pulumi/pkg/codegen/python/gen_program_quotes.go
Pat Gavlin 33258326e0
[codegen/hcl2] Add a conversion insertion pass. (#4594)
Add a rewriter that reifies implicit conversions into a call to the
`__convert` intrinsic. Code generators can recognize this intrinsic and
use it to generate appropriate conversion code.

Part of this work involves redesigning the type annotations system.
Annotations are now only applicable to opaque and object types. Instead
of inspecting annotations directly, code generators should use
`hcl2.GetSchemaForType` to extract the `schema.Type` for a `model.Type`.
2020-05-11 11:17:36 -07:00

307 lines
7.8 KiB
Go

package python
import (
"fmt"
"strings"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/pulumi/pulumi/pkg/v2/codegen"
"github.com/pulumi/pulumi/pkg/v2/codegen/hcl2"
"github.com/pulumi/pulumi/pkg/v2/codegen/hcl2/model"
"github.com/pulumi/pulumi/pkg/v2/codegen/hcl2/syntax"
"github.com/pulumi/pulumi/pkg/v2/codegen/schema"
"github.com/pulumi/pulumi/sdk/v2/go/common/util/contract"
"github.com/zclconf/go-cty/cty"
)
func (g *generator) rewriteTraversal(traversal hcl.Traversal, source model.Expression,
parts []model.Traversable) (model.Expression, hcl.Diagnostics) {
// TODO(pdg): transfer trivia
var rootName string
var currentTraversal hcl.Traversal
currentParts := []model.Traversable{parts[0]}
currentExpression := source
if len(traversal) > 0 {
if root, isRoot := traversal[0].(hcl.TraverseRoot); isRoot {
traversal = traversal[1:]
rootName, currentTraversal = root.Name, hcl.Traversal{root}
}
}
var diagnostics hcl.Diagnostics
for i, traverser := range traversal {
var key cty.Value
switch traverser := traverser.(type) {
case hcl.TraverseAttr:
key = cty.StringVal(traverser.Name)
case hcl.TraverseIndex:
key = traverser.Key
default:
contract.Failf("unexpected traverser of type %T (%v)", traverser, traverser.SourceRange())
}
if key.Type() != cty.String {
currentTraversal = append(currentTraversal, traverser)
currentParts = append(currentParts, parts[i+1])
continue
}
keyVal, objectKey := key.AsString(), false
receiver := parts[i]
if schemaType, ok := hcl2.GetSchemaForType(model.GetTraversableType(receiver)); ok {
obj := schemaType.(*schema.ObjectType)
info, ok := obj.Language["python"].(objectTypeInfo)
if ok {
objectKey = !info.isDictionary
if mapped, ok := info.camelCaseToSnakeCase[keyVal]; ok {
keyVal = mapped
}
} else {
objectKey, keyVal = true, PyName(keyVal)
}
switch t := traverser.(type) {
case hcl.TraverseAttr:
t.Name = keyVal
traverser, traversal[i] = t, t
case hcl.TraverseIndex:
t.Key = cty.StringVal(keyVal)
traverser, traversal[i] = t, t
}
}
if objectKey && isLegalIdentifier(keyVal) {
currentTraversal = append(currentTraversal, traverser)
currentParts = append(currentParts, parts[i+1])
continue
}
if currentExpression == nil {
currentExpression = &model.ScopeTraversalExpression{
RootName: rootName,
Traversal: currentTraversal,
Parts: currentParts,
}
checkDiags := currentExpression.Typecheck(false)
diagnostics = append(diagnostics, checkDiags...)
currentTraversal, currentParts = nil, nil
} else if len(currentTraversal) > 0 {
currentExpression = &model.RelativeTraversalExpression{
Source: currentExpression,
Traversal: currentTraversal,
Parts: currentParts,
}
checkDiags := currentExpression.Typecheck(false)
diagnostics = append(diagnostics, checkDiags...)
currentTraversal, currentParts = nil, []model.Traversable{currentExpression.Type()}
}
currentExpression = &model.IndexExpression{
Collection: currentExpression,
Key: &model.LiteralValueExpression{
Value: cty.StringVal(keyVal),
},
}
checkDiags := currentExpression.Typecheck(false)
diagnostics = append(diagnostics, checkDiags...)
}
if currentExpression == source {
return nil, nil
}
return currentExpression, diagnostics
}
type quoteTemp struct {
Name string
VariableType model.Type
Value model.Expression
}
func (qt *quoteTemp) Type() model.Type {
return qt.VariableType
}
func (qt *quoteTemp) Traverse(traverser hcl.Traverser) (model.Traversable, hcl.Diagnostics) {
return qt.VariableType.Traverse(traverser)
}
func (qt *quoteTemp) SyntaxNode() hclsyntax.Node {
return syntax.None
}
type quoteAllocations struct {
quotes map[model.Expression]string
temps []*quoteTemp
}
type quoteAllocator struct {
allocations *quoteAllocations
allocated codegen.StringSet
stack []model.Expression
}
func (qa *quoteAllocator) allocate(longString bool) (string, bool) {
if longString {
if !qa.allocated.Has(`"`) && !qa.allocated.Has(`"""`) {
qa.allocated.Add(`"""`)
return `"""`, true
}
if !qa.allocated.Has(`'`) && !qa.allocated.Has(`'''`) {
qa.allocated.Add(`'''`)
return `'''`, true
}
return "", false
}
if !qa.allocated.Has(`"`) {
qa.allocated.Add(`"`)
return `"`, true
}
if !qa.allocated.Has(`'`) {
qa.allocated.Add(`'`)
return `'`, true
}
return "", false
}
func (qa *quoteAllocator) free(quotes string) {
qa.allocated.Delete(quotes)
}
func (qa *quoteAllocator) inTemplate() bool {
if len(qa.stack) < 2 {
return false
}
_, isTemplate := qa.stack[len(qa.stack)-2].(*model.TemplateExpression)
return isTemplate
}
func (qa *quoteAllocator) allocateExpression(x model.Expression) (model.Expression, hcl.Diagnostics) {
qa.stack = append(qa.stack, x)
var longString bool
switch x := x.(type) {
case *model.LiteralValueExpression:
if x.Type() != model.StringType || qa.inTemplate() {
return x, nil
}
v := x.Value.AsString()
switch strings.Count(v, "\n") {
case 0:
// OK
case 1:
longString = v[0] != '\n' && v[len(v)-1] != '\n'
default:
longString = true
}
case *model.TemplateExpression:
for i, part := range x.Parts {
if lit, ok := part.(*model.LiteralValueExpression); ok && lit.Type() == model.StringType {
v := lit.Value.AsString()
switch strings.Count(v, "\n") {
case 0:
continue
case 1:
if i == 0 && v[0] == '\n' || i == len(x.Parts)-1 && v[len(v)-1] == '\n' {
continue
}
}
longString = true
break
}
}
default:
return x, nil
}
if quote, ok := qa.allocate(longString); ok {
qa.allocations.quotes[x] = quote
return x, nil
}
allocator := &quoteAllocator{allocated: codegen.StringSet{}, allocations: qa.allocations}
value, valueDiags := model.VisitExpression(x, allocator.allocateExpression, allocator.freeExpression)
temp := &quoteTemp{
Name: fmt.Sprintf("str%d", len(qa.allocations.temps)),
VariableType: x.Type(),
Value: value,
}
qa.allocations.temps = append(qa.allocations.temps, temp)
return &model.ScopeTraversalExpression{
RootName: temp.Name,
Traversal: hcl.Traversal{hcl.TraverseRoot{Name: ""}},
Parts: []model.Traversable{temp},
}, valueDiags
}
func (qa *quoteAllocator) freeExpression(x model.Expression) (model.Expression, hcl.Diagnostics) {
defer func() {
qa.stack = qa.stack[:len(qa.stack)-1]
}()
switch x := x.(type) {
case *model.LiteralValueExpression:
if x.Type() != model.StringType || qa.inTemplate() {
return x, nil
}
// OK
case *model.TemplateExpression:
// OK
default:
return x, nil
}
quotes, ok := qa.allocations.quotes[x]
contract.Assert(ok)
qa.free(quotes)
return x, nil
}
func (g *generator) rewriteQuotes(x model.Expression) (model.Expression, []*quoteTemp, hcl.Diagnostics) {
var diagnostics hcl.Diagnostics
// First, rewrite traversals that require string indices into index expressions.
x, rewriteDiags := model.VisitExpression(x, nil, func(x model.Expression) (model.Expression, hcl.Diagnostics) {
switch x := x.(type) {
case *model.RelativeTraversalExpression:
idx, diags := g.rewriteTraversal(x.Traversal, x.Source, x.Parts)
if idx != nil {
return idx, diags
}
case *model.ScopeTraversalExpression:
idx, diags := g.rewriteTraversal(x.Traversal, nil, x.Parts)
if idx != nil {
return idx, diags
}
}
return x, nil
})
diagnostics = append(diagnostics, rewriteDiags...)
// Then lift any expressions that cannot be allocated quotes into temps.
allocations := &quoteAllocations{
quotes: g.quotes,
}
allocator := &quoteAllocator{allocated: codegen.StringSet{}, allocations: allocations}
x, rewriteDiags = model.VisitExpression(x, allocator.allocateExpression, allocator.freeExpression)
diagnostics = append(diagnostics, rewriteDiags...)
return x, allocations.temps, diagnostics
}