pulumi/pkg/tokens/tokens.go
joeduffy 8b57310854 Tidy up more lint
This change fixes a few things:

* Most importantly, we need to place a leading "." in the paths
  to Gometalinter, otherwise some sub-linters just silently skip
  the directory altogether.  errcheck is one such linter, which
  is a very important one!

* Use an explicit Gometalinter.json file to configure the various
  settings.  This flips on a few additional linters that aren't
  on by default (line line length checking).  Sadly, a few that
  I'd like to enable take waaaay too much time, so in the future
  we may consider a nightly job (this includes code similarity,
  unused parameters, unused functions, and others that generally
  require global analysis).

* Now that we're running more, however, linting takes a while!
  The core Lumi project now takes 26 seconds to lint on my laptop.
  That's not terrible, but it's long enough that we don't want to
  do the silly "run them twice" thing our Makefiles were previously
  doing.  Instead, we shall deploy some $$($${PIPESTATUS[1]}-1))-fu
  to rely on the fact that grep returns 1 on "zero lines".

* Finally, fix the many issues that this turned up.

I think(?) we are done, except, of course, for needing to drive
down some of the cyclomatic complexity issues (which I'm possibly
going to punt on; see pulumi/lumi#259 for more details).
2017-06-22 12:09:46 -07:00

301 lines
11 KiB
Go

// Licensed to Pulumi Corporation ("Pulumi") under one or more
// contributor license agreements. See the NOTICE file distributed with
// this work for additional information regarding copyright ownership.
// Pulumi licenses this file to You under the Apache License, Version 2.0
// (the "License"); you may not use this file except in compliance with
// the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package tokens contains the core LumiIL symbol and token types.
package tokens
import (
"strings"
"github.com/pulumi/lumi/pkg/util/contract"
)
// Token is a qualified name that is capable of resolving to a symbol entirely on its own. Most uses of tokens are
// typed based on the context, so that a subset of the token syntax is permissible (see the various typedefs below).
// However, in its full generality, a token can have a package part, a module part, a module-member part, and a
// class-member part. Obviously tokens that are meant to address just a module won't have the module-member part, and
// tokens addressing module members won't have the class-member part, etc.
//
// Token's grammar is as follows:
//
// Token = <Identifier> |
// <QualifiedToken> |
// <DecoratedType>
// Identifier = <Name>
// QualifiedToken = <PackageName> [ ":" <ModuleName> [ ":" <ModuleMemberName> [ ":" <ClassMemberName> ] ] ]
// PackageName = ... similar to <QName>, except dashes permitted ...
// ModuleName = <QName>
// ModuleMemberName = <Name>
// ClassMemberName = <Name>
//
// A token may be a simple identifier in the case that it refers to a built-in symbol, like a primitive type, or a
// variable in scope, rather than a qualified token that is to be bound to a symbol through package/module resolution.
//
// Notice that both package and module names may be qualified names (meaning they can have "/"s in them; see QName's
// comments), and that module and class members must use unqualified, simple names (meaning they have no delimiters).
// The specialized token kinds differ only in what elements they require as part of the token string.
//
// Finally, a token may also be a decorated type. This is for built-in array, map, pointer, and function types:
//
// DecoratedType = "*" <Token> |
// "[]" <Token> |
// "map[" <Token> "]" <Token> |
// "(" [ <Token> [ "," <Token> ]* ] ")" <Token>?
//
// Notice that a recursive parsing process is required to extract elements from a <DecoratedType> token.
type Token string
const TokenDelimiter string = ":" // the character delimiting portions of a qualified token.
func (tok Token) Delimiters() int { return strings.Count(string(tok), TokenDelimiter) }
func (tok Token) HasModule() bool { return tok.Delimiters() > 0 }
func (tok Token) HasModuleMember() bool { return tok.Delimiters() > 1 }
func (tok Token) HasClassMember() bool { return tok.Delimiters() > 2 }
func (tok Token) Simple() bool { return tok.Delimiters() == 0 }
func (tok Token) String() string { return string(tok) }
// delimiter returns the Nth index of a delimiter, as specified by the argument.
func (tok Token) delimiter(n int) int {
ix := -1
for n > 0 {
// Make sure we still have space.
if ix+1 >= len(tok) {
ix = -1
break
}
// If we do, keep looking for the next delimiter.
nix := strings.Index(string(tok[ix+1:]), TokenDelimiter)
if nix == -1 {
break
}
ix += 1 + nix
n--
}
return ix
}
// Name returns the Token as a Name (and assumes it is a legal one).
func (tok Token) Name() Name {
contract.Requiref(tok.Simple(), "tok", "Simple")
contract.Requiref(IsName(tok.String()), "tok", "IsName(%v)", tok)
return Name(tok.String())
}
// Package extracts the package from the token, assuming one exists.
func (tok Token) Package() Package {
if t := Type(tok); t.Decorated() || t.Primitive() {
return "" // decorated and primitive types are built-in (and hence have no package).
}
if tok.HasModule() {
return Package(tok[:tok.delimiter(1)])
}
return Package(tok)
}
// Module extracts the module portion from the token, assuming one exists.
func (tok Token) Module() Module {
if tok.HasModule() {
if tok.HasModuleMember() {
return Module(tok[:tok.delimiter(2)])
}
return Module(tok)
}
return Module("")
}
// ModuleMember extracts the module member portion from the token, assuming one exists.
func (tok Token) ModuleMember() ModuleMember {
if tok.HasModuleMember() {
if tok.HasClassMember() {
return ModuleMember(tok[:tok.delimiter(3)])
}
return ModuleMember(tok)
}
return ModuleMember("")
}
// ClassMember extracts the class member portion from the token, assuming one exists.
func (tok Token) ClassMember() ClassMember {
if tok.HasClassMember() {
return ClassMember(tok)
}
return ClassMember("")
}
// Package is a token representing just a package. It uses a much simpler grammar:
// Package = <PackageName>
// Note that a package name of "." means "current package", to simplify emission and lookups.
type Package Token
func NewPackageToken(nm PackageName) Package {
contract.Assertf(IsPackageName(string(nm)), "Package name '%v' is not a legal qualified name", nm)
return Package(nm)
}
func (tok Package) Name() PackageName {
return PackageName(tok)
}
func (tok Package) String() string { return string(tok) }
// Module is a token representing a module. It uses the following subset of the token grammar:
// Module = <Package> ":" <ModuleName>
// Note that a module name of "." means "current module", to simplify emission and lookups.
type Module Token
func NewModuleToken(pkg Package, nm ModuleName) Module {
contract.Assertf(IsQName(string(nm)), "Package '%v' module name '%v' is not a legal qualified name", pkg, nm)
return Module(string(pkg) + TokenDelimiter + string(nm))
}
func (tok Module) Package() Package {
t := Token(tok)
contract.Assertf(t.HasModule(), "Module token '%v' missing module delimiter", tok)
return Package(tok[:t.delimiter(1)])
}
func (tok Module) Name() ModuleName {
t := Token(tok)
contract.Assertf(t.HasModule(), "Module token '%v' missing module delimiter", tok)
return ModuleName(tok[t.delimiter(1)+1:])
}
func (tok Module) String() string { return string(tok) }
// ModuleMember is a token representing a module's member. It uses the following grammar. Note that this is not
// ambiguous because member names cannot contain slashes, and so the "last" slash in a name delimits the member:
// ModuleMember = <Module> "/" <ModuleMemberName>
type ModuleMember Token
func NewModuleMemberToken(mod Module, nm ModuleMemberName) ModuleMember {
contract.Assertf(IsName(string(nm)), "Module '%v' member name '%v' is not a legal name", mod, nm)
return ModuleMember(string(mod) + TokenDelimiter + string(nm))
}
func (tok ModuleMember) Package() Package {
return tok.Module().Package()
}
func (tok ModuleMember) Module() Module {
t := Token(tok)
contract.Assertf(t.HasModuleMember(), "Module member token '%v' missing module member delimiter", tok)
return Module(tok[:t.delimiter(2)])
}
func (tok ModuleMember) Name() ModuleMemberName {
t := Token(tok)
contract.Assertf(t.HasModuleMember(), "Module member token '%v' missing module member delimiter", tok)
return ModuleMemberName(tok[t.delimiter(2)+1:])
}
func (tok ModuleMember) String() string { return string(tok) }
// ClassMember is a token representing a class's member. It uses the following grammar. Unlike ModuleMember, this
// cannot use a slash for delimiting names, because we use often ClassMember and ModuleMember interchangeably:
// ClassMember = <ModuleMember> "." <ClassMemberName>
type ClassMember Token
func NewClassMemberToken(class Type, nm ClassMemberName) ClassMember {
contract.Assertf(IsName(string(nm)), "Class '%v' member name '%v' is not a legal name", class, nm)
return ClassMember(string(class) + TokenDelimiter + string(nm))
}
func (tok ClassMember) Package() Package {
return tok.Module().Package()
}
func (tok ClassMember) Module() Module {
return tok.Class().Module()
}
func (tok ClassMember) Class() Type {
t := Token(tok)
contract.Assertf(t.HasClassMember(), "Class member token '%v' missing class member delimiter", tok)
return Type(tok[:t.delimiter(3)])
}
func (tok ClassMember) Name() ClassMemberName {
t := Token(tok)
contract.Assertf(t.HasClassMember(), "Class member token '%v' missing class member delimiter", tok)
return ClassMemberName(tok[t.delimiter(3)+1:])
}
func (tok ClassMember) String() string { return string(tok) }
// Type is a token representing a type. It is either a primitive type name, reference to a module class, or decorated:
// Type = <Name> | <ModuleMember> | <DecoratedType>
type Type Token
func NewTypeToken(mod Module, nm TypeName) Type {
contract.Assertf(IsName(string(nm)), "Module '%v' type name '%v' is not a legal name", mod, nm)
return Type(string(mod) + TokenDelimiter + string(nm))
}
func (tok Type) Package() Package {
if tok.Primitive() || tok.Decorated() {
return Package("")
}
return ModuleMember(tok).Package()
}
func (tok Type) Module() Module {
if tok.Primitive() || tok.Decorated() {
return Module("")
}
return ModuleMember(tok).Module()
}
func (tok Type) Name() TypeName {
if tok.Primitive() || tok.Decorated() {
return TypeName(tok)
}
return TypeName(ModuleMember(tok).Name())
}
func (tok Type) Member() ModuleMember {
return ModuleMember(tok)
}
// Decorated indicates whether this token represents a decorated type.
func (tok Type) Decorated() bool {
return tok.Pointer() || tok.Array() || tok.Map() || tok.Function()
}
func (tok Type) Pointer() bool { return IsPointerType(tok) }
func (tok Type) Array() bool { return IsArrayType(tok) }
func (tok Type) Map() bool { return IsMapType(tok) }
func (tok Type) Function() bool { return IsFunctionType(tok) }
// Primitive indicates whether this type is a primitive type name (i.e., not qualified with a module, etc).
func (tok Type) Primitive() bool {
return !tok.Decorated() && !Token(tok).HasModule()
}
func (tok Type) String() string { return string(tok) }
// Variable is a token representing a variable (module property, class property, or local variable (including
// parameters)). It can be a simple name for the local cases, or a true token for others:
// Variable = <Name> | <ModuleMember> | <ClassMember>
type Variable Token
func (tok Variable) String() string { return string(tok) }
// Function is a token representing a variable (module method or class method). Its grammar is as follows:
// Variable = <ModuleMember> | <ClassMember>
type Function Token
func (tok Function) String() string { return string(tok) }