pulumi/pkg/engine/events.go
Pat Gavlin a222705143
Implement first-class providers. (#1695)
### First-Class Providers
These changes implement support for first-class providers. First-class
providers are provider plugins that are exposed as resources via the
Pulumi programming model so that they may be explicitly and multiply
instantiated. Each instance of a provider resource may be configured
differently, and configuration parameters may be source from the
outputs of other resources.

### Provider Plugin Changes
In order to accommodate the need to verify and diff provider
configuration and configure providers without complete configuration
information, these changes adjust the high-level provider plugin
interface. Two new methods for validating a provider's configuration
and diffing changes to the same have been added (`CheckConfig` and
`DiffConfig`, respectively), and the type of the configuration bag
accepted by `Configure` has been changed to a `PropertyMap`.

These changes have not yet been reflected in the provider plugin gRPC
interface. We will do this in a set of follow-up changes. Until then,
these methods are implemented by adapters:
- `CheckConfig` validates that all configuration parameters are string
  or unknown properties. This is necessary because existing plugins
  only accept string-typed configuration values.
- `DiffConfig` either returns "never replace" if all configuration
  values are known or "must replace" if any configuration value is
  unknown. The justification for this behavior is given
  [here](https://github.com/pulumi/pulumi/pull/1695/files#diff-a6cd5c7f337665f5bb22e92ca5f07537R106)
- `Configure` converts the config bag to a legacy config map and
  configures the provider plugin if all config values are known. If any
  config value is unknown, the underlying plugin is not configured and
  the provider may only perform `Check`, `Read`, and `Invoke`, all of
  which return empty results. We justify this behavior becuase it is
  only possible during a preview and provides the best experience we
  can manage with the existing gRPC interface.

### Resource Model Changes
Providers are now exposed as resources that participate in a stack's
dependency graph. Like other resources, they are explicitly created,
may have multiple instances, and may have dependencies on other
resources. Providers are referred to using provider references, which
are a combination of the provider's URN and its ID. This design
addresses the need during a preview to refer to providers that have not
yet been physically created and therefore have no ID.

All custom resources that are not themselves providers must specify a
single provider via a provider reference. The named provider will be
used to manage that resource's CRUD operations. If a resource's
provider reference changes, the resource must be replaced. Though its
URN is not present in the resource's dependency list, the provider
should be treated as a dependency of the resource when topologically
sorting the dependency graph.

Finally, `Invoke` operations must now specify a provider to use for the
invocation via a provider reference.

### Engine Changes
First-class providers support requires a few changes to the engine:
- The engine must have some way to map from provider references to
  provider plugins. It must be possible to add providers from a stack's
  checkpoint to this map and to register new/updated providers during
  the execution of a plan in response to CRUD operations on provider
  resources.
- In order to support updating existing stacks using existing Pulumi
  programs that may not explicitly instantiate providers, the engine
  must be able to manage the "default" providers for each package
  referenced by a checkpoint or Pulumi program. The configuration for
  a "default" provider is taken from the stack's configuration data.

The former need is addressed by adding a provider registry type that is
responsible for managing all of the plugins required by a plan. In
addition to loading plugins froma checkpoint and providing the ability
to map from a provider reference to a provider plugin, this type serves
as the provider plugin for providers themselves (i.e. it is the
"provider provider").

The latter need is solved via two relatively self-contained changes to
plan setup and the eval source.

During plan setup, the old checkpoint is scanned for custom resources
that do not have a provider reference in order to compute the set of
packages that require a default provider. Once this set has been
computed, the required default provider definitions are conjured and
prepended to the checkpoint's resource list. Each resource that
requires a default provider is then updated to refer to the default
provider for its package.

While an eval source is running, each custom resource registration,
resource read, and invoke that does not name a provider is trapped
before being returned by the source iterator. If no default provider
for the appropriate package has been registered, the eval source
synthesizes an appropriate registration, waits for it to complete, and
records the registered provider's reference. This reference is injected
into the original request, which is then processed as usual. If a
default provider was already registered, the recorded reference is
used and no new registration occurs.

### SDK Changes
These changes only expose first-class providers from the Node.JS SDK.
- A new abstract class, `ProviderResource`, can be subclassed and used
  to instantiate first-class providers.
- A new field in `ResourceOptions`, `provider`, can be used to supply
  a particular provider instance to manage a `CustomResource`'s CRUD
  operations.
- A new type, `InvokeOptions`, can be used to specify options that
  control the behavior of a call to `pulumi.runtime.invoke`. This type
  includes a `provider` field that is analogous to
  `ResourceOptions.provider`.
2018-08-06 17:50:29 -07:00

447 lines
13 KiB
Go

// Copyright 2016-2018, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package engine
import (
"reflect"
"time"
"github.com/pulumi/pulumi/pkg/diag"
"github.com/pulumi/pulumi/pkg/diag/colors"
"github.com/pulumi/pulumi/pkg/resource"
"github.com/pulumi/pulumi/pkg/resource/config"
"github.com/pulumi/pulumi/pkg/resource/deploy"
"github.com/pulumi/pulumi/pkg/tokens"
"github.com/pulumi/pulumi/pkg/util/contract"
"github.com/pulumi/pulumi/pkg/util/logging"
)
// Event represents an event generated by the engine during an operation. The underlying
// type for the `Payload` field will differ depending on the value of the `Type` field
type Event struct {
Type EventType
Payload interface{}
}
// EventType is the kind of event being emitted.
type EventType string
const (
CancelEvent EventType = "cancel"
StdoutColorEvent EventType = "stdoutcolor"
DiagEvent EventType = "diag"
PreludeEvent EventType = "prelude"
SummaryEvent EventType = "summary"
ResourcePreEvent EventType = "resource-pre"
ResourceOutputsEvent EventType = "resource-outputs"
ResourceOperationFailed EventType = "resource-operationfailed"
)
func cancelEvent() Event {
return Event{Type: CancelEvent}
}
// DiagEventPayload is the payload for an event with type `diag`
type DiagEventPayload struct {
URN resource.URN
Prefix string
Message string
Color colors.Colorization
Severity diag.Severity
StreamID int32
}
type StdoutEventPayload struct {
Message string
Color colors.Colorization
}
type PreludeEventPayload struct {
IsPreview bool // true if this prelude is for a plan operation
Config map[string]string // the keys and values for config. For encrypted config, the values may be blinded
}
type SummaryEventPayload struct {
IsPreview bool // true if this summary is for a plan operation
MaybeCorrupt bool // true if one or more resources may be corrupt
Duration time.Duration // the duration of the entire update operation (zero values for previews)
ResourceChanges ResourceChanges // count of changed resources, useful for reporting
}
type ResourceOperationFailedPayload struct {
Metadata StepEventMetadata
Status resource.Status
Steps int
}
type ResourceOutputsEventPayload struct {
Metadata StepEventMetadata
Planning bool
Debug bool
}
type ResourcePreEventPayload struct {
Metadata StepEventMetadata
Planning bool
Debug bool
}
type StepEventMetadata struct {
Op deploy.StepOp // the operation performed by this step.
URN resource.URN // the resource URN (for before and after).
Type tokens.Type // the type affected by this step.
Old *StepEventStateMetadata // the state of the resource before performing this step.
New *StepEventStateMetadata // the state of the resource after performing this step.
Res *StepEventStateMetadata // the latest state for the resource that is known (worst case, old).
Keys []resource.PropertyKey // the keys causing replacement (only for CreateStep and ReplaceStep).
Logical bool // true if this step represents a logical operation in the program.
Provider string // the provider that performed this step.
}
type StepEventStateMetadata struct {
// the resource's type.
Type tokens.Type
// the resource's object urn, a human-friendly, unique name for the resource.
URN resource.URN
// true if the resource is custom, managed by a plugin.
Custom bool
// true if this resource is pending deletion due to a replacement.
Delete bool
// the resource's unique ID, assigned by the resource provider (or blank if none/uncreated).
ID resource.ID
// an optional parent URN that this resource belongs to.
Parent resource.URN
// true to "protect" this resource (protected resources cannot be deleted).
Protect bool
// the resource's input properties (as specified by the program). Note: because this will cross
// over rpc boundaries it will be slightly different than the Inputs found in resource_state.
// Specifically, secrets will have been filtered out, and large values (like assets) will be
// have a simple hash-based representation. This allows clients to display this information
// properly, without worrying about leaking sensitive data, and without having to transmit huge
// amounts of data.
Inputs resource.PropertyMap
// the resource's complete output state (as returned by the resource provider). See "Inputs"
// for additional details about how data will be transformed before going into this map.
Outputs resource.PropertyMap
// the resource's provider reference
Provider string
}
func makeEventEmitter(events chan<- Event, update UpdateInfo) eventEmitter {
target := update.GetTarget()
var secrets []string
if target.Config.HasSecureValue() {
for _, v := range target.Config {
if !v.Secure() {
continue
}
secret, err := v.Value(target.Decrypter)
contract.AssertNoError(err)
secrets = append(secrets, secret)
}
}
logging.AddGlobalFilter(logging.CreateFilter(secrets, "[secret]"))
return eventEmitter{
Chan: events,
}
}
type eventEmitter struct {
Chan chan<- Event
}
func makeStepEventMetadata(step deploy.Step, debug bool) StepEventMetadata {
var keys []resource.PropertyKey
if step.Op() == deploy.OpCreateReplacement {
keys = step.(*deploy.CreateStep).Keys()
} else if step.Op() == deploy.OpReplace {
keys = step.(*deploy.ReplaceStep).Keys()
}
return StepEventMetadata{
Op: step.Op(),
URN: step.URN(),
Type: step.Type(),
Keys: keys,
Old: makeStepEventStateMetadata(step.Old(), debug),
New: makeStepEventStateMetadata(step.New(), debug),
Res: makeStepEventStateMetadata(step.Res(), debug),
Logical: step.Logical(),
Provider: step.Provider(),
}
}
func makeStepEventStateMetadata(state *resource.State, debug bool) *StepEventStateMetadata {
if state == nil {
return nil
}
return &StepEventStateMetadata{
Type: state.Type,
URN: state.URN,
Custom: state.Custom,
Delete: state.Delete,
ID: state.ID,
Parent: state.Parent,
Protect: state.Protect,
Inputs: filterPropertyMap(state.Inputs, debug),
Outputs: filterPropertyMap(state.Outputs, debug),
Provider: state.Provider,
}
}
func filterPropertyMap(propertyMap resource.PropertyMap, debug bool) resource.PropertyMap {
mappable := propertyMap.Mappable()
var filterValue func(v interface{}) interface{}
filterPropertyValue := func(pv resource.PropertyValue) resource.PropertyValue {
return resource.NewPropertyValue(filterValue(pv.Mappable()))
}
// filter values walks unwrapped (i.e. non-PropertyValue) values and applies the filter function
// to them recursively. The only thing the filter actually applies to is strings.
//
// The return value of this function should have the same type as the input value.
filterValue = func(v interface{}) interface{} {
if v == nil {
return nil
}
// Else, check for some known primitive types.
switch t := v.(type) {
case bool, int, uint, int32, uint32,
int64, uint64, float32, float64:
// simple types. map over as is.
return v
case string:
// have to ensure we filter out secrets.
return logging.FilterString(t)
case *resource.Asset:
text := t.Text
if text != "" {
// we don't want to include the full text of an asset as we serialize it over as
// events. They represent user files and are thus are unbounded in size. Instead,
// we only include the text if it represents a user's serialized program code, as
// that is something we want the receiver to see to display as part of
// progress/diffs/etc.
if t.IsUserProgramCode() {
// also make sure we filter this in case there are any secrets in the code.
text = logging.FilterString(resource.MassageIfUserProgramCodeAsset(t, debug).Text)
} else {
// We need to have some string here so that we preserve that this is a
// text-asset
text = "<stripped>"
}
}
return &resource.Asset{
Sig: t.Sig,
Hash: t.Hash,
Text: text,
Path: t.Path,
URI: t.URI,
}
case *resource.Archive:
return &resource.Archive{
Sig: t.Sig,
Hash: t.Hash,
Path: t.Path,
URI: t.URI,
Assets: filterValue(t.Assets).(map[string]interface{}),
}
case resource.Computed:
return resource.Computed{
Element: filterPropertyValue(t.Element),
}
case resource.Output:
return resource.Output{
Element: filterPropertyValue(t.Element),
}
}
// Next, see if it's an array, slice, pointer or struct, and handle each accordingly.
rv := reflect.ValueOf(v)
switch rk := rv.Type().Kind(); rk {
case reflect.Array, reflect.Slice:
// If an array or slice, just create an array out of it.
var arr []interface{}
for i := 0; i < rv.Len(); i++ {
arr = append(arr, filterValue(rv.Index(i).Interface()))
}
return arr
case reflect.Ptr:
if rv.IsNil() {
return nil
}
v1 := filterValue(rv.Elem().Interface())
return &v1
case reflect.Map:
obj := make(map[string]interface{})
for _, key := range rv.MapKeys() {
k := key.Interface().(string)
v := rv.MapIndex(key).Interface()
obj[k] = filterValue(v)
}
return obj
default:
contract.Failf("Unrecognized value type: type=%v kind=%v", rv.Type(), rk)
}
return nil
}
return resource.NewPropertyMapFromMapRepl(
mappable, nil, /*replk*/
func(v interface{}) (resource.PropertyValue, bool) {
return resource.NewPropertyValue(filterValue(v)), true
})
}
func (e *eventEmitter) resourceOperationFailedEvent(
step deploy.Step, status resource.Status, steps int, debug bool) {
contract.Requiref(e != nil, "e", "!= nil")
e.Chan <- Event{
Type: ResourceOperationFailed,
Payload: ResourceOperationFailedPayload{
Metadata: makeStepEventMetadata(step, debug),
Status: status,
Steps: steps,
},
}
}
func (e *eventEmitter) resourceOutputsEvent(
step deploy.Step, planning bool, debug bool) {
contract.Requiref(e != nil, "e", "!= nil")
e.Chan <- Event{
Type: ResourceOutputsEvent,
Payload: ResourceOutputsEventPayload{
Metadata: makeStepEventMetadata(step, debug),
Planning: planning,
Debug: debug,
},
}
}
func (e *eventEmitter) resourcePreEvent(
step deploy.Step, planning bool, debug bool) {
contract.Requiref(e != nil, "e", "!= nil")
e.Chan <- Event{
Type: ResourcePreEvent,
Payload: ResourcePreEventPayload{
Metadata: makeStepEventMetadata(step, debug),
Planning: planning,
Debug: debug,
},
}
}
func (e *eventEmitter) preludeEvent(isPreview bool, cfg config.Map) {
contract.Requiref(e != nil, "e", "!= nil")
configStringMap := make(map[string]string, len(cfg))
for k, v := range cfg {
keyString := k.String()
valueString, err := v.Value(config.NewBlindingDecrypter())
contract.AssertNoError(err)
configStringMap[keyString] = valueString
}
e.Chan <- Event{
Type: PreludeEvent,
Payload: PreludeEventPayload{
IsPreview: isPreview,
Config: configStringMap,
},
}
}
func (e *eventEmitter) previewSummaryEvent(resourceChanges ResourceChanges) {
contract.Requiref(e != nil, "e", "!= nil")
e.Chan <- Event{
Type: SummaryEvent,
Payload: SummaryEventPayload{
IsPreview: true,
MaybeCorrupt: false,
Duration: 0,
ResourceChanges: resourceChanges,
},
}
}
func (e *eventEmitter) updateSummaryEvent(maybeCorrupt bool,
duration time.Duration, resourceChanges ResourceChanges) {
contract.Requiref(e != nil, "e", "!= nil")
e.Chan <- Event{
Type: SummaryEvent,
Payload: SummaryEventPayload{
IsPreview: false,
MaybeCorrupt: maybeCorrupt,
Duration: duration,
ResourceChanges: resourceChanges,
},
}
}
func diagEvent(e *eventEmitter, d *diag.Diag, prefix, msg string, sev diag.Severity) {
contract.Requiref(e != nil, "e", "!= nil")
e.Chan <- Event{
Type: DiagEvent,
Payload: DiagEventPayload{
URN: d.URN,
Prefix: logging.FilterString(prefix),
Message: logging.FilterString(msg),
Color: colors.Raw,
Severity: sev,
StreamID: d.StreamID,
},
}
}
func (e *eventEmitter) diagDebugEvent(d *diag.Diag, prefix, msg string) {
diagEvent(e, d, prefix, msg, diag.Debug)
}
func (e *eventEmitter) diagInfoEvent(d *diag.Diag, prefix, msg string) {
diagEvent(e, d, prefix, msg, diag.Info)
}
func (e *eventEmitter) diagInfoerrEvent(d *diag.Diag, prefix, msg string) {
diagEvent(e, d, prefix, msg, diag.Infoerr)
}
func (e *eventEmitter) diagErrorEvent(d *diag.Diag, prefix, msg string) {
diagEvent(e, d, prefix, msg, diag.Error)
}
func (e *eventEmitter) diagWarningEvent(d *diag.Diag, prefix, msg string) {
diagEvent(e, d, prefix, msg, diag.Warning)
}