Commit graph

6 commits

Author SHA1 Message Date
joeduffy f2d53459eb Add the notion of stable states
If a resource's planning operation is to do nothing, we can safely
assume that all of its properties are stable.  This can be used during
planning to avoid cascading updates that we know will never happen.
2017-09-05 10:01:00 -07:00
joeduffy 9f160a7f91 Configure providers at well-defined points
As explained in pulumi/pulumi-fabric#293, we were a little ad-hoc in
how configuration was "applied" to resource providers.

In fact, config wasn't ever communicated directly to providers; instead,
the resource providers would simply ask the engine to read random heap
locations (via tokens). Now that we're on a plan where configuration gets
handed to the program at startup, and that's that, and where generally
speaking resource providers never communicate directly with the language
runtime, we need to take a different approach.

As such, the resource provider interface now offers a Configure RPC
method that the resource planning engine will invoke at the right
times with the right subset of configuration variables filtered to
just that provider's package.  This fixes pulumi/pulumi#293.
2017-09-04 11:35:21 -07:00
joeduffy 70d0fac1c0 Simplify resource provider RPC interface
This change simplifies the provider RPC interface slightly:

1) Eliminate Get.  We really don't need it anymore.  There are
   several possibly-interesting scenarios down the road that may
   demand it, but when we get there, we can consider how best to
   bring this back.  Furthermore, the old-style Get remains mostly
   incompatible with Terraform anyway.

2) Pass URNs, not type tokens, across the RPC boundary.  This gives
   the provider access to more interesting information: the type,
   still, but also the name (which is no longer an object property).
2017-09-04 11:35:21 -07:00
joeduffy f189c40f35 Wire up Lumi to the new runtime strategy
🔥 🔥 🔥  🔥 🔥 🔥

Getting closer on #311.
2017-09-04 11:35:21 -07:00
joeduffy dc3bf4bffb Regenerate Protobufs 2017-09-04 11:35:20 -07:00
joeduffy 200fecbbaa Implement initial Lumi-as-a-library
This is the initial step towards redefining Lumi as a library that runs
atop vanilla Node.js/V8, rather than as its own runtime.

This change is woefully incomplete but this includes some of the more
stable pieces of my current work-in-progress.

The new structure is that within the sdk/ directory we will have a client
library per language.  This client library contains the object model for
Lumi (resources, properties, assets, config, etc), in addition to the
"language runtime host" components required to interoperate with the
Lumi resource monitor.  This resource monitor is effectively what we call
"Lumi" today, in that it's the thing orchestrating plans and deployments.

Inside the sdk/ directory, you will find nodejs/, the Node.js client
library, alongside proto/, the definitions for RPC interop between the
different pieces of the system.  This includes existing RPC definitions
for resource providers, etc., in addition to the new ones for hosting
different language runtimes from within Lumi.

These new interfaces are surprisingly simple.  There is effectively a
bidirectional RPC channel between the Lumi resource monitor, represented
by the lumirpc.ResourceMonitor interface, and each language runtime,
represented by the lumirpc.LanguageRuntime interface.

The overall orchestration goes as follows:

1) Lumi decides it needs to run a program written in language X, so
   it dynamically loads the language runtime plugin for language X.

2) Lumi passes that runtime a loopback address to its ResourceMonitor
   service, while language X will publish a connection back to its
   LanguageRuntime service, which Lumi will talk to.

3) Lumi then invokes LanguageRuntime.Run, passing information like
   the desired working directory, program name, arguments, and optional
   configuration variables to make available to the program.

4) The language X runtime receives this, unpacks it and sets up the
   necessary context, and then invokes the program.  The program then
   calls into Lumi object model abstractions that internally communicate
   back to Lumi using the ResourceMonitor interface.

5) The key here is ResourceMonitor.NewResource, which Lumi uses to
   serialize state about newly allocated resources.  Lumi receives these
   and registers them as part of the plan, doing the usual diffing, etc.,
   to decide how to proceed.  This interface is perhaps one of the
   most subtle parts of the new design, as it necessitates the use of
   promises internally to allow parallel evaluation of the resource plan,
   letting dataflow determine the available concurrency.

6) The program exits, and Lumi continues on its merry way.  If the program
   fails, the RunResponse will include information about the failure.

Due to (5), all properties on resources are now instances of a new
Property<T> type.  A Property<T> is just a thin wrapper over a T, but it
encodes the special properties of Lumi resource properties.  Namely, it
is possible to create one out of a T, other Property<T>, Promise<T>, or
to freshly allocate one.  In all cases, the Property<T> does not "settle"
until its final state is known.  This cannot occur before the deployment
actually completes, and so in general it's not safe to depend on concrete
resolutions of values (unlike ordinary Promise<T>s which are usually
expected to resolve).  As a result, all derived computations are meant to
use the `then` function (as in `someValue.then(v => v+x)`).

Although this change includes tests that may be run in isolation to test
the various RPC interactions, we are nowhere near finished.  The remaining
work primarily boils down to three things:

    1) Wiring all of this up to the Lumi code.

    2) Fixing the handful of known loose ends required to make this work,
       primarily around the serialization of properties (waiting on
       unresolved ones, serializing assets properly, etc).

    3) Implementing lambda closure serialization as a native extension.

This ongoing work is part of pulumi/pulumi-fabric#311.
2017-09-04 11:35:20 -07:00