pulumi/pkg/resource/deploy/plan_executor.go
CyrusNajmabadi 1908a18d20 Loosen resource targeting restrictions. (#3426)
- If an untargeted create would not affect the inputs of any targeted
  resources, do not fail the update. Untargeted creates that are
  directly dependend on by targeted resources will still cause failures
  that inform the user to add the untargeted resources to the --target
  list.
- Users may now pass the `--target-dependents` flag to allow targeted
  destroys to automatically target dependents that must be destroyed in
  order to destroy an explicitly targeted resource.
2019-11-18 20:28:25 -08:00

548 lines
19 KiB
Go

// Copyright 2016-2018, Pulumi Corporation.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package deploy
import (
"context"
"strings"
"github.com/pkg/errors"
"github.com/pulumi/pulumi/pkg/diag"
"github.com/pulumi/pulumi/pkg/resource"
"github.com/pulumi/pulumi/pkg/resource/deploy/providers"
"github.com/pulumi/pulumi/pkg/resource/graph"
"github.com/pulumi/pulumi/pkg/util/contract"
"github.com/pulumi/pulumi/pkg/util/logging"
"github.com/pulumi/pulumi/pkg/util/result"
)
// planExecutor is responsible for taking a plan and driving it to completion.
// Its primary responsibility is to own a `stepGenerator` and `stepExecutor`, serving
// as the glue that links the two subsystems together.
type planExecutor struct {
plan *Plan // The plan that we are executing
stepGen *stepGenerator // step generator owned by this plan
stepExec *stepExecutor // step executor owned by this plan
}
// A set is returned of all the target URNs to facilitate later callers. The set can be 'nil'
// indicating no targets, or will be non-nil and non-empty if there are targets. Only URNs in the
// original array are in the set. i.e. it's only checked for containment. The value of the map is
// unused.
func createTargetMap(targets []resource.URN) map[resource.URN]bool {
if len(targets) == 0 {
return nil
}
targetMap := make(map[resource.URN]bool)
for _, target := range targets {
targetMap[target] = true
}
return targetMap
}
// checkTargets validates that all the targets passed in refer to existing resources. Diagnostics
// are generated for any target that cannot be found. The target must either have existed in the stack
// prior to running the operation, or it must be the urn for a resource that was created.
func (pe *planExecutor) checkTargets(targets []resource.URN, op StepOp) result.Result {
if len(targets) == 0 {
return nil
}
olds := pe.plan.olds
var news map[resource.URN]bool
if pe.stepGen != nil {
news = pe.stepGen.urns
}
hasUnknownTarget := false
for _, target := range targets {
hasOld := false
if _, has := olds[target]; has {
hasOld = true
}
hasNew := news != nil && news[target]
if !hasOld && !hasNew {
hasUnknownTarget = true
logging.V(7).Infof("Resource to %v (%v) could not be found in the stack.", op, target)
if strings.Contains(string(target), "$") {
pe.plan.Diag().Errorf(diag.GetTargetCouldNotBeFoundError(), target)
} else {
pe.plan.Diag().Errorf(diag.GetTargetCouldNotBeFoundDidYouForgetError(), target)
}
}
}
if hasUnknownTarget {
return result.Bail()
}
return nil
}
// reportExecResult issues an appropriate diagnostic depending on went wrong.
func (pe *planExecutor) reportExecResult(message string, preview bool) {
kind := "update"
if preview {
kind = "preview"
}
pe.reportError("", errors.New(kind+" "+message))
}
// reportError reports a single error to the executor's diag stream with the indicated URN for context.
func (pe *planExecutor) reportError(urn resource.URN, err error) {
pe.plan.Diag().Errorf(diag.RawMessage(urn, err.Error()))
}
// Execute executes a plan to completion, using the given cancellation context and running a preview
// or update.
func (pe *planExecutor) Execute(callerCtx context.Context, opts Options, preview bool) result.Result {
// Set up a goroutine that will signal cancellation to the plan's plugins if the caller context is cancelled. We do
// not hang this off of the context we create below because we do not want the failure of a single step to cause
// other steps to fail.
done := make(chan bool)
defer close(done)
go func() {
select {
case <-callerCtx.Done():
logging.V(4).Infof("planExecutor.Execute(...): signalling cancellation to providers...")
cancelErr := pe.plan.ctx.Host.SignalCancellation()
if cancelErr != nil {
logging.V(4).Infof("planExecutor.Execute(...): failed to signal cancellation to providers: %v", cancelErr)
}
case <-done:
logging.V(4).Infof("planExecutor.Execute(...): exiting provider canceller")
}
}()
// Before doing anything else, optionally refresh each resource in the base checkpoint.
if opts.Refresh {
if res := pe.refresh(callerCtx, opts, preview); res != nil {
return res
}
if opts.RefreshOnly {
return nil
}
}
// The set of -t targets provided on hte command line. 'nil' means 'update everything'.
// Non-nill means 'update only in this set'. We don't error if the user specifies an target
// during `update` that we don't know about because it might be the urn for a resource they
// want to create.
updateTargetsOpt := createTargetMap(opts.UpdateTargets)
replaceTargetsOpt := createTargetMap(opts.ReplaceTargets)
destroyTargetsOpt := createTargetMap(opts.DestroyTargets)
if res := pe.checkTargets(opts.ReplaceTargets, OpReplace); res != nil {
return res
}
if res := pe.checkTargets(opts.DestroyTargets, OpDelete); res != nil {
return res
}
if (updateTargetsOpt != nil || replaceTargetsOpt != nil) && destroyTargetsOpt != nil {
contract.Failf("Should not be possible to have both .DestroyTargets and .UpdateTargets or .ReplaceTargets")
}
// Begin iterating the source.
src, res := pe.plan.source.Iterate(callerCtx, opts, pe.plan)
if res != nil {
return res
}
// Set up a step generator for this plan.
pe.stepGen = newStepGenerator(pe.plan, opts, updateTargetsOpt, replaceTargetsOpt)
// Retire any pending deletes that are currently present in this plan.
if res := pe.retirePendingDeletes(callerCtx, opts, preview); res != nil {
return res
}
// Derive a cancellable context for this plan. We will only cancel this context if some piece of the plan's
// execution fails.
ctx, cancel := context.WithCancel(callerCtx)
// Set up a step generator and executor for this plan.
pe.stepExec = newStepExecutor(ctx, cancel, pe.plan, opts, preview, false)
// We iterate the source in its own goroutine because iteration is blocking and we want the main loop to be able to
// respond to cancellation requests promptly.
type nextEvent struct {
Event SourceEvent
Result result.Result
}
incomingEvents := make(chan nextEvent)
go func() {
for {
event, sourceErr := src.Next()
select {
case incomingEvents <- nextEvent{event, sourceErr}:
if event == nil {
return
}
case <-done:
logging.V(4).Infof("planExecutor.Execute(...): incoming events goroutine exiting")
return
}
}
}()
// The main loop. We'll continuously select for incoming events and the cancellation signal. There are
// a three ways we can exit this loop:
// 1. The SourceIterator sends us a `nil` event. This means that we're done processing source events and
// we should begin processing deletes.
// 2. The SourceIterator sends us an error. This means some error occurred in the source program and we
// should bail.
// 3. The stepExecCancel cancel context gets canceled. This means some error occurred in the step executor
// and we need to bail. This can also happen if the user hits Ctrl-C.
canceled, res := func() (bool, result.Result) {
logging.V(4).Infof("planExecutor.Execute(...): waiting for incoming events")
for {
select {
case event := <-incomingEvents:
logging.V(4).Infof("planExecutor.Execute(...): incoming event (nil? %v, %v)", event.Event == nil, event.Result)
if event.Result != nil {
if !event.Result.IsBail() {
pe.reportError("", event.Result.Error())
}
cancel()
// We reported any errors above. So we can just bail now.
return false, result.Bail()
}
if event.Event == nil {
return false, pe.performDeletes(ctx, updateTargetsOpt, destroyTargetsOpt)
}
if res := pe.handleSingleEvent(event.Event); res != nil {
if resErr := res.Error(); resErr != nil {
logging.V(4).Infof("planExecutor.Execute(...): error handling event: %v", resErr)
pe.reportError(pe.plan.generateEventURN(event.Event), resErr)
}
cancel()
return false, result.Bail()
}
case <-ctx.Done():
logging.V(4).Infof("planExecutor.Execute(...): context finished: %v", ctx.Err())
// NOTE: we use the presence of an error in the caller context in order to distinguish caller-initiated
// cancellation from internally-initiated cancellation.
return callerCtx.Err() != nil, nil
}
}
}()
pe.stepExec.WaitForCompletion()
logging.V(4).Infof("planExecutor.Execute(...): step executor has completed")
// Now that we've performed all steps in the plan, ensure that the list of targets to update was
// valid. We have to do this *after* performing the steps as the target list may have referred
// to a resource that was created in one of hte steps.
if res == nil {
res = pe.checkTargets(opts.UpdateTargets, OpUpdate)
}
if res != nil && res.IsBail() {
return res
}
// If the step generator and step executor were both successful, then we send all the resources
// observed to be analyzed. Otherwise, this step is skipped.
if res == nil && !pe.stepExec.Errored() {
res := pe.stepGen.AnalyzeResources()
if res != nil {
return res
}
}
// Figure out if execution failed and why. Step generation and execution errors trump cancellation.
if res != nil || pe.stepExec.Errored() || pe.stepGen.Errored() {
// TODO(cyrusn): We seem to be losing any information about the original 'res's errors. Should
// we be doing a merge here?
pe.reportExecResult("failed", preview)
return result.Bail()
} else if canceled {
pe.reportExecResult("canceled", preview)
return result.Bail()
}
return res
}
func (pe *planExecutor) performDeletes(
ctx context.Context, updateTargetsOpt, destroyTargetsOpt map[resource.URN]bool) result.Result {
defer func() {
// We're done here - signal completion so that the step executor knows to terminate.
pe.stepExec.SignalCompletion()
}()
prev := pe.plan.prev
if prev == nil || len(prev.Resources) == 0 {
return nil
}
logging.V(7).Infof("performDeletes(...): beginning")
// At this point we have generated the set of resources above that we would normally want to
// delete. However, if the user provided -target's we will only actually delete the specific
// resources that are in the set explicitly asked for.
var targetsOpt map[resource.URN]bool
if updateTargetsOpt != nil {
targetsOpt = updateTargetsOpt
} else if destroyTargetsOpt != nil {
targetsOpt = destroyTargetsOpt
}
deleteSteps, res := pe.stepGen.GenerateDeletes(targetsOpt)
if res != nil {
logging.V(7).Infof("performDeletes(...): generating deletes produced error result")
return res
}
deletes := pe.stepGen.ScheduleDeletes(deleteSteps)
// ScheduleDeletes gives us a list of lists of steps. Each list of steps can safely be executed
// in parallel, but each list must execute completes before the next list can safely begin
// executing.
//
// This is not "true" delete parallelism, since there may be resources that could safely begin
// deleting but we won't until the previous set of deletes fully completes. This approximation
// is conservative, but correct.
for _, antichain := range deletes {
logging.V(4).Infof("planExecutor.Execute(...): beginning delete antichain")
tok := pe.stepExec.ExecuteParallel(antichain)
tok.Wait(ctx)
logging.V(4).Infof("planExecutor.Execute(...): antichain complete")
}
// After executing targeted deletes, we may now have resources that depend on the resource that
// were deleted. Go through and clean things up accordingly for them.
if targetsOpt != nil {
resourceToStep := make(map[*resource.State]Step)
for _, step := range deleteSteps {
resourceToStep[pe.plan.olds[step.URN()]] = step
}
pe.rebuildBaseState(resourceToStep, false /*refresh*/)
}
return nil
}
// handleSingleEvent handles a single source event. For all incoming events, it produces a chain that needs
// to be executed and schedules the chain for execution.
func (pe *planExecutor) handleSingleEvent(event SourceEvent) result.Result {
contract.Require(event != nil, "event != nil")
var steps []Step
var res result.Result
switch e := event.(type) {
case RegisterResourceEvent:
logging.V(4).Infof("planExecutor.handleSingleEvent(...): received RegisterResourceEvent")
steps, res = pe.stepGen.GenerateSteps(e)
case ReadResourceEvent:
logging.V(4).Infof("planExecutor.handleSingleEvent(...): received ReadResourceEvent")
steps, res = pe.stepGen.GenerateReadSteps(e)
case RegisterResourceOutputsEvent:
logging.V(4).Infof("planExecutor.handleSingleEvent(...): received register resource outputs")
pe.stepExec.ExecuteRegisterResourceOutputs(e)
return nil
}
if res != nil {
return res
}
pe.stepExec.ExecuteSerial(steps)
return nil
}
// retirePendingDeletes deletes all resources that are pending deletion. Run before the start of a plan, this pass
// ensures that the engine never sees any resources that are pending deletion from a previous plan.
//
// retirePendingDeletes re-uses the plan executor's step generator but uses its own step executor.
func (pe *planExecutor) retirePendingDeletes(callerCtx context.Context, opts Options, preview bool) result.Result {
contract.Require(pe.stepGen != nil, "pe.stepGen != nil")
steps := pe.stepGen.GeneratePendingDeletes()
if len(steps) == 0 {
logging.V(4).Infoln("planExecutor.retirePendingDeletes(...): no pending deletions")
return nil
}
logging.V(4).Infof("planExecutor.retirePendingDeletes(...): executing %d steps", len(steps))
ctx, cancel := context.WithCancel(callerCtx)
stepExec := newStepExecutor(ctx, cancel, pe.plan, opts, preview, false)
antichains := pe.stepGen.ScheduleDeletes(steps)
// Submit the deletes for execution and wait for them all to retire.
for _, antichain := range antichains {
for _, step := range antichain {
pe.plan.Ctx().StatusDiag.Infof(diag.RawMessage(step.URN(), "completing deletion from previous update"))
}
tok := stepExec.ExecuteParallel(antichain)
tok.Wait(ctx)
}
stepExec.SignalCompletion()
stepExec.WaitForCompletion()
// Like Refresh, we use the presence of an error in the caller's context to detect whether or not we have been
// cancelled.
canceled := callerCtx.Err() != nil
if stepExec.Errored() {
pe.reportExecResult("failed", preview)
return result.Bail()
} else if canceled {
pe.reportExecResult("canceled", preview)
return result.Bail()
}
return nil
}
// refresh refreshes the state of the base checkpoint file for the current plan in memory.
func (pe *planExecutor) refresh(callerCtx context.Context, opts Options, preview bool) result.Result {
prev := pe.plan.prev
if prev == nil || len(prev.Resources) == 0 {
return nil
}
// Make sure if there were any targets specified, that they all refer to existing resources.
targetMapOpt := createTargetMap(opts.RefreshTargets)
if res := pe.checkTargets(opts.RefreshTargets, OpRefresh); res != nil {
return res
}
// If the user did not provide any --target's, create a refresh step for each resource in the
// old snapshot. If they did provider --target's then only create refresh steps for those
// specific targets.
steps := []Step{}
resourceToStep := map[*resource.State]Step{}
for _, res := range prev.Resources {
if targetMapOpt == nil || targetMapOpt[res.URN] {
step := NewRefreshStep(pe.plan, res, nil)
steps = append(steps, step)
resourceToStep[res] = step
}
}
// Fire up a worker pool and issue each refresh in turn.
ctx, cancel := context.WithCancel(callerCtx)
stepExec := newStepExecutor(ctx, cancel, pe.plan, opts, preview, true)
stepExec.ExecuteParallel(steps)
stepExec.SignalCompletion()
stepExec.WaitForCompletion()
pe.rebuildBaseState(resourceToStep, true /*refresh*/)
// NOTE: we use the presence of an error in the caller context in order to distinguish caller-initiated
// cancellation from internally-initiated cancellation.
canceled := callerCtx.Err() != nil
if stepExec.Errored() {
pe.reportExecResult("failed", preview)
return result.Bail()
} else if canceled {
pe.reportExecResult("canceled", preview)
return result.Bail()
}
return nil
}
func (pe *planExecutor) rebuildBaseState(resourceToStep map[*resource.State]Step, refresh bool) {
// Rebuild this plan's map of old resources and dependency graph, stripping out any deleted
// resources and repairing dependency lists as necessary. Note that this updates the base
// snapshot _in memory_, so it is critical that any components that use the snapshot refer to
// the same instance and avoid reading it concurrently with this rebuild.
//
// The process of repairing dependency lists is a bit subtle. Because multiple physical
// resources may share a URN, the ability of a particular URN to be referenced in a dependency
// list can change based on the dependent resource's position in the resource list. For example,
// consider the following list of resources, where each resource is a (URN, ID, Dependencies)
// tuple:
//
// [ (A, 0, []), (B, 0, [A]), (A, 1, []), (A, 2, []), (C, 0, [A]) ]
//
// Let `(A, 0, [])` and `(A, 2, [])` be deleted by the refresh. This produces the following
// intermediate list before dependency lists are repaired:
//
// [ (B, 0, [A]), (A, 1, []), (C, 0, [A]) ]
//
// In order to repair the dependency lists, we iterate over the intermediate resource list,
// keeping track of which URNs refer to at least one physical resource at each point in the
// list, and remove any dependencies that refer to URNs that do not refer to any physical
// resources. This process produces the following final list:
//
// [ (B, 0, []), (A, 1, []), (C, 0, [A]) ]
//
// Note that the correctness of this process depends on the fact that the list of resources is a
// topological sort of its corresponding dependency graph, so a resource always appears in the
// list after any resources on which it may depend.
resources := []*resource.State{}
referenceable := make(map[resource.URN]bool)
olds := make(map[resource.URN]*resource.State)
for _, s := range pe.plan.prev.Resources {
var old, new *resource.State
if step, has := resourceToStep[s]; has {
// We produces a refresh step for this specific resource. Use the new information about
// its dependencies during the update.
old = step.Old()
new = step.New()
} else {
// We didn't do anything with this resource. However, we still may want to update its
// dependencies. So use this resource itself as the 'new' one to update.
old = s
new = s
}
if new == nil {
if refresh {
contract.Assert(old.Custom)
contract.Assert(!providers.IsProviderType(old.Type))
}
continue
}
// Remove any deleted resources from this resource's dependency list.
if len(new.Dependencies) != 0 {
deps := make([]resource.URN, 0, len(new.Dependencies))
for _, d := range new.Dependencies {
if referenceable[d] {
deps = append(deps, d)
}
}
new.Dependencies = deps
}
// Add this resource to the resource list and mark it as referenceable.
resources = append(resources, new)
referenceable[new.URN] = true
// Do not record resources that are pending deletion in the "olds" lookup table.
if !new.Delete {
olds[new.URN] = new
}
}
pe.plan.prev.Resources = resources
pe.plan.olds, pe.plan.depGraph = olds, graph.NewDependencyGraph(resources)
}