pulumi/pkg/codegen/nodejs/gen_program_lower.go
Pat Gavlin f21eda521f
[codegen] Rename the PCL package. (#8103)
It's just confusing that PCL lives in a package named `hcl2`.
2021-09-29 20:11:56 -07:00

247 lines
7.4 KiB
Go

package nodejs
import (
"github.com/hashicorp/hcl/v2"
"github.com/pulumi/pulumi/pkg/v3/codegen"
"github.com/pulumi/pulumi/pkg/v3/codegen/hcl2/model"
"github.com/pulumi/pulumi/pkg/v3/codegen/pcl"
"github.com/pulumi/pulumi/sdk/v3/go/common/util/contract"
)
func isOutputType(t model.Type) bool {
switch t := t.(type) {
case *model.OutputType:
return true
case *model.UnionType:
for _, t := range t.ElementTypes {
if _, isOutput := t.(*model.OutputType); isOutput {
return true
}
}
}
return false
}
func isPromiseType(t model.Type) bool {
switch t := t.(type) {
case *model.PromiseType:
return true
case *model.UnionType:
isPromise := false
for _, t := range t.ElementTypes {
switch t.(type) {
case *model.OutputType:
return false
case *model.PromiseType:
isPromise = true
}
}
return isPromise
}
return false
}
func isParameterReference(parameters codegen.Set, x model.Expression) bool {
scopeTraversal, ok := x.(*model.ScopeTraversalExpression)
if !ok {
return false
}
return parameters.Has(scopeTraversal.Parts[0])
}
// canLiftTraversal returns true if this traversal can be lifted. Any traversal that does not traverse
// possibly-undefined values can be lifted.
func (g *generator) canLiftTraversal(parts []model.Traversable) bool {
for _, p := range parts {
t := model.GetTraversableType(p)
if model.IsOptionalType(t) || isPromiseType(t) {
return false
}
}
return true
}
// parseProxyApply attempts to match and rewrite the given parsed apply using the following patterns:
//
// - __apply(<expr>, eval(x, x[index])) -> <expr>[index]
// - __apply(<expr>, eval(x, x.attr))) -> <expr>.attr
// - __apply(scope.traversal, eval(x, x.attr)) -> scope.traversal.attr
//
// Each of these patterns matches an apply that can be handled by `pulumi.Output`'s property access proxy.
func (g *generator) parseProxyApply(parameters codegen.Set, args []model.Expression,
then model.Expression) (model.Expression, bool) {
if len(args) != 1 {
return nil, false
}
arg := args[0]
switch then := then.(type) {
case *model.IndexExpression:
t := arg.Type()
if !isParameterReference(parameters, then.Collection) || model.IsOptionalType(t) || isPromiseType(t) {
return nil, false
}
then.Collection = arg
case *model.ScopeTraversalExpression:
if !isParameterReference(parameters, then) || isPromiseType(arg.Type()) {
return nil, false
}
if !g.canLiftTraversal(then.Parts) {
return nil, false
}
switch arg := arg.(type) {
case *model.RelativeTraversalExpression:
arg.Traversal = append(arg.Traversal, then.Traversal[1:]...)
arg.Parts = append(arg.Parts, then.Parts...)
case *model.ScopeTraversalExpression:
arg.Traversal = append(arg.Traversal, then.Traversal[1:]...)
arg.Parts = append(arg.Parts, then.Parts...)
default:
return nil, false
}
default:
return nil, false
}
diags := arg.Typecheck(false)
contract.Assert(len(diags) == 0)
return arg, true
}
func callbackParameterReferences(expr model.Expression, parameters codegen.Set) []*model.Variable {
var refs []*model.Variable
visitor := func(expr model.Expression) (model.Expression, hcl.Diagnostics) {
if expr, isScopeTraversal := expr.(*model.ScopeTraversalExpression); isScopeTraversal {
if parameters.Has(expr.Parts[0]) {
refs = append(refs, expr.Parts[0].(*model.Variable))
}
}
return expr, nil
}
_, diags := model.VisitExpression(expr, model.IdentityVisitor, visitor)
contract.Assert(len(diags) == 0)
return refs
}
// parseInterpolate attempts to match the given parsed apply against a template whose parts are a mix of prompt
// expressions and proxyable applies.
//
// If a match is found, parseInterpolate returns an appropriate call to the __interpolate intrinsic with a mix of
// expressions and proxied applies.
func (g *generator) parseInterpolate(parameters codegen.Set, args []model.Expression,
then *model.AnonymousFunctionExpression) (model.Expression, bool) {
template, ok := then.Body.(*model.TemplateExpression)
if !ok {
return nil, false
}
indices := map[*model.Variable]int{}
for i, p := range then.Parameters {
indices[p] = i
}
exprs := make([]model.Expression, len(template.Parts))
for i, expr := range template.Parts {
parameterRefs := callbackParameterReferences(expr, parameters)
if len(parameterRefs) == 0 {
exprs[i] = expr
continue
}
proxyArgs := make([]model.Expression, len(parameterRefs))
for i, p := range parameterRefs {
argIndex, ok := indices[p]
contract.Assert(ok)
proxyArgs[i] = args[argIndex]
}
expr, ok := g.parseProxyApply(parameters, proxyArgs, expr)
if !ok {
return nil, false
}
exprs[i] = expr
}
return newInterpolateCall(exprs), true
}
// lowerProxyApplies lowers certain calls to the apply intrinsic into proxied property accesses and/or calls to the
// pulumi.interpolate function. Concretely, this boils down to rewriting the following shapes
//
// - __apply(<expr>, eval(x, x[index]))
// - __apply(<expr>, eval(x, x.attr))
// - __apply(scope.traversal, eval(x, x.attr))
// - __apply(<proxy-apply>, ..., eval(x, ..., "foo ${<proxy-apply>} bar ${...}"))
//
// into (respectively)
//
// - <expr>[index]
// - <expr>.attr
// - scope.traversal.attr
// - __interpolate("foo ", <proxy-apply>, " bar ", ...)
//
// The first two forms will be generated as proxied applies; the lattermost will be generated as an interpolated string
// that uses `pulumi.interpolate`.
func (g *generator) lowerProxyApplies(expr model.Expression) (model.Expression, hcl.Diagnostics) {
rewriter := func(expr model.Expression) (model.Expression, hcl.Diagnostics) {
// Ignore the node if it is not a call to the apply intrinsic.
apply, ok := expr.(*model.FunctionCallExpression)
if !ok || apply.Name != pcl.IntrinsicApply {
return expr, nil
}
// Parse the apply call.
args, then := pcl.ParseApplyCall(apply)
parameters := codegen.Set{}
for _, p := range then.Parameters {
parameters.Add(p)
}
// Attempt to match (call __apply (rvar) (call __applyArg 0))
if v, ok := g.parseProxyApply(parameters, args, then.Body); ok {
return v, nil
}
// Attempt to match (call __apply (rvar 0) ... (rvar n) (output /* mix of literals and calls to __applyArg)
if v, ok := g.parseInterpolate(parameters, args, then); ok {
return v, nil
}
return expr, nil
}
return model.VisitExpression(expr, model.IdentityVisitor, rewriter)
}
// awaitInvokes wraps each call to `invoke` with a call to the `await` intrinsic. This rewrite should only be used
// if we are generating an async main, in which case the apply rewriter should also be configured not to treat
// promises as eventuals. The cumulative effect of these options is to avoid the use of `then` within async contexts.
// Note that this depends on the fact that invokes are the only way to introduce promises in to a Pulumi program; if
// this changes in the future, this transform will need to be applied in a more general way (e.g. by the apply
// rewriter).
func (g *generator) awaitInvokes(x model.Expression) model.Expression {
contract.Assert(g.asyncMain)
rewriter := func(x model.Expression) (model.Expression, hcl.Diagnostics) {
// Ignore the node if it is not a call to invoke.
call, ok := x.(*model.FunctionCallExpression)
if !ok || call.Name != pcl.Invoke {
return x, nil
}
_, isPromise := call.Type().(*model.PromiseType)
contract.Assert(isPromise)
return newAwaitCall(call), nil
}
x, diags := model.VisitExpression(x, model.IdentityVisitor, rewriter)
contract.Assert(len(diags) == 0)
return x
}