pulumi/pkg/codegen/python/gen_program_expressions.go
Pat Gavlin 7b1d6ec1ac
Reify Input and Optional types in the schema type system. (#7059)
These changes support arbitrary combinations of input + plain types
within a schema. Handling plain types at the property level was not
sufficient to support such combinations. Reifying these types
required updating quite a bit of code. This is likely to have caused
some temporary complications, but should eventually lead to
substantial simplification in the SDK and program code generators.

With the new design, input and optional types are explicit in the schema
type system. Optionals will only appear at the outermost level of a type
(i.e. Input<Optional<>>, Array<Optional<>>, etc. will not occur). In
addition to explicit input types, each object type now has a "plain"
shape and an "input" shape. The former uses only plain types; the latter
uses input shapes wherever a plain type is not specified. Plain types
are indicated in the schema by setting the "plain" property of a type spec
to true.
2021-06-24 09:17:55 -07:00

520 lines
14 KiB
Go

//nolint: goconst
package python
import (
"bufio"
"bytes"
"fmt"
"io"
"math/big"
"strings"
"github.com/hashicorp/hcl/v2"
"github.com/hashicorp/hcl/v2/hclsyntax"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/model"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
"github.com/zclconf/go-cty/cty"
)
type nameInfo int
func (nameInfo) Format(name string) string {
return PyName(name)
}
func (g *generator) lowerExpression(expr model.Expression, typ model.Type) (model.Expression, []*quoteTemp) {
// TODO(pdg): diagnostics
expr = hcl2.RewritePropertyReferences(expr)
expr, _ = hcl2.RewriteApplies(expr, nameInfo(0), false)
expr, _ = g.lowerProxyApplies(expr)
expr = hcl2.RewriteConversions(expr, typ)
expr, quotes, _ := g.rewriteQuotes(expr)
return expr, quotes
}
func (g *generator) GetPrecedence(expr model.Expression) int {
// Precedence is taken from https://docs.python.org/3/reference/expressions.html#operator-precedence.
switch expr := expr.(type) {
case *model.AnonymousFunctionExpression:
return 1
case *model.ConditionalExpression:
return 2
case *model.BinaryOpExpression:
switch expr.Operation {
case hclsyntax.OpLogicalOr:
return 3
case hclsyntax.OpLogicalAnd:
return 4
case hclsyntax.OpGreaterThan, hclsyntax.OpGreaterThanOrEqual, hclsyntax.OpLessThan, hclsyntax.OpLessThanOrEqual,
hclsyntax.OpEqual, hclsyntax.OpNotEqual:
return 6
case hclsyntax.OpAdd, hclsyntax.OpSubtract:
return 11
case hclsyntax.OpMultiply, hclsyntax.OpDivide, hclsyntax.OpModulo:
return 12
default:
contract.Failf("unexpected binary expression %v", expr)
}
case *model.UnaryOpExpression:
return 13
case *model.FunctionCallExpression, *model.IndexExpression, *model.RelativeTraversalExpression,
*model.TemplateJoinExpression:
return 16
case *model.ForExpression, *model.ObjectConsExpression, *model.SplatExpression, *model.TupleConsExpression:
return 17
case *model.LiteralValueExpression, *model.ScopeTraversalExpression, *model.TemplateExpression:
return 18
default:
contract.Failf("unexpected expression %v of type %T", expr, expr)
}
return 0
}
func (g *generator) GenAnonymousFunctionExpression(w io.Writer, expr *model.AnonymousFunctionExpression) {
g.Fgen(w, "lambda")
for i, p := range expr.Signature.Parameters {
if i > 0 {
g.Fgen(w, ",")
}
g.Fgenf(w, " %s", p.Name)
}
g.Fgenf(w, ": %.v", expr.Body)
}
func (g *generator) GenBinaryOpExpression(w io.Writer, expr *model.BinaryOpExpression) {
opstr, precedence := "", g.GetPrecedence(expr)
switch expr.Operation {
case hclsyntax.OpAdd:
opstr = "+"
case hclsyntax.OpDivide:
opstr = "/"
case hclsyntax.OpEqual:
opstr = "=="
case hclsyntax.OpGreaterThan:
opstr = ">"
case hclsyntax.OpGreaterThanOrEqual:
opstr = ">="
case hclsyntax.OpLessThan:
opstr = "<"
case hclsyntax.OpLessThanOrEqual:
opstr = "<="
case hclsyntax.OpLogicalAnd:
opstr = "and"
case hclsyntax.OpLogicalOr:
opstr = "or"
case hclsyntax.OpModulo:
opstr = "%"
case hclsyntax.OpMultiply:
opstr = "*"
case hclsyntax.OpNotEqual:
opstr = "!="
case hclsyntax.OpSubtract:
opstr = "-"
default:
opstr, precedence = ",", 0
}
g.Fgenf(w, "%.[1]*[2]v %[3]v %.[1]*[4]o", precedence, expr.LeftOperand, opstr, expr.RightOperand)
}
func (g *generator) GenConditionalExpression(w io.Writer, expr *model.ConditionalExpression) {
g.Fgenf(w, "%.2v if %.2v else %.2v", expr.TrueResult, expr.Condition, expr.FalseResult)
}
func (g *generator) GenForExpression(w io.Writer, expr *model.ForExpression) {
close := "]"
if expr.Key != nil {
// Dictionary comprehension
//
// TODO(pdg): grouping
g.Fgenf(w, "{%.v: %.v", expr.Key, expr.Value)
close = "}"
} else {
// List comprehension
g.Fgenf(w, "[%.v", expr.Value)
}
if expr.KeyVariable == nil {
g.Fgenf(w, " for %v in %.v", expr.ValueVariable.Name, expr.Collection)
} else {
g.Fgenf(w, " for %v, %v in %.v", expr.KeyVariable.Name, expr.ValueVariable.Name, expr.Collection)
}
if expr.Condition != nil {
g.Fgenf(w, " if %.v", expr.Condition)
}
g.Fprint(w, close)
}
func (g *generator) genApply(w io.Writer, expr *model.FunctionCallExpression) {
// Extract the list of outputs and the continuation expression from the `__apply` arguments.
applyArgs, then := hcl2.ParseApplyCall(expr)
if len(applyArgs) == 1 {
// If we only have a single output, just generate a normal `.apply`.
g.Fgenf(w, "%.16v.apply(%.v)", applyArgs[0], then)
} else {
// Otherwise, generate a call to `pulumi.all([]).apply()`.
g.Fgen(w, "pulumi.Output.all(")
for i, o := range applyArgs {
if i > 0 {
g.Fgen(w, ", ")
}
g.Fgenf(w, "%.v", o)
}
g.Fgenf(w, ").apply(%.v)", then)
}
}
// functionName computes the Python package, module, and name for the given function token.
func functionName(tokenArg model.Expression) (string, string, string, hcl.Diagnostics) {
token := tokenArg.(*model.TemplateExpression).Parts[0].(*model.LiteralValueExpression).Value.AsString()
tokenRange := tokenArg.SyntaxNode().Range()
// Compute the resource type from the Pulumi type token.
pkg, module, member, diagnostics := hcl2.DecomposeToken(token, tokenRange)
return makeValidIdentifier(pkg), strings.Replace(module, "/", ".", -1), title(member), diagnostics
}
var functionImports = map[string]string{
"fileArchive": "pulumi",
"fileAsset": "pulumi",
"readDir": "os",
"toJSON": "json",
}
func (g *generator) getFunctionImports(x *model.FunctionCallExpression) string {
if x.Name != hcl2.Invoke {
return functionImports[x.Name]
}
pkg, _, _, diags := functionName(x.Args[0])
contract.Assert(len(diags) == 0)
return "pulumi_" + pkg
}
func (g *generator) GenFunctionCallExpression(w io.Writer, expr *model.FunctionCallExpression) {
switch expr.Name {
case hcl2.IntrinsicConvert:
switch arg := expr.Args[0].(type) {
case *model.ObjectConsExpression:
g.genObjectConsExpression(w, arg, expr.Type())
default:
g.Fgenf(w, "%.v", expr.Args[0])
}
case hcl2.IntrinsicApply:
g.genApply(w, expr)
case "element":
g.Fgenf(w, "%.16v[%.v]", expr.Args[0], expr.Args[1])
case "entries":
g.Fgenf(w, `[{"key": k, "value": v} for k, v in %.v]`, expr.Args[0])
case "fileArchive":
g.Fgenf(w, "pulumi.FileArchive(%.v)", expr.Args[0])
case "fileAsset":
g.Fgenf(w, "pulumi.FileAsset(%.v)", expr.Args[0])
case hcl2.Invoke:
pkg, module, fn, diags := functionName(expr.Args[0])
contract.Assert(len(diags) == 0)
if module != "" {
module = "." + module
}
name := fmt.Sprintf("%s%s.%s", pkg, module, PyName(fn))
optionsBag := ""
if len(expr.Args) == 3 {
var buf bytes.Buffer
g.Fgenf(&buf, ", %.v", expr.Args[2])
optionsBag = buf.String()
}
g.Fgenf(w, "%s(", name)
casingTable := g.casingTables[pkg]
if obj, ok := expr.Args[1].(*model.FunctionCallExpression); ok {
if obj, ok := obj.Args[0].(*model.ObjectConsExpression); ok {
g.lowerObjectKeys(expr.Args[1], casingTable)
indenter := func(f func()) { f() }
if len(obj.Items) > 1 {
indenter = g.Indented
}
indenter(func() {
for i, item := range obj.Items {
// Ignore non-literal keys
key, ok := item.Key.(*model.LiteralValueExpression)
if !ok || !key.Value.Type().Equals(cty.String) {
continue
}
keyVal := PyName(key.Value.AsString())
if i == 0 {
g.Fgenf(w, "%s=%.v", keyVal, item.Value)
} else {
g.Fgenf(w, ",\n%s%s=%.v", g.Indent, keyVal, item.Value)
}
}
})
}
}
g.Fgenf(w, "%v)", optionsBag)
case "length":
g.Fgenf(w, "len(%.v)", expr.Args[0])
case "lookup":
if len(expr.Args) == 3 {
g.Fgenf(w, "(lambda v, def: v if v is not None else def)(%.16v[%.v], %.v)",
expr.Args[0], expr.Args[1], expr.Args[2])
} else {
g.Fgenf(w, "%.16v[%.v]", expr.Args[0], expr.Args[1])
}
case "range":
g.Fprint(w, "range(")
for i, arg := range expr.Args {
if i > 0 {
g.Fprint(w, ", ")
}
g.Fgenf(w, "%.v", arg)
}
g.Fprint(w, ")")
case "readFile":
g.Fgenf(w, "(lambda path: open(path).read())(%.v)", expr.Args[0])
case "readDir":
g.Fgenf(w, "os.listdir(%.v)", expr.Args[0])
case "secret":
g.Fgenf(w, "pulumi.secret(%v)", expr.Args[0])
case "split":
g.Fgenf(w, "%.16v.split(%.v)", expr.Args[1], expr.Args[0])
case "toJSON":
g.Fgenf(w, "json.dumps(%.v)", expr.Args[0])
default:
var rng hcl.Range
if expr.Syntax != nil {
rng = expr.Syntax.Range()
}
g.genNYI(w, "FunctionCallExpression: %v (%v)", expr.Name, rng)
}
}
func (g *generator) GenIndexExpression(w io.Writer, expr *model.IndexExpression) {
g.Fgenf(w, "%.16v[%.v]", expr.Collection, expr.Key)
}
type runeWriter interface {
WriteRune(c rune) (int, error)
}
// nolint: errcheck
func (g *generator) genEscapedString(w runeWriter, v string, escapeNewlines, escapeBraces bool) {
for _, c := range v {
switch c {
case '\n':
if escapeNewlines {
w.WriteRune('\\')
c = 'n'
}
case '"', '\\':
if escapeNewlines {
w.WriteRune('\\')
}
case '{', '}':
if escapeBraces {
w.WriteRune(c)
}
}
w.WriteRune(c)
}
}
func (g *generator) genStringLiteral(w io.Writer, quotes, v string) {
builder := &strings.Builder{}
builder.WriteString(quotes)
escapeNewlines := quotes == `"` || quotes == `'`
g.genEscapedString(builder, v, escapeNewlines, false)
builder.WriteString(quotes)
g.Fgenf(w, "%s", builder.String())
}
func (g *generator) GenLiteralValueExpression(w io.Writer, expr *model.LiteralValueExpression) {
typ := expr.Type()
if cns, ok := typ.(*model.ConstType); ok {
typ = cns.Type
}
switch typ {
case model.BoolType:
if expr.Value.True() {
g.Fgen(w, "True")
} else {
g.Fgen(w, "False")
}
case model.NoneType:
g.Fgen(w, "None")
case model.NumberType:
bf := expr.Value.AsBigFloat()
if i, acc := bf.Int64(); acc == big.Exact {
g.Fgenf(w, "%d", i)
} else {
f, _ := bf.Float64()
g.Fgenf(w, "%g", f)
}
case model.StringType:
quotes := g.quotes[expr]
g.genStringLiteral(w, quotes, expr.Value.AsString())
default:
contract.Failf("unexpected literal type in GenLiteralValueExpression: %v (%v)", expr.Type(),
expr.SyntaxNode().Range())
}
}
func (g *generator) GenObjectConsExpression(w io.Writer, expr *model.ObjectConsExpression) {
g.genObjectConsExpression(w, expr, expr.Type())
}
func (g *generator) genObjectConsExpression(w io.Writer, expr *model.ObjectConsExpression, destType model.Type) {
typeName := g.argumentTypeName(expr, destType) // Example: aws.s3.BucketLoggingArgs
if typeName != "" {
// If a typeName exists, treat this as an Input Class e.g. aws.s3.BucketLoggingArgs(key="value", foo="bar", ...)
if len(expr.Items) == 0 {
g.Fgenf(w, "%s()", typeName)
} else {
g.Fgenf(w, "%s(\n", typeName)
g.Indented(func() {
for _, item := range expr.Items {
g.Fgenf(w, "%s", g.Indent)
lit := item.Key.(*model.LiteralValueExpression)
g.Fprint(w, PyName(lit.Value.AsString()))
g.Fgenf(w, "=%.v,\n", item.Value)
}
})
g.Fgenf(w, "%s)", g.Indent)
}
} else {
// Otherwise treat this as an untyped dictionary e.g. {"key": "value", "foo": "bar", ...}
if len(expr.Items) == 0 {
g.Fgen(w, "{}")
} else {
g.Fgen(w, "{")
g.Indented(func() {
for _, item := range expr.Items {
g.Fgenf(w, "\n%s%.v: %.v,", g.Indent, item.Key, item.Value)
}
})
g.Fgenf(w, "\n%s}", g.Indent)
}
}
}
func (g *generator) genRelativeTraversal(w io.Writer, traversal hcl.Traversal, parts []model.Traversable) {
for _, traverser := range traversal {
var key cty.Value
switch traverser := traverser.(type) {
case hcl.TraverseAttr:
key = cty.StringVal(traverser.Name)
case hcl.TraverseIndex:
key = traverser.Key
default:
contract.Failf("unexpected traverser of type %T (%v)", traverser, traverser.SourceRange())
}
switch key.Type() {
case cty.String:
keyVal := key.AsString()
contract.Assert(isLegalIdentifier(keyVal))
g.Fgenf(w, ".%s", keyVal)
case cty.Number:
idx, _ := key.AsBigFloat().Int64()
g.Fgenf(w, "[%d]", idx)
default:
keyExpr := &model.LiteralValueExpression{Value: key}
diags := keyExpr.Typecheck(false)
contract.Ignore(diags)
g.Fgenf(w, "[%v]", keyExpr)
}
}
}
func (g *generator) GenRelativeTraversalExpression(w io.Writer, expr *model.RelativeTraversalExpression) {
g.Fgenf(w, "%.16v", expr.Source)
g.genRelativeTraversal(w, expr.Traversal, expr.Parts)
}
func (g *generator) GenScopeTraversalExpression(w io.Writer, expr *model.ScopeTraversalExpression) {
rootName := PyName(expr.RootName)
if _, ok := expr.Parts[0].(*model.SplatVariable); ok {
rootName = "__item"
}
g.Fgen(w, rootName)
g.genRelativeTraversal(w, expr.Traversal.SimpleSplit().Rel, expr.Parts)
}
func (g *generator) GenSplatExpression(w io.Writer, expr *model.SplatExpression) {
g.Fgenf(w, "[%.v for __item in %.v]", expr.Each, expr.Source)
}
func (g *generator) GenTemplateExpression(w io.Writer, expr *model.TemplateExpression) {
quotes := g.quotes[expr]
escapeNewlines := quotes == `"` || quotes == `'`
prefix, escapeBraces := "", false
for _, part := range expr.Parts {
if lit, ok := part.(*model.LiteralValueExpression); !ok || !model.StringType.AssignableFrom(lit.Type()) {
prefix, escapeBraces = "f", true
break
}
}
b := bufio.NewWriter(w)
defer b.Flush()
g.Fprintf(b, "%s%s", prefix, quotes)
for _, expr := range expr.Parts {
if lit, ok := expr.(*model.LiteralValueExpression); ok && model.StringType.AssignableFrom(lit.Type()) {
g.genEscapedString(b, lit.Value.AsString(), escapeNewlines, escapeBraces)
} else {
g.Fgenf(b, "{%.v}", expr)
}
}
g.Fprint(b, quotes)
}
func (g *generator) GenTemplateJoinExpression(w io.Writer, expr *model.TemplateJoinExpression) {
g.genNYI(w, "TemplateJoinExpression")
}
func (g *generator) GenTupleConsExpression(w io.Writer, expr *model.TupleConsExpression) {
switch len(expr.Expressions) {
case 0:
g.Fgen(w, "[]")
case 1:
g.Fgenf(w, "[%.v]", expr.Expressions[0])
default:
g.Fgen(w, "[")
g.Indented(func() {
for _, v := range expr.Expressions {
g.Fgenf(w, "\n%s%.v,", g.Indent, v)
}
})
g.Fgen(w, "\n", g.Indent, "]")
}
}
func (g *generator) GenUnaryOpExpression(w io.Writer, expr *model.UnaryOpExpression) {
opstr, precedence := "", g.GetPrecedence(expr)
switch expr.Operation {
case hclsyntax.OpLogicalNot:
opstr = "not "
case hclsyntax.OpNegate:
opstr = "-"
}
g.Fgenf(w, "%[2]v%.[1]*[3]v", precedence, opstr, expr.Operand)
}