pulumi/pkg/resource/deploy/deployment_executor.go
Ian Wahbe 272c4643b2
Update error handling (#8406)
This is the result of a change applied via `go-rewrap-errors`.
2021-11-12 18:37:17 -08:00

599 lines
21 KiB
Go

// Copyright 2016-2018, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package deploy
import (
"context"
"errors"
"fmt"
"strings"
"github.com/pulumi/pulumi/pkg/v3/resource/deploy/providers"
"github.com/pulumi/pulumi/pkg/v3/resource/graph"
"github.com/pulumi/pulumi/sdk/v3/go/common/diag"
"github.com/pulumi/pulumi/sdk/v3/go/common/resource"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/logging"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/result"
)
// deploymentExecutor is responsible for taking a deployment and driving it to completion.
// Its primary responsibility is to own a `stepGenerator` and `stepExecutor`, serving
// as the glue that links the two subsystems together.
type deploymentExecutor struct {
deployment *Deployment // The deployment that we are executing
stepGen *stepGenerator // step generator owned by this deployment
stepExec *stepExecutor // step executor owned by this deployment
}
// A set is returned of all the target URNs to facilitate later callers. The set can be 'nil'
// indicating no targets, or will be non-nil and non-empty if there are targets. Only URNs in the
// original array are in the set. i.e. it's only checked for containment. The value of the map is
// unused.
func createTargetMap(targets []resource.URN) map[resource.URN]bool {
if len(targets) == 0 {
return nil
}
targetMap := make(map[resource.URN]bool)
for _, target := range targets {
targetMap[target] = true
}
return targetMap
}
// checkTargets validates that all the targets passed in refer to existing resources. Diagnostics
// are generated for any target that cannot be found. The target must either have existed in the stack
// prior to running the operation, or it must be the urn for a resource that was created.
func (ex *deploymentExecutor) checkTargets(targets []resource.URN, op StepOp) result.Result {
if len(targets) == 0 {
return nil
}
olds := ex.deployment.olds
var news map[resource.URN]bool
if ex.stepGen != nil {
news = ex.stepGen.urns
}
hasUnknownTarget := false
for _, target := range targets {
hasOld := false
if _, has := olds[target]; has {
hasOld = true
}
hasNew := news != nil && news[target]
if !hasOld && !hasNew {
hasUnknownTarget = true
logging.V(7).Infof("Resource to %v (%v) could not be found in the stack.", op, target)
if strings.Contains(string(target), "$") {
ex.deployment.Diag().Errorf(diag.GetTargetCouldNotBeFoundError(), target)
} else {
ex.deployment.Diag().Errorf(diag.GetTargetCouldNotBeFoundDidYouForgetError(), target)
}
}
}
if hasUnknownTarget {
return result.Bail()
}
return nil
}
// reportExecResult issues an appropriate diagnostic depending on went wrong.
func (ex *deploymentExecutor) reportExecResult(message string, preview bool) {
kind := "update"
if preview {
kind = "preview"
}
ex.reportError("", errors.New(kind+" "+message))
}
// reportError reports a single error to the executor's diag stream with the indicated URN for context.
func (ex *deploymentExecutor) reportError(urn resource.URN, err error) {
ex.deployment.Diag().Errorf(diag.RawMessage(urn, err.Error()))
}
// Execute executes a deployment to completion, using the given cancellation context and running a preview
// or update.
func (ex *deploymentExecutor) Execute(callerCtx context.Context, opts Options, preview bool) result.Result {
// Set up a goroutine that will signal cancellation to the deployment's plugins if the caller context is cancelled.
// We do not hang this off of the context we create below because we do not want the failure of a single step to
// cause other steps to fail.
done := make(chan bool)
defer close(done)
go func() {
select {
case <-callerCtx.Done():
logging.V(4).Infof("deploymentExecutor.Execute(...): signalling cancellation to providers...")
cancelErr := ex.deployment.ctx.Host.SignalCancellation()
if cancelErr != nil {
logging.V(4).Infof("deploymentExecutor.Execute(...): failed to signal cancellation to providers: %v", cancelErr)
}
case <-done:
logging.V(4).Infof("deploymentExecutor.Execute(...): exiting provider canceller")
}
}()
// If this deployment is an import, run the imports and exit.
if ex.deployment.isImport {
return ex.importResources(callerCtx, opts, preview)
}
// Before doing anything else, optionally refresh each resource in the base checkpoint.
if opts.Refresh {
if res := ex.refresh(callerCtx, opts, preview); res != nil {
return res
}
if opts.RefreshOnly {
return nil
}
}
// The set of -t targets provided on the command line. 'nil' means 'update everything'.
// Non-nil means 'update only in this set'. We don't error if the user specifies a target
// during `update` that we don't know about because it might be the urn for a resource they
// want to create.
updateTargetsOpt := createTargetMap(opts.UpdateTargets)
replaceTargetsOpt := createTargetMap(opts.ReplaceTargets)
destroyTargetsOpt := createTargetMap(opts.DestroyTargets)
if res := ex.checkTargets(opts.ReplaceTargets, OpReplace); res != nil {
return res
}
if res := ex.checkTargets(opts.DestroyTargets, OpDelete); res != nil {
return res
}
if (updateTargetsOpt != nil || replaceTargetsOpt != nil) && destroyTargetsOpt != nil {
contract.Failf("Should not be possible to have both .DestroyTargets and .UpdateTargets or .ReplaceTargets")
}
// Begin iterating the source.
src, res := ex.deployment.source.Iterate(callerCtx, opts, ex.deployment)
if res != nil {
return res
}
// Set up a step generator for this deployment.
ex.stepGen = newStepGenerator(ex.deployment, opts, updateTargetsOpt, replaceTargetsOpt)
// Retire any pending deletes that are currently present in this deployment.
if res := ex.retirePendingDeletes(callerCtx, opts, preview); res != nil {
return res
}
// Derive a cancellable context for this deployment. We will only cancel this context if some piece of the
// deployment's execution fails.
ctx, cancel := context.WithCancel(callerCtx)
// Set up a step generator and executor for this deployment.
ex.stepExec = newStepExecutor(ctx, cancel, ex.deployment, opts, preview, false)
// We iterate the source in its own goroutine because iteration is blocking and we want the main loop to be able to
// respond to cancellation requests promptly.
type nextEvent struct {
Event SourceEvent
Result result.Result
}
incomingEvents := make(chan nextEvent)
go func() {
for {
event, sourceErr := src.Next()
select {
case incomingEvents <- nextEvent{event, sourceErr}:
if event == nil {
return
}
case <-done:
logging.V(4).Infof("deploymentExecutor.Execute(...): incoming events goroutine exiting")
return
}
}
}()
// The main loop. We'll continuously select for incoming events and the cancellation signal. There are
// a three ways we can exit this loop:
// 1. The SourceIterator sends us a `nil` event. This means that we're done processing source events and
// we should begin processing deletes.
// 2. The SourceIterator sends us an error. This means some error occurred in the source program and we
// should bail.
// 3. The stepExecCancel cancel context gets canceled. This means some error occurred in the step executor
// and we need to bail. This can also happen if the user hits Ctrl-C.
canceled, res := func() (bool, result.Result) {
logging.V(4).Infof("deploymentExecutor.Execute(...): waiting for incoming events")
for {
select {
case event := <-incomingEvents:
logging.V(4).Infof("deploymentExecutor.Execute(...): incoming event (nil? %v, %v)", event.Event == nil,
event.Result)
if event.Result != nil {
if !event.Result.IsBail() {
ex.reportError("", event.Result.Error())
}
cancel()
// We reported any errors above. So we can just bail now.
return false, result.Bail()
}
if event.Event == nil {
return false, ex.performDeletes(ctx, updateTargetsOpt, destroyTargetsOpt)
}
if res := ex.handleSingleEvent(event.Event); res != nil {
if resErr := res.Error(); resErr != nil {
logging.V(4).Infof("deploymentExecutor.Execute(...): error handling event: %v", resErr)
ex.reportError(ex.deployment.generateEventURN(event.Event), resErr)
}
cancel()
return false, result.Bail()
}
case <-ctx.Done():
logging.V(4).Infof("deploymentExecutor.Execute(...): context finished: %v", ctx.Err())
// NOTE: we use the presence of an error in the caller context in order to distinguish caller-initiated
// cancellation from internally-initiated cancellation.
return callerCtx.Err() != nil, nil
}
}
}()
ex.stepExec.WaitForCompletion()
logging.V(4).Infof("deploymentExecutor.Execute(...): step executor has completed")
// Now that we've performed all steps in the deployment, ensure that the list of targets to update was
// valid. We have to do this *after* performing the steps as the target list may have referred
// to a resource that was created in one of hte steps.
if res == nil {
res = ex.checkTargets(opts.UpdateTargets, OpUpdate)
}
if res != nil && res.IsBail() {
return res
}
// If the step generator and step executor were both successful, then we send all the resources
// observed to be analyzed. Otherwise, this step is skipped.
if res == nil && !ex.stepExec.Errored() {
res := ex.stepGen.AnalyzeResources()
if res != nil {
if resErr := res.Error(); resErr != nil {
logging.V(4).Infof("deploymentExecutor.Execute(...): error analyzing resources: %v", resErr)
ex.reportError("", resErr)
}
return result.Bail()
}
}
// Figure out if execution failed and why. Step generation and execution errors trump cancellation.
if res != nil || ex.stepExec.Errored() || ex.stepGen.Errored() {
// TODO(cyrusn): We seem to be losing any information about the original 'res's errors. Should
// we be doing a merge here?
ex.reportExecResult("failed", preview)
return result.Bail()
} else if canceled {
ex.reportExecResult("canceled", preview)
return result.Bail()
}
return res
}
func (ex *deploymentExecutor) performDeletes(
ctx context.Context, updateTargetsOpt, destroyTargetsOpt map[resource.URN]bool) result.Result {
defer func() {
// We're done here - signal completion so that the step executor knows to terminate.
ex.stepExec.SignalCompletion()
}()
prev := ex.deployment.prev
if prev == nil || len(prev.Resources) == 0 {
return nil
}
logging.V(7).Infof("performDeletes(...): beginning")
// At this point we have generated the set of resources above that we would normally want to
// delete. However, if the user provided -target's we will only actually delete the specific
// resources that are in the set explicitly asked for.
var targetsOpt map[resource.URN]bool
if updateTargetsOpt != nil {
targetsOpt = updateTargetsOpt
} else if destroyTargetsOpt != nil {
targetsOpt = destroyTargetsOpt
}
deleteSteps, res := ex.stepGen.GenerateDeletes(targetsOpt)
if res != nil {
logging.V(7).Infof("performDeletes(...): generating deletes produced error result")
return res
}
deletes := ex.stepGen.ScheduleDeletes(deleteSteps)
// ScheduleDeletes gives us a list of lists of steps. Each list of steps can safely be executed
// in parallel, but each list must execute completes before the next list can safely begin
// executing.
//
// This is not "true" delete parallelism, since there may be resources that could safely begin
// deleting but we won't until the previous set of deletes fully completes. This approximation
// is conservative, but correct.
for _, antichain := range deletes {
logging.V(4).Infof("deploymentExecutor.Execute(...): beginning delete antichain")
tok := ex.stepExec.ExecuteParallel(antichain)
tok.Wait(ctx)
logging.V(4).Infof("deploymentExecutor.Execute(...): antichain complete")
}
// After executing targeted deletes, we may now have resources that depend on the resource that
// were deleted. Go through and clean things up accordingly for them.
if targetsOpt != nil {
resourceToStep := make(map[*resource.State]Step)
for _, step := range deleteSteps {
resourceToStep[ex.deployment.olds[step.URN()]] = step
}
ex.rebuildBaseState(resourceToStep, false /*refresh*/)
}
return nil
}
// handleSingleEvent handles a single source event. For all incoming events, it produces a chain that needs
// to be executed and schedules the chain for execution.
func (ex *deploymentExecutor) handleSingleEvent(event SourceEvent) result.Result {
contract.Require(event != nil, "event != nil")
var steps []Step
var res result.Result
switch e := event.(type) {
case RegisterResourceEvent:
logging.V(4).Infof("deploymentExecutor.handleSingleEvent(...): received RegisterResourceEvent")
steps, res = ex.stepGen.GenerateSteps(e)
case ReadResourceEvent:
logging.V(4).Infof("deploymentExecutor.handleSingleEvent(...): received ReadResourceEvent")
steps, res = ex.stepGen.GenerateReadSteps(e)
case RegisterResourceOutputsEvent:
logging.V(4).Infof("deploymentExecutor.handleSingleEvent(...): received register resource outputs")
ex.stepExec.ExecuteRegisterResourceOutputs(e)
return nil
}
if res != nil {
return res
}
ex.stepExec.ExecuteSerial(steps)
return nil
}
// retirePendingDeletes deletes all resources that are pending deletion. Run before the start of a deployment, this pass
// ensures that the engine never sees any resources that are pending deletion from a previous deployment.
//
// retirePendingDeletes re-uses the deployment executor's step generator but uses its own step executor.
func (ex *deploymentExecutor) retirePendingDeletes(callerCtx context.Context, opts Options,
preview bool) result.Result {
contract.Require(ex.stepGen != nil, "ex.stepGen != nil")
steps := ex.stepGen.GeneratePendingDeletes()
if len(steps) == 0 {
logging.V(4).Infoln("deploymentExecutor.retirePendingDeletes(...): no pending deletions")
return nil
}
logging.V(4).Infof("deploymentExecutor.retirePendingDeletes(...): executing %d steps", len(steps))
ctx, cancel := context.WithCancel(callerCtx)
stepExec := newStepExecutor(ctx, cancel, ex.deployment, opts, preview, false)
antichains := ex.stepGen.ScheduleDeletes(steps)
// Submit the deletes for execution and wait for them all to retire.
for _, antichain := range antichains {
for _, step := range antichain {
ex.deployment.Ctx().StatusDiag.Infof(diag.RawMessage(step.URN(), "completing deletion from previous update"))
}
tok := stepExec.ExecuteParallel(antichain)
tok.Wait(ctx)
}
stepExec.SignalCompletion()
stepExec.WaitForCompletion()
// Like Refresh, we use the presence of an error in the caller's context to detect whether or not we have been
// cancelled.
canceled := callerCtx.Err() != nil
if stepExec.Errored() {
ex.reportExecResult("failed", preview)
return result.Bail()
} else if canceled {
ex.reportExecResult("canceled", preview)
return result.Bail()
}
return nil
}
// import imports a list of resources into a stack.
func (ex *deploymentExecutor) importResources(callerCtx context.Context, opts Options, preview bool) result.Result {
if len(ex.deployment.imports) == 0 {
return nil
}
// Create an executor for this import.
ctx, cancel := context.WithCancel(callerCtx)
stepExec := newStepExecutor(ctx, cancel, ex.deployment, opts, preview, true)
importer := &importer{
deployment: ex.deployment,
executor: stepExec,
preview: preview,
}
res := importer.importResources(ctx)
stepExec.SignalCompletion()
stepExec.WaitForCompletion()
// NOTE: we use the presence of an error in the caller context in order to distinguish caller-initiated
// cancellation from internally-initiated cancellation.
canceled := callerCtx.Err() != nil
if res != nil || stepExec.Errored() {
if res != nil && res.Error() != nil {
ex.reportExecResult(fmt.Sprintf("failed: %s", res.Error()), preview)
} else {
ex.reportExecResult("failed", preview)
}
return result.Bail()
} else if canceled {
ex.reportExecResult("canceled", preview)
return result.Bail()
}
return nil
}
// refresh refreshes the state of the base checkpoint file for the current deployment in memory.
func (ex *deploymentExecutor) refresh(callerCtx context.Context, opts Options, preview bool) result.Result {
prev := ex.deployment.prev
if prev == nil || len(prev.Resources) == 0 {
return nil
}
// Make sure if there were any targets specified, that they all refer to existing resources.
targetMapOpt := createTargetMap(opts.RefreshTargets)
if res := ex.checkTargets(opts.RefreshTargets, OpRefresh); res != nil {
return res
}
// If the user did not provide any --target's, create a refresh step for each resource in the
// old snapshot. If they did provider --target's then only create refresh steps for those
// specific targets.
steps := []Step{}
resourceToStep := map[*resource.State]Step{}
for _, res := range prev.Resources {
if targetMapOpt == nil || targetMapOpt[res.URN] {
step := NewRefreshStep(ex.deployment, res, nil)
steps = append(steps, step)
resourceToStep[res] = step
}
}
// Fire up a worker pool and issue each refresh in turn.
ctx, cancel := context.WithCancel(callerCtx)
stepExec := newStepExecutor(ctx, cancel, ex.deployment, opts, preview, true)
stepExec.ExecuteParallel(steps)
stepExec.SignalCompletion()
stepExec.WaitForCompletion()
ex.rebuildBaseState(resourceToStep, true /*refresh*/)
// NOTE: we use the presence of an error in the caller context in order to distinguish caller-initiated
// cancellation from internally-initiated cancellation.
canceled := callerCtx.Err() != nil
if stepExec.Errored() {
ex.reportExecResult("failed", preview)
return result.Bail()
} else if canceled {
ex.reportExecResult("canceled", preview)
return result.Bail()
}
return nil
}
func (ex *deploymentExecutor) rebuildBaseState(resourceToStep map[*resource.State]Step, refresh bool) {
// Rebuild this deployment's map of old resources and dependency graph, stripping out any deleted
// resources and repairing dependency lists as necessary. Note that this updates the base
// snapshot _in memory_, so it is critical that any components that use the snapshot refer to
// the same instance and avoid reading it concurrently with this rebuild.
//
// The process of repairing dependency lists is a bit subtle. Because multiple physical
// resources may share a URN, the ability of a particular URN to be referenced in a dependency
// list can change based on the dependent resource's position in the resource list. For example,
// consider the following list of resources, where each resource is a (URN, ID, Dependencies)
// tuple:
//
// [ (A, 0, []), (B, 0, [A]), (A, 1, []), (A, 2, []), (C, 0, [A]) ]
//
// Let `(A, 0, [])` and `(A, 2, [])` be deleted by the refresh. This produces the following
// intermediate list before dependency lists are repaired:
//
// [ (B, 0, [A]), (A, 1, []), (C, 0, [A]) ]
//
// In order to repair the dependency lists, we iterate over the intermediate resource list,
// keeping track of which URNs refer to at least one physical resource at each point in the
// list, and remove any dependencies that refer to URNs that do not refer to any physical
// resources. This process produces the following final list:
//
// [ (B, 0, []), (A, 1, []), (C, 0, [A]) ]
//
// Note that the correctness of this process depends on the fact that the list of resources is a
// topological sort of its corresponding dependency graph, so a resource always appears in the
// list after any resources on which it may depend.
resources := []*resource.State{}
referenceable := make(map[resource.URN]bool)
olds := make(map[resource.URN]*resource.State)
for _, s := range ex.deployment.prev.Resources {
var old, new *resource.State
if step, has := resourceToStep[s]; has {
// We produced a refresh step for this specific resource. Use the new information about
// its dependencies during the update.
old = step.Old()
new = step.New()
} else {
// We didn't do anything with this resource. However, we still may want to update its
// dependencies. So use this resource itself as the 'new' one to update.
old = s
new = s
}
if new == nil {
if refresh {
contract.Assert(old.Custom)
contract.Assert(!providers.IsProviderType(old.Type))
}
continue
}
// Remove any deleted resources from this resource's dependency list.
if len(new.Dependencies) != 0 {
deps := make([]resource.URN, 0, len(new.Dependencies))
for _, d := range new.Dependencies {
if referenceable[d] {
deps = append(deps, d)
}
}
new.Dependencies = deps
}
// Add this resource to the resource list and mark it as referenceable.
resources = append(resources, new)
referenceable[new.URN] = true
// Do not record resources that are pending deletion in the "olds" lookup table.
if !new.Delete {
olds[new.URN] = new
}
}
ex.deployment.prev.Resources = resources
ex.deployment.olds, ex.deployment.depGraph = olds, graph.NewDependencyGraph(resources)
}