Commit graph

16 commits

Author SHA1 Message Date
joeduffy 65184ec6bd Enable PULUMI_CONFIG envvars, use them
This change adds environment variable fallbacks for configuration
variables, such that you can either set them explicitly, as a specific
variable PULUMI_CONFIG_<K>, or an entire JSON serialized bag via
PULUMI_CONFIG.

This is convenient when simply invoking programs at the command line,
via node, e.g.

    PULUMI_CONFIG_AWS_CONFIG_REGION=us-west-2 node bin/index.js

Our language host also now uses this to communicate config when invoking
a Run RPC, rather than at the command line.  This fixes pulumi/pulumi#336.
2017-10-11 18:41:52 -07:00
Pat Gavlin ee410bfe1e Add a mock resource provider for testing purposes. (#401)
This resource provider accepts a single configuration parameter, `testing:provider:module`, that is the path to a Javascript module that implements CRUD operations for a set of resource types. This allows e.g. a test case to provide its own implementation of these operations that may succeed or fail in interesting ways.

Fixes #338.
2017-10-11 15:27:34 -07:00
CyrusNajmabadi b713990b5e Enable 'use const' linter rule. (#405)
* Enable 'use const' linter rule.
2017-10-10 14:50:55 -07:00
joeduffy c5281d29f7 Expose a log module
This exposes the existing runtime logging functionality in a way meant
for 3rd-parties to consume.  This can be useful if we want to introduce
debug logging, warnings, or other things, that fit nicely with the
Pulumi CLI and overall developer workflow.
2017-10-08 12:10:46 -07:00
joeduffy 141a112950 Improve output formatting
This change improves our output formatting by generally adding
fewer prefixes.  As shown in pulumi/pulumi#359, we were being
excessively verbose in many places, including prefixing every
console.out with "langhost[nodejs].stdout: ", displaying full
stack traces for simple errors like missing configuration, etc.

Overall, this change includes the following:

* Don't prefix stdout and stderr output from the program, other
  than the standard "info:" prefix.  I experimented with various
  schemes here, but they all felt gratuitous.  Simply emitting
  the output seems fine, especially as it's closer to what would
  happen if you just ran the program under node.

* Do NOT make writes to stderr fail the plan/deploy.  Previously
  we assumed that any console.errors, for instance, meant that
  the overall program should fail.  This simply isn't how stderr
  is treated generally and meant you couldn't use certain
  logging techniques and libraries, among other things.

* Do make sure that stderr writes in the program end up going to
  stderr in the Pulumi CLI output, however, so that redirection
  works as it should.  This required a new Infoerr log level.

* Make a small fix to the planning logic so we don't attempt to
  print the summary if an error occurs.

* Finally, add a new error type, RunError, that when thrown and
  uncaught does not result in a full stack trace being printed.
  Anyone can use this, however, we currently use it for config
  errors so that we can terminate with a pretty error message,
  rather than the monstrosity shown in pulumi/pulumi#359.
2017-09-23 05:20:11 -07:00
joeduffy 22387d24cd Switch to a --parallel=P flag
This change flips the polarity on parallelism: rather than having a
--serialize flag, we will have a --parallel=P flag, and by default
we will shut off parallelism.  We aren't benefiting from it at the
moment (until we implement pulumi/pulumi-fabric#106), and there are
more hidden dependencies in places like AWS Lambdas and Permissions
than I had realized.  We may revisit the default, but this allows
us to bite off the messiness of dependsOn only when we benefit from
it.  And in any case, the --parallel=P capability will be useful.
2017-09-17 08:10:46 -07:00
joeduffy 087deb7643 Add optional dependsOn to Resource constructors
This change adds an optiona dependsOn parameter to Resource constructors,
to "force" a fake dependency between resources.  We have an extremely strong
desire to resort to using this only in unusual cases -- and instead rely
on the natural dependency DAG based on properties -- but experience in other
resource provisioning frameworks tells us that we're likely to need this in
the general case.  Indeed, we've already encountered the need in AWS's
API Gateway resources... and I suspect we'll run into more especially as we
tackle non-serverless resources like EC2 Instances, where "ambient"
dependencies are far more commonplace.

This also makes parallelism the default mode of operation, and we have a
new --serialize flag that can be used to suppress this default behavior.
Full disclosure: I expect this to become more Make-like, i.e. -j 8, where
you can specify the precise width of parallelism, when we tackle
pulumi/pulumi-fabric#106.  I also think there's a good chance we will flip
the default, so that serial execution is the default, so that developers
who don't benefit from the parallelism don't need to worry about dependsOn
in awkward ways.  This tends to be the way most tools (like Make) operate.

This fixes pulumi/pulumi-fabric#335.
2017-09-15 16:38:52 -07:00
joeduffy 67e5750742 Fix a bunch of Linux issues
There's a fair bit of clean up in here, but the meat is:

* Allocate the language runtime gRPC client connection on the
  goroutine that will use it; this eliminates race conditions.

* The biggie: there *appears* to be a bug in gRPC's implementation
  on Linux, where it doesn't implement WaitForReady properly.  The
  behavior I'm observing is that RPC calls will not retry as they
  are supposed to, but will instead spuriously fail during the RPC
  startup.  To work around this, I've added manual retry logic in
  the shared plugin creation function so that we won't even try
  to use the client connection until it is in a well-known state.
  pulumi/pulumi-fabric#337 tracks getting to the bottom of this and,
  ideally, removing the work around.

The other minor things are:

* Separate run.js into its own module, so it doesn't include
  index.js and do a bunch of random stuff it shouldn't be doing.

* Allow run.js to be invoked without a --monitor.  This makes
  testing just the run part of invocation easier (including
  config, which turned out to be super useful as I was debugging).

* Tidy up some messages.
2017-09-08 15:11:09 -07:00
joeduffy b23338d4d1 Disconnect from the host/engine properly 2017-09-07 12:33:43 -07:00
joeduffy dcefa4a9d4 Close gRPC client connections
This change closes the gRPC client connections, as they keep the
Node.js message loop alive on Linux (but, strangely, not Mac;
regardless, a good thing to do anyway...)
2017-09-07 08:32:36 -07:00
joeduffy e3a6695399 Depend only on vendored protos 2017-09-05 11:52:33 -07:00
joeduffy f718ab6501 Add a runtime.Log class
This change adds the ability to perform runtime logging, including
debug logging, that wires up to the Pulumi Fabric engine in the usual
ways.  Most stdout/stderr will automatically go to the right place,
but this lets us add some debug tracing in the implementation of the
runtime itself (and should come in handy in other places, like perhaps
the Pulumi Framework and even low-level end-user code).
2017-09-04 11:35:21 -07:00
joeduffy d8635fd4f3 Move modules to package root
The organization of packages underneath lib/ breaks the easy consumption
of submodules, a la

    import {FileAsset} from "@pulumi/pulumi-fabric/asset";

We will go back to having everything hanging off the module root directory.
2017-09-04 11:35:21 -07:00
joeduffy 1df1b6d572 Get integration tests passing
This makes a few tweaks to get the integration tests passing:

* Add `runtime: nodejs` to the minimal example's `Lumi.yaml` file.

* Remove usage of `@lumi/lumirt { printf }` and just use `console.log`.

* Remove calls to `lumijs` in the integration test framework and
  the minimal example's package.json.  Instead, we just run
  `yarn run build`, which itself internally just invokes `tsc`.

* Add package validation logic and eliminate the pkg/compiler/metadata
  library, in favor of the simpler code in pkg/engine.

* Simplify the Node.js langhost plugin CLI, and simply take an
  argument rather than requiring required and optional --flags.

* Use a default path of "." if the program path isn't provided.  This
  is a legal scenario if you've passed a pwd and just want to load
  the package's default module ("./index.js" or whatever main says).

* Add an executable script, lumi-langhost-nodejs, that fires up the
  `bin/cmd/langhost/index.js` file to serve the Node.js language plugin.
2017-09-04 11:35:21 -07:00
joeduffy 2657035e5e Add the notion of "dry runs" (plans)
This change introduces the notion of a "dry run" into the property
serialization logic, since this controls whether we wait for dependent
linked property values to arrive or not.  It also changes the test
harness to run all tests both ways: once in planning mode (when properties
will show up as "unknown" and the second time in deployment mode (when
properties will have settled to their final values).
2017-09-04 11:35:20 -07:00
joeduffy 200fecbbaa Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.

This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.

The new structure is that within the sdk/ directory we will have a client
library per language.  This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor.  This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.

Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system.  This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.

These new interfaces are surprisingly simple.  There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.

The overall orchestration goes as follows:

1) Lumi decides it needs to run a program written in language X, so
   it dynamically loads the language runtime plugin for language X.

2) Lumi passes that runtime a loopback address to its ResourceMonitor
   service, while language X will publish a connection back to its
   LanguageRuntime service, which Lumi will talk to.

3) Lumi then invokes LanguageRuntime.Run, passing information like
   the desired working directory, program name, arguments, and optional
   configuration variables to make available to the program.

4) The language X runtime receives this, unpacks it and sets up the
   necessary context, and then invokes the program.  The program then
   calls into Lumi object model abstractions that internally communicate
   back to Lumi using the ResourceMonitor interface.

5) The key here is ResourceMonitor.NewResource, which Lumi uses to
   serialize state about newly allocated resources.  Lumi receives these
   and registers them as part of the plan, doing the usual diffing, etc.,
   to decide how to proceed.  This interface is perhaps one of the
   most subtle parts of the new design, as it necessitates the use of
   promises internally to allow parallel evaluation of the resource plan,
   letting dataflow determine the available concurrency.

6) The program exits, and Lumi continues on its merry way.  If the program
   fails, the RunResponse will include information about the failure.

Due to (5), all properties on resources are now instances of a new
Property<T> type.  A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties.  Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one.  In all cases, the Property<T> does not "settle"
until its final state is known.  This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve).  As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).

Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished.  The remaining
work primarily boils down to three things:

    1) Wiring all of this up to the Lumi code.

    2) Fixing the handful of known loose ends required to make this work,
       primarily around the serialization of properties (waiting on
       unresolved ones, serializing assets properly, etc).

    3) Implementing lambda closure serialization as a native extension.

This ongoing work is part of pulumi/pulumi-fabric#311.
2017-09-04 11:35:20 -07:00