Commit graph

455 commits

Author SHA1 Message Date
joeduffy d9ee2429da Begin resource modeling and planning
This change introduces a new package, pkg/resource, that will form
the foundation for actually performing deployment plans and applications.

It contains the following key abstractions:

* resource.Provider is a wrapper around the CRUD operations exposed by
  underlying resource plugins.  It will eventually defer to resource.Plugin,
  which itself defers -- over an RPC interface -- to the actual plugin, one
  per package exposing resources.  The provider will also understand how to
  load, cache, and overall manage the lifetime of each plugin.

* resource.Resource is the actual resource object.  This is created from
  the overall evaluation object graph, but is simplified.  It contains only
  serializable properties, for example.  Inter-resource references are
  translated into serializable monikers as part of creating the resource.

* resource.Moniker is a serializable string that uniquely identifies
  a resource in the Mu system.  This is in contrast to resource IDs, which
  are generated by resource providers and generally opaque to the Mu
  system.  See marapongo/mu#69 for more information about monikers and some
  of their challenges (namely, designing a stable algorithm).

* resource.Snapshot is a "snapshot" taken from a graph of resources.  This
  is a transitive closure of state representing one possible configuration
  of a given environment.  This is what plans are created from.  Eventually,
  two snapshots will be diffable, in order to perform incremental updates.
  One way of thinking about this is that a snapshot of the old world's state
  is advanced, one step at a time, until it reaches a desired snapshot of
  the new world's state.

* resource.Plan is a plan for carrying out desired CRUD operations on a target
  environment.  Each plan consists of zero-to-many Steps, each of which has
  a CRUD operation type, a resource target, and a next step.  This is an
  enumerator because it is possible the plan will evolve -- and introduce new
  steps -- as it is carried out (hence, the Next() method).  At the moment, this
  is linearized; eventually, we want to make this more "graph-like" so that we
  can exploit available parallelism within the dependencies.

There are tons of TODOs remaining.  However, the `mu plan` command is functioning
with these new changes -- including colorization FTW -- so I'm landing it now.

This is part of marapongo/mu#38 and marapongo/mu#41.
2017-02-17 12:31:48 -08:00
joeduffy 6b60852c76 Generate Golang Protobuf/gRPC code
This change moves the RPC definitions to the pkg/murpc package,
underneath the proto folder.  This is to ensure that the resulting
Protobufs get a good package name "murpc" that is unique within the
overall toolchain.  It also includes a `generate.sh` script that
can be used to manually regenerate client/server code.  Finally,
we are actually checking in the generated files underneath pkg/murpc.
2017-02-10 09:08:06 -08:00
joeduffy 20452a99e1 Add Protobuf definitions for resource providers 2017-02-10 08:55:26 -08:00
joeduffy 8af53d5f69 Burn the ships
This change deletes a bunch of old legacy code.  I've tagged the
prior changelist as "0.1" in case we need to go back and recover
some of the code (as I expect some of the constraint type logic
and AWS-specific code to come in handy down the road).

🔥 🔥 🔥
2017-01-25 17:32:57 -08:00
joeduffy 729af81e44 Move all cloud switching to mu/x MuPackage
In the old system, the core runtime/toolset understood that we are targeting
specific cloud providers at a very deep level.  In fact, the whole code-generation
phase of the compiler was based on it.

In the new system, this difference is less of a "special" concern, and more of
a general one of mapping MuIL objects to resource providers, and letting *them*
gather up any configuration they need in a more general purpose way.

Therefore, most of this stuff can go.  I've merged in a small amount of it to
the mu/x MuPackage, since that has to switch on cloud IaaS and CaaS providers in
order to decide what kind of resources to provision.  For example, it has a
mu.x.Cluster stack type that itself provisions a lot of the barebone essential
resources, like a virtual private cloud and its associated networking components.

I suspect *some* knowledge of this will surface again as we implement more
runtime presence (discovery, etc).  But for the time being, it's a distraction
getting the core model running.  I've retained some of the old AWS code in the
new pkg/resource/providers/aws package, in case I want to reuse some of it when
implementing our first AWS resource providers.  (Although we won't be using
CloudFormation, some of the name generation code might be useful.)  So, the
ships aren't completely burned to the ground, but they are certainly on 🔥.
2017-01-20 09:46:59 -08:00