Commit graph

61 commits

Author SHA1 Message Date
joeduffy d7688da5e3 Fix a few minor pathing things 2017-09-04 11:35:21 -07:00
joeduffy 3427647f93 Implement free variable calculations
This change implements free variable calculations and wires it up
to closure serialization.  This is recursive, in the sense that
the serializer may need to call back to fetch free variables for
nested functions encountered during serialization.

The free variable calculation works by parsing the serialized
function text and walking the AST, applying the usual scoping rules
to determine what is free.  In particular, it respects nested
function boundaries, and rules around var, let, and const scoping.

We are using Acorn to perform the parsing.  I'd originally gone
down the path of using V8, so that we have one consistent parser
in the game, however unfortunately neither V8's parser nor its AST
is a stable API meant for 3rd parties.  Unlike the exising internal
V8 dependencies, this one got very deep very quickly, and I became
nervous about maintaining all those dependencies.  Furthermore,
by doing it this way, we can write the free variable logic in
JavaScript, which means one fewer C++ component to maintain.

This also includes a fairly significant amount of testing, all
of which passes! 🎉
2017-09-04 11:35:21 -07:00
joeduffy 97c5f0a568 Take an initial stab at closure serialization
This change contains an initial implementation of closure serialization
built atop V8, rather than our own custom runtime.  This requires that
we use a Node.js dynamic C++ module, so that we can access the V8
APIs directly.  No build magic is required beyond node-gyp.

For the most part, this was straight forward, except for one part: we
have to use internal V8 APIs.  This is required for two reasons:

1) We need access to the function's lexical closure environment, so
   that we may look up closure variables.  Although there is a
   tantalizingly-close v8::Object::CreationContext, its implementation
   intentionally pokes through closure contexts in order to recover
   the Function constructor context instead.  That's not what we
   want.  We want the raw, unadulterated Function::context.

2) We need to control the lexical lookups of free variables so that
   they can look past chained contexts, lexical contexts, withs, and
   eval-style context extensions.  Simply runing a v8::Script, or
   simulating an eval, doesn't do the trick.  Hence, we need to access
   the unexported v8::internal::Context::Lookup function.

There is a third reason which is not yet implemented: free variable
calculation.  I could use Esprima, or do my own scanner for free
variables, but I'd prefer to simply use the V8 parser so that we're
using the same JavaScript parser across all components.  That too
is not part of the v8.h API, so we'll need to crack it open more.

To be clear, these are still exported public APIs, in proper headers
that are distributed with both Node and V8.  They simply aren't part
of the "stable" v8.h surface area.  As a result, I do expect that
maintaining this will be tricky, and I'd like to keep exploring how
to do this without needing the internal dependency.  For instance,
although this works with node-gyp just fine, we will probably be
brittle across versions of Node/V8, when the internal APIs might be
changing.  This will introduce unfortunate versioning headaches (all,
hopefully and thankfully, caught at compile-time).
2017-09-04 11:35:21 -07:00
joeduffy d8635fd4f3 Move modules to package root
The organization of packages underneath lib/ breaks the easy consumption
of submodules, a la

    import {FileAsset} from "@pulumi/pulumi-fabric/asset";

We will go back to having everything hanging off the module root directory.
2017-09-04 11:35:21 -07:00
joeduffy c84c43d6c5 Warn if the monitor is missing
This change stops throwing an error if the resource monitor hasn't been
configured, and instead emits a warning.  This will only go out a single
time, and can be suppressed by setting a config flag, but enables running
Pulumi programs directly via `node`, which can be useful for testing.
Of course, when this is done, allocating resource objects has no effect.
2017-09-04 11:35:21 -07:00
joeduffy 56c0392ba9 Add special serialization for some properties
This change rearanges serialization of properties in a few ways:

* Mirror the asset/archive serialization that we use in the fabric
  itself, so that we can recover the nature of these objects on
  both side of the RPC boundary.

* Wait for promises to settle before marshaling resource properties.
  This allows for I/O in creating a resource's state.  Note that
  we of course still do not block awaiting resolution of resource
  output properties during dry runs (planning), because they will
  never resolve.  This is distinctly different from promises.

* Add tests for the above.
2017-09-04 11:35:21 -07:00
joeduffy cac7d905a8 Don't permit undefined for all PropertyValue<T>s
The definition of PropertyValue<T> should not imply undefined as a legal
value, since this depends entirely on whether it is a required or optional
property.  The inner guts of the runtime logic that populates properties,
of course, needs to permit undefined, but this shouldn't leak into the
user model.  This change thus eliminates undefined from PropertyValue<T>'s
definition, and pushes it into the few places where undefined is actually legal.
2017-09-04 11:35:21 -07:00
joeduffy b827f1e95c Add config helpers
This change adds getX and requireX helper functions for configuration,
making it easy for packages to convert from Lumi's current weakly typed
config system, where everything is a string, into the internal JavaScript
representation, which is often a boolean, number, or complex array/object.
2017-09-04 11:35:21 -07:00
joeduffy 9f160a7f91 Configure providers at well-defined points
As explained in pulumi/pulumi-fabric#293, we were a little ad-hoc in
how configuration was "applied" to resource providers.

In fact, config wasn't ever communicated directly to providers; instead,
the resource providers would simply ask the engine to read random heap
locations (via tokens). Now that we're on a plan where configuration gets
handed to the program at startup, and that's that, and where generally
speaking resource providers never communicate directly with the language
runtime, we need to take a different approach.

As such, the resource provider interface now offers a Configure RPC
method that the resource planning engine will invoke at the right
times with the right subset of configuration variables filtered to
just that provider's package.  This fixes pulumi/pulumi#293.
2017-09-04 11:35:21 -07:00
joeduffy 70d0fac1c0 Simplify resource provider RPC interface
This change simplifies the provider RPC interface slightly:

1) Eliminate Get.  We really don't need it anymore.  There are
   several possibly-interesting scenarios down the road that may
   demand it, but when we get there, we can consider how best to
   bring this back.  Furthermore, the old-style Get remains mostly
   incompatible with Terraform anyway.

2) Pass URNs, not type tokens, across the RPC boundary.  This gives
   the provider access to more interesting information: the type,
   still, but also the name (which is no longer an object property).
2017-09-04 11:35:21 -07:00
joeduffy 7c848bfff4 Add config to the basic/minimal test 2017-09-04 11:35:21 -07:00
joeduffy 1df1b6d572 Get integration tests passing
This makes a few tweaks to get the integration tests passing:

* Add `runtime: nodejs` to the minimal example's `Lumi.yaml` file.

* Remove usage of `@lumi/lumirt { printf }` and just use `console.log`.

* Remove calls to `lumijs` in the integration test framework and
  the minimal example's package.json.  Instead, we just run
  `yarn run build`, which itself internally just invokes `tsc`.

* Add package validation logic and eliminate the pkg/compiler/metadata
  library, in favor of the simpler code in pkg/engine.

* Simplify the Node.js langhost plugin CLI, and simply take an
  argument rather than requiring required and optional --flags.

* Use a default path of "." if the program path isn't provided.  This
  is a legal scenario if you've passed a pwd and just want to load
  the package's default module ("./index.js" or whatever main says).

* Add an executable script, lumi-langhost-nodejs, that fires up the
  `bin/cmd/langhost/index.js` file to serve the Node.js language plugin.
2017-09-04 11:35:21 -07:00
joeduffy 9599ea2e55 Get planning engine unit tests running again
We now build and run cleanly locally (for unit tests).  The
integration tests are still on the floor at the moment.
2017-09-04 11:35:21 -07:00
joeduffy f189c40f35 Wire up Lumi to the new runtime strategy
🔥 🔥 🔥  🔥 🔥 🔥

Getting closer on #311.
2017-09-04 11:35:21 -07:00
joeduffy dc3bf4bffb Regenerate Protobufs 2017-09-04 11:35:20 -07:00
joeduffy 9ffbb8d755 Eliminate lumi, lumijs, and lumirt packages
This change gets rid of the old-style @pulumi/lumi, @pulumi/lumijs,
and @pulumi/lumirt packages.  Instead, we have the new Node.js SDK.
2017-09-04 11:35:20 -07:00
joeduffy c6c74976ec Encapsulate Property creation
This changes Resource's constructor slightly, to take a map of
PropertyValues, rather than Properties.  This simplifies the interface,
lets us hide the creation of Properties (meaning we can also hide the
resolution capabilities entirely), and also avoids mistakes like
accidentally passing values and/or other resource properties directly.
2017-09-04 11:35:20 -07:00
joeduffy 2957314c18 Fix test case typos 2017-09-04 11:35:20 -07:00
joeduffy 2657035e5e Add the notion of "dry runs" (plans)
This change introduces the notion of a "dry run" into the property
serialization logic, since this controls whether we wait for dependent
linked property values to arrive or not.  It also changes the test
harness to run all tests both ways: once in planning mode (when properties
will show up as "unknown" and the second time in deployment mode (when
properties will have settled to their final values).
2017-09-04 11:35:20 -07:00
joeduffy 183fb328e4 Add a test case for linked properties 2017-09-04 11:35:20 -07:00
joeduffy 42ec6bcaf4 Add a 10x complex property test 2017-09-04 11:35:20 -07:00
joeduffy 695b1ba141 Test input/output properties
This adds a test case for the simple input/output property cases.

In particular, it neither covers "linked" properties resulting from
dataflow nor promise properties resulting from I/O operations.  But
it does test many basic JSON input and output cases.

Also fixes a few things:

* Property's `resolver` property must be set to undefined to prevent
  multiple resolutions.  (This is still in flux and I'm sure will
  change shape before being settled.)

* Use `this.link`, not `this.linked`, to tell if a property is linked.

* Push all property initialization down into the
  `runtime.registerResource` routine.  In practice, the old pattern
  didn't really work, since `this` is inaccessible prior to `super(..)`.

* Eliminate our custom marshaling and unmarshaling routines in favor
  of the nifty built-in gRPC ones.
2017-09-04 11:35:20 -07:00
joeduffy 4581469d80 Test more resource creation
This adds some additional test coverage for creation of resources.
2017-09-04 11:35:20 -07:00
joeduffy 200fecbbaa Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.

This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.

The new structure is that within the sdk/ directory we will have a client
library per language.  This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor.  This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.

Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system.  This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.

These new interfaces are surprisingly simple.  There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.

The overall orchestration goes as follows:

1) Lumi decides it needs to run a program written in language X, so
   it dynamically loads the language runtime plugin for language X.

2) Lumi passes that runtime a loopback address to its ResourceMonitor
   service, while language X will publish a connection back to its
   LanguageRuntime service, which Lumi will talk to.

3) Lumi then invokes LanguageRuntime.Run, passing information like
   the desired working directory, program name, arguments, and optional
   configuration variables to make available to the program.

4) The language X runtime receives this, unpacks it and sets up the
   necessary context, and then invokes the program.  The program then
   calls into Lumi object model abstractions that internally communicate
   back to Lumi using the ResourceMonitor interface.

5) The key here is ResourceMonitor.NewResource, which Lumi uses to
   serialize state about newly allocated resources.  Lumi receives these
   and registers them as part of the plan, doing the usual diffing, etc.,
   to decide how to proceed.  This interface is perhaps one of the
   most subtle parts of the new design, as it necessitates the use of
   promises internally to allow parallel evaluation of the resource plan,
   letting dataflow determine the available concurrency.

6) The program exits, and Lumi continues on its merry way.  If the program
   fails, the RunResponse will include information about the failure.

Due to (5), all properties on resources are now instances of a new
Property<T> type.  A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties.  Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one.  In all cases, the Property<T> does not "settle"
until its final state is known.  This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve).  As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).

Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished.  The remaining
work primarily boils down to three things:

    1) Wiring all of this up to the Lumi code.

    2) Fixing the handful of known loose ends required to make this work,
       primarily around the serialization of properties (waiting on
       unresolved ones, serializing assets properly, etc).

    3) Implementing lambda closure serialization as a native extension.

This ongoing work is part of pulumi/pulumi-fabric#311.
2017-09-04 11:35:20 -07:00
joeduffy 5fb014e53c Explicitly track default properties
This changes the RPC interfaces between Lumi and provider ever so
slightly, so that we can track default properties explicitly.  This
is required to perform accurate diffing between inputs provided by
the developer, inputs provided by the system, and outputs.  This is
particularly important for default values that may be indeterminite,
such as those we use in the bridge to auto-generate unique IDs.
Otherwise, we fail to reapply defaults correctly, and trick the
provider into thinking that properties changed when they did not.

This is a small step towards pulumi/lumi#306, in which we will defer
even more responsibility for diffing semantics to the providers.
2017-07-31 18:26:15 -07:00
joeduffy 00442b73b4 Alter the way unknown properties are serialized
This change serializes unknown properties anywhere in the entire
property structure, including deeply embedded inside object maps, etc.

This is now done in such a way that we can recover both the computed
nature of the serialized property, along with its expected eventual
type, on the other side of the RPC boundary.

This will let us have perfect fidelity with the new bridge's view on
computed properties, rather than special casing them on "one side".
2017-07-21 14:00:30 -07:00
joeduffy 4e02105355 Pass old state to the provider's API 2017-07-21 14:00:30 -07:00
joeduffy ae92e68902 Return state as part of Create and Update¬
As part of the bridge bringup, I've discoverd that the property state
returned from Creates does *not* always equal the state that is then
read from calls to Get.  (I suspect this is a bug and that they should
be equivalent, but I doubt it's fruitfal to try and track down all
occurrences of this; I bet it's widespread).  To cope with this, we will
return state from Create and Update, instead of issuing a call to Get.
This was a design we considered to start with and frankly didn't have
a super strong reason to do it the current way, other than that it seemed
elegant to place all of the Get logic in one place.

Note that providers may choose to return nil, in which case we will read
state from the provider in the usual Get style.
2017-07-21 14:00:29 -07:00
joeduffy 06ad983541 Add a ReadLocations engine-side RPC function
This adds a ReadLocations RPC function to the engine interface, alongside
the singular ReadLocation.  The plural function takes a single token that
represents a module or class and we will then return all of the module
or class (static) properties that are currently known.
2017-07-01 13:26:49 -07:00
joeduffy 2daea4c3d8 Clarify aspects of using the DCO 2017-06-26 14:46:34 -07:00
joeduffy 5362536396 Remove some obsolete names 2017-06-24 11:55:16 -07:00
joeduffy 3c1041af49 Update license headers 2017-06-23 14:53:41 -07:00
joeduffy d7093188f0 Introduce an interface to read config
This change adds an engine gRPC interface, and associated implementation,
so that plugins may do interesting things that require "phoning home".
Previously, the engine would fire up plugins and talk to them directly,
but there was no way for a plugin to ask the engine to do anything.

The motivation here is so that plugins can read evaluator state, such
as config information, but this change also allows richer logging
functionality than previously possible.  We will still auto-log any
stdout/stderr writes; however, explicit errors, warnings, informational,
and even debug messages may be written over the Log API.
2017-06-20 19:45:07 -07:00
joeduffy d044720045 Make more progress on the new deployment model
This change restructures a lot more pertaining to deployments, snapshots,
environments, and the like.

The most notable change is that the notion of a deploy.Source is introduced,
which splits the responsibility between the deploy.Plan -- which simply
understands how to compute and carry out deployment plans -- and the idea
of something that can produce new objects on-demand during deployment.

The primary such implementation is evalSource, which encapsulates an
interpreter and takes a package, args, and config map, and proceeds to run
the interpreter in a distinct goroutine.  It synchronizes as needed to
poke and prod the interpreter along its path to create new resource objects.

There are two other sources, however.  First, a nullSource, which simply
refuses to create new objects.  This can be handy when writing isolated
tests but is also used to simulate the "empty" environment as necessary to
do a complete teardown of the target environment.  Second, a fixedSource,
which takes a pre-computed array of objects, and hands those, in order, to
the planning engine; this is mostly useful as a testing technique.

Boatloads of code is now changed and updated in the various CLI commands.

This further chugs along towards pulumi/lumi#90.  The end is in sight.
2017-06-13 07:10:13 -07:00
joeduffy 0a72d5360a Modify provider creates; use get for outs
This change modifies the existing resource provider RPC interface slightly.
Instead of the Create API returning the bag of output properties, we will
rely on the Get API to do so.  As a result, this change takes an initial
whack at implementing Get on all existing AWS resources.  The Get API needs
to return a fully populated structure containing all inputs and outputs.

Believe it or not, this is actually part of pulumi/lumi#90.

This was done because just returning output properties is insufficient.
Any input properties that weren't supplied may have default values, for
example, and it is wholly reasonable to expect Lumi scripts to depend on
those values in addition to output values.

This isn't fully functional in its current form, because doing this
change turned up many other related changes required to enable output
properties.  For instance, at the moment resource properties are defined
in terms of `resource.URN`s, and yet unfortunately the provider side
knows nothing of URNs (instead preferring to deal in `resource.ID`s).
I am going to handle that in a subsequent isolated change, since it will
have far-reaching implications beyond just modifying create and get.
2017-06-01 08:36:43 -07:00
joeduffy d79c41f620 Initial support for output properties (1 of 3)
This change includes approximately 1/3rd of the change necessary
to support output properties, as per pulumi/lumi#90.

In short, the runtime now has a new hidden type, Latent<T>, which
represents a "speculative" value, whose eventual type will be T,
that we can use during evaluation in various ways.  Namely,
operations against Latent<T>s generally produce new Latent<U>s.

During planning, any Latent<T>s that end up in resource properties
are transformed into "unknown" property values.  An unknown property
value is legal only during planning-time activities, such as Check,
Name, and InspectChange.  As a result, those RPC interfaces have
been updated to include lookaside maps indicating which properties
have unknown values.  My intent is to add some helper functions to
make dealing with this circumstance more correct-by-construction.

For now, using an unresolved Latent<T> in a conditional will lead
to an error.  See pulumi/lumi#67.  Speculating beyond these -- by
supporting iterative planning and application -- is something we
want to support eventually, but it makes sense to do that as an
additive change beyond this initial support.  That is a missing 1/3.

Finally, the other missing 1/3rd which will happen much sooner
than the rest is restructuing plan application so that it will
correctly observe resolution of Latent<T> values.  Right now, the
evaluation happens in one single pass, prior to the application, and
so Latent<T>s never actually get witnessed in a resolved state.
2017-06-01 08:32:12 -07:00
joeduffy 4108c51549 Reclassify Lumi under the Apache 2.0 license
This is part of pulumi/lumi#147.
2017-05-18 14:51:52 -07:00
joeduffy dafeb77dff Rename Coconut to Lumi
This is part of pulumi/coconut#147.

After it has landed, I will rename the repo on GitHub.
2017-05-18 11:38:28 -07:00
joeduffy 47ef3f673b Rename PreviewUpdate (again)
Unfortunately, this wasn't a great name.  The old one stunk, but the
new one was misleading at best.  The thing is, this isn't about performing
an update -- it's about NOT doing an update, depending on its return value.
Further, it's not just previewing the changes, it is actively making a
decision on what to do in response to them.  InspectUpdate seems to convey
this and I've unified the InspectUpdate and Update routines to take a
ChangeRequest, instead of UpdateRequest, to help imply the desired behavior.
2017-04-27 11:18:49 -07:00
joeduffy d6abea728c Add outputs to the Create provider's return
In order to support output properties (pulumi/coconut#90), we need to
modify the Create gRPC interface for resource providers slightly.  In
addition to returning the ID, we need to also return any properties
computed by the AWS provider itself.  For instance, this includes ARNs
and IDs of various kinds.  This change simply propagates the resources
but we don't actually support reading the outputs just yet.
2017-04-21 14:15:06 -07:00
joeduffy 0b6e262b46 Rename resource provider methods
This change renames two provider methods:

    * Read becomes Get.

    * UpdateImpact becomes PreviewUpdate.

These just read a whole lot nicer than the old names.
2017-04-20 14:09:00 -07:00
joeduffy bf8bf976de Add a cocogo SDK package
This change adds a rudimentary cocogo SDK package.  The only thing in
here is a cocogo.Resource type which will serve as the base marker for
all resource classes in IDL packages (see pulumi/coconut#133).
2017-04-15 07:47:10 -07:00
joeduffy 95f59273c8 Update copyright notices from 2016 to 2017 2017-03-14 19:26:14 -07:00
joeduffy 705880cb7f Add the ability to specify analyzers
This change adds the ability to specify analyzers in two ways:

1) By listing them in the project file, for example:

        analyzers:
            - acmecorp/security
            - acmecorp/gitflow

2) By explicitly listing them on the CLI, as a "one off":

        $ coco deploy <env> \
            --analyzer=acmecorp/security \
            --analyzer=acmecorp/gitflow

This closes out pulumi/coconut#119.
2017-03-11 10:07:34 -08:00
joeduffy 45064d6299 Add basic analyzer support
This change introduces the basic requirements for analyzers, as per
pulumi/coconut#119.  In particular, an analyzer can implement either,
or both, of the RPC methods, Analyze and AnalyzeResource.  The former
is meant to check an overall deployment (e.g., to ensure it has been
signed off on) and the latter is to check individual resources (e.g.,
to ensure properties of them are correct, such as checking style,
security, etc. rules).  These run simultaneous to overall checking.

Analyzers are loaded as plugins just like providers are.  The difference
is mainly in their naming ("analyzer-" prefix, rather than "resource-"),
and the RPC methods that they support.

This isn't 100% functional since we need a way to specify at the CLI
that a particular analyzer should be run, in addition to a way of
recording which analyzers certain projects should use in their manifests.
2017-03-10 23:49:17 -08:00
joeduffy 6194a59798 Add a pre-pass to validate resources before creating/updating
This change adds a new Check RPC method on the provider interface,
permitting resource providers to perform arbitrary verification on
the values of properties.  This is useful for validating things
that might be difficult to express in the type system, and it runs
before *any* modifications are run (so failures can be caight early
before it's too late).  My favorite motivating example is verifying
that an AWS EC2 instance's AMI is available within the target region.

This resolves pulumi/coconut#107, although we aren't using this
in any resource providers just yet.  I'll add a work item now for that...
2017-03-02 18:15:38 -08:00
joeduffy 523c669a03 Track which updates triggered a replacement
This change tracks which updates triggered a replacement.  This enables
better output and diagnostics.  For example, we now colorize those
properties differently in the output.  This makes it easier to diagnose
why an unexpected resource might be getting deleted and recreated.
2017-03-02 15:24:39 -08:00
joeduffy bd613a33e6 Make replacement first class
This change, part of pulumi/coconut#105, rearranges support for
resource replacement.  The old model didn't properly account for
the cascading updates and possible replacement of dependencies.

Namely, we need to model a replacement as a creation followed by
a deletion, inserted into the overall DAG correctly so that any
resources that must be updated are updated after the creation but
prior to the deletion.  This is done by inserting *three* nodes
into the graph per replacement: a physical creation step, a
physical deletion step, and a logical replacement step.  The logical
step simply makes it nicer in the output (the plan output shows
a single "replacement" rather than the fine-grained outputs, unless
they are requested with --show-replace-steps).  It also makes it
easier to fold all of the edges into a single linchpin node.

As part of this, the update step no longer gets to choose whether
to recreate the resource.  Instead, the engine takes care of
orchestrating the replacement through actual create and delete calls.
2017-03-02 09:52:08 -08:00
joeduffy fe0bb4a265 Support replacement IDs
This change introduces a new RPC function to the provider interface;
in pseudo-code:

    UpdateImpact(id ID, t Type, olds PropertyMap, news PropertyMap)
        (bool, PropertyMap, error)

Essentially, during the planning phase, we will consult each provider
about the nature of a proposed update.  This update includes a set of
old properties and the new ones and, if the resource provider will need
to replace the property as a result of the update, it will return true;
in general, the PropertyMap will eventually contain a list of all
properties that will be modified as a result of the operation (see below).

The planning phase reacts to this by propagating the change to dependent
resources, so that they know that the ID will change (and so that they
can recalculate their own state accordingly, possibly leading to a ripple
effect).  This ensures the overall DAG / schedule is ordered correctly.

This change is most of pulumi/coconut#105.  The only missing piece
is to generalize replacing the "ID" property with replacing arbitrary
properties; there are hooks in here for this, but until pulumi/coconut#90
is addressed, it doesn't make sense to make much progress on this.
2017-03-01 09:08:53 -08:00
joeduffy fbb56ab5df Coconut! 2017-02-25 07:25:33 -08:00