analogous to `ResourceOptions.provider`.
2018-08-07 02:50:29 +02:00
func init() { proto.RegisterFile("resource.proto", fileDescriptor_resource_5aa1dff965971124) }
var fileDescriptor_resource_5aa1dff965971124 = []byte{
// 491 bytes of a gzipped FileDescriptorProto
0x1f, 0x8b, 0x08, 0x00, 0x00, 0x09, 0x6e, 0x88, 0x02, 0xff, 0x8c, 0x94, 0xcd, 0x6e, 0xd3, 0x40,
0x10, 0xc7, 0x6b, 0xbb, 0x38, 0xe9, 0x50, 0x85, 0x6a, 0x41, 0xad, 0x31, 0xa8, 0x54, 0xe6, 0x02,
0x17, 0x47, 0x94, 0x03, 0x47, 0x4e, 0x1c, 0x38, 0x20, 0x84, 0x39, 0x83, 0xe4, 0xd8, 0x43, 0x64,
0x48, 0xbc, 0xcb, 0x7e, 0x54, 0xea, 0xd3, 0xf0, 0x66, 0x9c, 0x78, 0x0c, 0x0e, 0x78, 0x77, 0xbd,
0x26, 0xfe, 0x68, 0xd3, 0x53, 0xe6, 0x6b, 0x67, 0xe7, 0xff, 0xf3, 0x6c, 0x60, 0xc1, 0x51, 0x50,
0xc5, 0x0b, 0x4c, 0x19, 0xa7, 0x92, 0x92, 0x23, 0xa6, 0x36, 0x6a, 0x5b, 0x71, 0x56, 0xc4, 0x4f,
0xd6, 0x94, 0xae, 0x37, 0xb8, 0x34, 0x89, 0x95, 0xfa, 0xb6, 0xc4, 0x2d, 0x93, 0xd7, 0xb6, 0x2e,
0x7e, 0x3a, 0x4c, 0x0a, 0xc9, 0x55, 0x21, 0xdb, 0xec, 0xa2, 0xf9, 0xb9, 0xaa, 0x4a, 0xe4, 0xd6,
0x4f, 0x7e, 0x7b, 0xf0, 0x30, 0xc3, 0xbc, 0xcc, 0xda, 0xcb, 0x32, 0xfc, 0xa9, 0x50, 0x48, 0xb2,
0x00, 0xbf, 0x2a, 0x23, 0xef, 0xc2, 0x7b, 0x71, 0x94, 0x35, 0x16, 0x21, 0x70, 0x28, 0xaf, 0x19,
0x46, 0xbe, 0x89, 0x18, 0x5b, 0xc7, 0xea, 0x7c, 0x8b, 0x51, 0x60, 0x63, 0xda, 0x26, 0xa7, 0x10,
0xb2, 0x9c, 0x63, 0x2d, 0xa3, 0x43, 0x13, 0x6d, 0x3d, 0xf2, 0x06, 0xa0, 0xb9, 0x90, 0x21, 0x97,
0x15, 0x8a, 0xe8, 0x5e, 0x93, 0xbb, 0x7f, 0x79, 0x96, 0xda, 0x51, 0x53, 0x37, 0x6a, 0xfa, 0xd9,
0x8c, 0x9a, 0xed, 0x94, 0x92, 0x04, 0x8e, 0x4b, 0x64, 0x58, 0x97, 0x58, 0x17, 0xfa, 0x68, 0x78,
0x11, 0x34, 0x6d, 0x7b, 0x31, 0x12, 0xc3, 0xdc, 0xc9, 0x8a, 0x66, 0xe6, 0xda, 0xce, 0x4f, 0x72,
0x78, 0xd4, 0xd7, 0x27, 0x18, 0xad, 0x05, 0x92, 0x13, 0x08, 0x14, 0xaf, 0x5b, 0x85, 0xda, 0x1c,
0x8c, 0xe8, 0xdf, 0x79, 0xc4, 0xe4, 0xaf, 0x07, 0x67, 0x19, 0xae, 0x2b, 0x21, 0x91, 0x0f, 0x39,
0x3a, 0x6e, 0xde, 0x04, 0x37, 0x7f, 0x92, 0x5b, 0xd0, 0xe3, 0xd6, 0xc4, 0x0b, 0x25, 0x24, 0xdd,
0x1a, 0x9e, 0xf3, 0xac, 0xf5, 0xc8, 0x12, 0x42, 0xba, 0xfa, 0x8e, 0x85, 0xdc, 0xc7, 0xb2, 0x2d,
0x23, 0x11, 0xcc, 0x74, 0x4a, 0x9f, 0x08, 0x4d, 0x27, 0xe7, 0x8e, 0x08, 0xcf, 0xf6, 0x10, 0x9e,
0x0f, 0x08, 0xff, 0xf2, 0x20, 0x1a, 0xcb, 0xbf, 0x11, 0xb3, 0xdd, 0x2c, 0xbf, 0xdb, 0xac, 0xff,
0x4a, 0x82, 0xbb, 0x29, 0x69, 0x90, 0x08, 0x99, 0xaf, 0x36, 0xe8, 0x90, 0x58, 0x4f, 0x2b, 0xb4,
0x96, 0xde, 0x2f, 0x2d, 0xc1, 0xb9, 0x09, 0xc2, 0xf9, 0x70, 0xc0, 0x8f, 0x4a, 0x32, 0x25, 0x85,
0xfb, 0x4c, 0xe3, 0x31, 0x5f, 0xc1, 0x8c, 0xda, 0x9a, 0x7d, 0xab, 0xe0, 0xea, 0x2e, 0xff, 0xf8,
0xf0, 0xc0, 0xf5, 0xff, 0x40, 0xeb, 0x4a, 0x52, 0x4e, 0xde, 0x42, 0xf8, 0xbe, 0xbe, 0xa2, 0x3f,
0x9a, 0xf1, 0xd2, 0xee, 0x01, 0xa7, 0x36, 0xd4, 0x5e, 0x1e, 0x3f, 0x9e, 0xc8, 0x58, 0x7c, 0xc9,
0x01, 0xf9, 0x04, 0xc7, 0xbb, 0xfb, 0x4b, 0xce, 0x77, 0x8a, 0x27, 0x1e, 0x6e, 0xfc, 0xec, 0xc6,
0x7c, 0xd7, 0xf2, 0x0b, 0x9c, 0x0c, 0x71, 0x90, 0xa4, 0x77, 0x6c, 0x72, 0x97, 0xe3, 0xe7, 0xb7,
0xd6, 0x74, 0xed, 0xbf, 0x8e, 0x5f, 0x43, 0x4b, 0x9b, 0xbc, 0xbc, 0xa5, 0x43, 0xff, 0x8b, 0xc4,
0xa7, 0x23, 0xdc, 0xef, 0xf4, 0x9f, 0x5c, 0x72, 0xb0, 0x0a, 0x4d, 0xe4, 0xf5, 0xbf, 0x00, 0x00,
0x00, 0xff, 0xff, 0xa3, 0x97, 0x3d, 0x93, 0x21, 0x05, 0x00, 0x00,
Switch to parent pointers; display components nicely This change switches from child lists to parent pointers, in the way resource ancestries are represented. This cleans up a fair bit of the old parenting logic, including all notion of ambient parent scopes (and will notably address pulumi/pulumi#435). This lets us show a more parent/child display in the output when doing planning and updating. For instance, here is an update of a lambda's text, which is logically part of a cloud timer: * cloud:timer:Timer: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:timer:Timer::lm-cts-malta-job-CleanSnapshots] * cloud:function:Function: (same) [urn=urn:pulumi:malta::lm-cloud::cloud:function:Function::lm-cts-malta-job-CleanSnapshots] * aws:serverless:Function: (same) [urn=urn:pulumi:malta::lm-cloud::aws:serverless:Function::lm-cts-malta-job-CleanSnapshots] ~ aws:lambda/function:Function: (modify) [id=lm-cts-malta-job-CleanSnapshots-fee4f3bf41280741] [urn=urn:pulumi:malta::lm-cloud::aws:lambda/function:Function::lm-cts-malta-job-CleanSnapshots] - code : archive(assets:2092f44) { // etc etc etc Note that we still get walls of text, but this will be actually quite nice when combined with pulumi/pulumi#454. I've also suppressed printing properties that didn't change during updates when --detailed was not passed, and also suppressed empty strings and zero-length arrays (since TF uses these as defaults in many places and it just makes creation and deletion quite verbose). Note that this is a far cry from everything we can possibly do here as part of pulumi/pulumi#340 (and even pulumi/pulumi#417). But it's a good start towards taming some of our output spew.
2017-11-17 03:21:41 +01:00
}