terminal/src/renderer/gdi/gdirenderer.hpp

216 lines
9 KiB
C++
Raw Normal View History

/*++
Copyright (c) Microsoft Corporation
Licensed under the MIT license.
Module Name:
- GdiRenderer.hpp
Abstract:
- This is the definition of the GDI specific implementation of the renderer.
Author(s):
- Michael Niksa (MiNiksa) 17-Nov-2015
--*/
#pragma once
#include "../inc/RenderEngineBase.hpp"
Add support for downloadable soft fonts (#10011) This PR adds conhost support for downloadable soft fonts - also known as dynamically redefinable character sets (DRCS) - using the `DECDLD` escape sequence. These fonts are typically designed to work on a specific terminal model, and each model tends to have a different character cell size. So in order to support as many models as possible, the code attempts to detect the original target size of the font, and then scale the glyphs to fit our current cell size. Once a font has been downloaded to the terminal, it can be designated in the same way you would a standard character set, using an `SCS` escape sequence. The identification string for the set is defined by the `DECDLD` sequence. Internally we map the characters in this set to code points `U+EF20` to `U+EF7F` in the Unicode private use are (PUA). Then in the renderer, any characters in that range are split off into separate runs, which get painted with a special font. The font itself is dynamically generated as an in-memory resource, constructed from the downloaded character bitmaps which have been scaled to the appropriate size. If no soft fonts are in use, then no mapping of the PUA code points will take place, so this shouldn't interfere with anyone using those code points for something else, as along as they aren't also trying to use soft fonts. I also tried to pick a PUA range that hadn't already been snatched up by Nerd Fonts, but if we do receive reports of a conflict, it's easy enough to change. ## Validation Steps Performed I added an adapter test that runs through a bunch of parameter variations for the `DECDLD` sequence, to make sure we're correctly detecting the font sizes for most of the known DEC terminal models. I've also tested manually on a wide range of existing fonts, of varying dimensions, and from multiple sources, and made sure they all worked reasonably well. Closes #9164
2021-08-06 22:41:02 +02:00
#include "../inc/FontResource.hpp"
namespace Microsoft::Console::Render
{
class GdiEngine final : public RenderEngineBase
{
public:
GdiEngine();
~GdiEngine() override;
[[nodiscard]] HRESULT SetHwnd(const HWND hwnd) noexcept;
[[nodiscard]] HRESULT InvalidateSelection(const std::vector<SMALL_RECT>& rectangles) noexcept override;
[[nodiscard]] HRESULT InvalidateScroll(const COORD* const pcoordDelta) noexcept override;
[[nodiscard]] HRESULT InvalidateSystem(const RECT* const prcDirtyClient) noexcept override;
[[nodiscard]] HRESULT Invalidate(const SMALL_RECT* const psrRegion) noexcept override;
Add support for double-width/double-height lines in conhost (#8664) This PR adds support for the VT line rendition attributes, which allow for double-width and double-height line renditions. These renditions are enabled with the `DECDWL` (double-width line) and `DECDHL` (double-height line) escape sequences. Both reset to the default rendition with the `DECSWL` (single-width line) escape sequence. For now this functionality is only supported by the GDI renderer in conhost. There are a lot of changes, so this is just a general overview of the main areas affected. Previously it was safe to assume that the screen had a fixed width, at least for a given point in time. But now we need to deal with the possibility of different lines have different widths, so all the functions that are constrained by the right border (text wrapping, cursor movement operations, and sequences like `EL` and `ICH`) now need to lookup the width of the active line in order to behave correctly. Similarly it used to be safe to assume that buffer and screen coordinates were the same thing, but that is no longer true. Lots of places now need to translate back and forth between coordinate systems dependent on the line rendition. This includes clipboard handling, the conhost color selection and search, accessibility location tracking and screen reading, IME editor positioning, "snapping" the viewport, and of course all the rendering calculations. For the rendering itself, I've had to introduce a new `PrepareLineTransform` method that the render engines can use to setup the necessary transform matrix for a given line rendition. This is also now used to handle the horizontal viewport offset, since that could no longer be achieved just by changing the target coordinates (on a double width line, the viewport offset may be halfway through a character). I've also had to change the renderer's existing `InvalidateCursor` method to take a `SMALL_RECT` rather than a `COORD`, to allow for the cursor being a variable width. Technically this was already a problem, because the cursor could occupy two screen cells when over a double-width character, but now it can be anything between one and four screen cells (e.g. a double-width character on the double-width line). In terms of architectural changes, there is now a new `lineRendition` field in the `ROW` class that keeps track of the line rendition for each row, and several new methods in the `ROW` and `TextBuffer` classes for manipulating that state. This includes a few helper methods for handling the various issues discussed above, e.g. position clamping and translating between coordinate systems. ## Validation Steps Performed I've manually confirmed all the double-width and double-height tests in _Vttest_ are now working as expected, and the _VT100 Torture Test_ now renders correctly (at least the line rendition aspects). I've also got my own test scripts that check many of the line rendition boundary cases and have confirmed that those are now passing. I've manually tested as many areas of the conhost UI that I could think of, that might be affected by line rendition, including things like searching, selection, copying, and color highlighting. For accessibility, I've confirmed that the _Magnifier_ and _Narrator_ correctly handle double-width lines. And I've also tested the Japanese IME, which while not perfect, is at least useable. Closes #7865
2021-02-18 06:44:50 +01:00
[[nodiscard]] HRESULT InvalidateCursor(const SMALL_RECT* const psrRegion) noexcept override;
[[nodiscard]] HRESULT InvalidateAll() noexcept override;
[[nodiscard]] HRESULT InvalidateCircling(_Out_ bool* const pForcePaint) noexcept override;
[[nodiscard]] HRESULT PrepareForTeardown(_Out_ bool* const pForcePaint) noexcept override;
[[nodiscard]] HRESULT StartPaint() noexcept override;
[[nodiscard]] HRESULT EndPaint() noexcept override;
[[nodiscard]] HRESULT Present() noexcept override;
[[nodiscard]] HRESULT ScrollFrame() noexcept override;
Add support for double-width/double-height lines in conhost (#8664) This PR adds support for the VT line rendition attributes, which allow for double-width and double-height line renditions. These renditions are enabled with the `DECDWL` (double-width line) and `DECDHL` (double-height line) escape sequences. Both reset to the default rendition with the `DECSWL` (single-width line) escape sequence. For now this functionality is only supported by the GDI renderer in conhost. There are a lot of changes, so this is just a general overview of the main areas affected. Previously it was safe to assume that the screen had a fixed width, at least for a given point in time. But now we need to deal with the possibility of different lines have different widths, so all the functions that are constrained by the right border (text wrapping, cursor movement operations, and sequences like `EL` and `ICH`) now need to lookup the width of the active line in order to behave correctly. Similarly it used to be safe to assume that buffer and screen coordinates were the same thing, but that is no longer true. Lots of places now need to translate back and forth between coordinate systems dependent on the line rendition. This includes clipboard handling, the conhost color selection and search, accessibility location tracking and screen reading, IME editor positioning, "snapping" the viewport, and of course all the rendering calculations. For the rendering itself, I've had to introduce a new `PrepareLineTransform` method that the render engines can use to setup the necessary transform matrix for a given line rendition. This is also now used to handle the horizontal viewport offset, since that could no longer be achieved just by changing the target coordinates (on a double width line, the viewport offset may be halfway through a character). I've also had to change the renderer's existing `InvalidateCursor` method to take a `SMALL_RECT` rather than a `COORD`, to allow for the cursor being a variable width. Technically this was already a problem, because the cursor could occupy two screen cells when over a double-width character, but now it can be anything between one and four screen cells (e.g. a double-width character on the double-width line). In terms of architectural changes, there is now a new `lineRendition` field in the `ROW` class that keeps track of the line rendition for each row, and several new methods in the `ROW` and `TextBuffer` classes for manipulating that state. This includes a few helper methods for handling the various issues discussed above, e.g. position clamping and translating between coordinate systems. ## Validation Steps Performed I've manually confirmed all the double-width and double-height tests in _Vttest_ are now working as expected, and the _VT100 Torture Test_ now renders correctly (at least the line rendition aspects). I've also got my own test scripts that check many of the line rendition boundary cases and have confirmed that those are now passing. I've manually tested as many areas of the conhost UI that I could think of, that might be affected by line rendition, including things like searching, selection, copying, and color highlighting. For accessibility, I've confirmed that the _Magnifier_ and _Narrator_ correctly handle double-width lines. And I've also tested the Japanese IME, which while not perfect, is at least useable. Closes #7865
2021-02-18 06:44:50 +01:00
[[nodiscard]] HRESULT ResetLineTransform() noexcept override;
[[nodiscard]] HRESULT PrepareLineTransform(const LineRendition lineRendition,
const size_t targetRow,
const size_t viewportLeft) noexcept override;
[[nodiscard]] HRESULT PaintBackground() noexcept override;
[[nodiscard]] HRESULT PaintBufferLine(gsl::span<const Cluster> const clusters,
const COORD coord,
Make Conpty emit wrapped lines as actually wrapped lines (#4415) ## Summary of the Pull Request Changes how conpty emits text to preserve line-wrap state, and additionally adds rudimentary support to the Windows Terminal for wrapped lines. ## References * Does _not_ fix (!) #3088, but that might be lower down in conhost. This makes wt behave like conhost, so at least there's that * Still needs a proper deferred EOL wrap implementation in #780, which is left as a todo * #4200 is the mega bucket with all this work * MSFT:16485846 was the first attempt at this task, which caused the regression MSFT:18123777 so we backed it out. * #4403 - I made sure this worked with that PR before I even sent #4403 ## PR Checklist * [x] Closes #405 * [x] Closes #3367 * [x] I work here * [x] Tests added/passed * [n/a] Requires documentation to be updated ## Detailed Description of the Pull Request / Additional comments I started with the following implementation: When conpty is about to write the last column, note that we wrapped this line here. If the next character the vt renderer is told to paint get is supposed to be at the start of the following line, then we know that the previous line had wrapped, so we _won't_ emit the usual `\r\n` here, and we'll just continue emitting text. However, this isn't _exactly_ right - if someone fills the row _exactly_ with text, the information that's available to the vt renderer isn't enough to know for sure if this line broke or not. It is possible for the client to write a full line of text, with a `\n` at the end, to manually break the line. So, I had to also add the `lineWrapped` param to the `IRenderEngine` interface, which is about half the files in this changelist. ## Validation Steps Performed * Ran tests * Checked how the Windows Terminal behaves with these changes * Made sure that conhost/inception and gnome-terminal both act as you'd expect with wrapped lines from conpty
2020-02-27 17:40:11 +01:00
const bool trimLeft,
const bool lineWrapped) noexcept override;
[[nodiscard]] HRESULT PaintBufferGridLines(const GridLineSet lines,
const COLORREF color,
const size_t cchLine,
const COORD coordTarget) noexcept override;
[[nodiscard]] HRESULT PaintSelection(const SMALL_RECT rect) noexcept override;
[[nodiscard]] HRESULT PaintCursor(const CursorOptions& options) noexcept override;
Improve the propagation of color attributes over ConPTY (#6506) This PR reimplements the VT rendering engines to do a better job of preserving the original color types when propagating attributes over ConPTY. For the 16-color renderers it provides better support for default colors and improves the efficiency of the color narrowing conversions. It also fixes problems with the ordering of character renditions that could result in attributes being dropped. Originally the base renderer would calculate the RGB color values and legacy/extended attributes up front, passing that data on to the active engine's `UpdateDrawingBrushes` method. With this new implementation, the renderer now just passes through the original `TextAttribute` along with an `IRenderData` interface, and leaves it to the engines to extract the information they need. The GDI and DirectX engines now have to lookup the RGB colors themselves (via simple `IRenderData` calls), but have no need for the other attributes. The VT engines extract the information that they need from the `TextAttribute`, instead of having to reverse engineer it from `COLORREF`s. The process for the 256-color Xterm engine starts with a check for default colors. If both foreground and background are default, it outputs a SGR 0 reset, and clears the `_lastTextAttribute` completely to make sure any reset state is reapplied. With that out the way, the foreground and background are updated (if changed) in one of 4 ways. They can either be a default value (SGR 39 and 49), a 16-color index (using ANSI or AIX sequences), a 256-color index, or a 24-bit RGB value (both using SGR 38 and 48 sequences). Then once the colors are accounted for, there is a separate step that handles the character rendition attributes (bold, italics, underline, etc.) This step must come _after_ the color sequences, in case a SGR reset is required, which would otherwise have cleared any character rendition attributes if it came last (which is what happened in the original implementation). The process for the 16-color engines is a little different. The target client in this case (Windows telnet) is incapable of setting default colors individually, so we need to output an SGR 0 reset if _either_ color has changed to default. With that out the way, we use the `TextColor::GetLegacyIndex` method to obtain an approximate 16-color index for each color, and apply the bold attribute by brightening the foreground index (setting bit 8) if the color type permits that. However, since Windows telnet only supports the 8 basic ANSI colors, the best we can do for bright colors is to output an SGR 1 attribute to get a bright foreground. There is nothing we can do about a bright background, so after that we just have to drop the high bit from the colors. If the resulting index values have changed from what they were before, we then output ANSI 8-color SGR sequences to update them. As with the 256-color engine, there is also a final step to handle the character rendition attributes. But in this case, the only supported attributes are underline and reversed video. Since the VT engines no longer depend on the active color table and default color values, there was quite a lot of code that could now be removed. This included the `IDefaultColorProvider` interface and implementations, the `Find(Nearest)TableIndex` functions, and also the associated HLS conversion and difference calculations. VALIDATION Other than simple API parameter changes, the majority of updates required in the unit tests were to correct assumptions about the way the colors should be rendered, which were the source of the narrowing bugs this PR was trying to fix. Like passing white on black to the `UpdateDrawingBrushes` API, and expecting it to output the default `SGR 0` sequence, or passing an RGB color and expecting an indexed SGR sequence. In addition to that, I've added some VT renderer tests to make sure the rendition attributes (bold, underline, etc) are correctly retained when a default color update causes an `SGR 0` sequence to be generated (the source of bug #3076). And I've extended the VT renderer color tests (both 256-color and 16-color) to make sure we're covering all of the different color types (default, RGB, and both forms of indexed colors). I've also tried to manually verify that all of the test cases in the linked bug reports (and their associated duplicates) are now fixed when this PR is applied. Closes #2661 Closes #3076 Closes #3717 Closes #5384 Closes #5864 This is only a partial fix for #293, but I suspect the remaining cases are unfixable.
2020-07-01 20:10:36 +02:00
[[nodiscard]] HRESULT UpdateDrawingBrushes(const TextAttribute& textAttributes,
const gsl::not_null<IRenderData*> pData,
Add support for downloadable soft fonts (#10011) This PR adds conhost support for downloadable soft fonts - also known as dynamically redefinable character sets (DRCS) - using the `DECDLD` escape sequence. These fonts are typically designed to work on a specific terminal model, and each model tends to have a different character cell size. So in order to support as many models as possible, the code attempts to detect the original target size of the font, and then scale the glyphs to fit our current cell size. Once a font has been downloaded to the terminal, it can be designated in the same way you would a standard character set, using an `SCS` escape sequence. The identification string for the set is defined by the `DECDLD` sequence. Internally we map the characters in this set to code points `U+EF20` to `U+EF7F` in the Unicode private use are (PUA). Then in the renderer, any characters in that range are split off into separate runs, which get painted with a special font. The font itself is dynamically generated as an in-memory resource, constructed from the downloaded character bitmaps which have been scaled to the appropriate size. If no soft fonts are in use, then no mapping of the PUA code points will take place, so this shouldn't interfere with anyone using those code points for something else, as along as they aren't also trying to use soft fonts. I also tried to pick a PUA range that hadn't already been snatched up by Nerd Fonts, but if we do receive reports of a conflict, it's easy enough to change. ## Validation Steps Performed I added an adapter test that runs through a bunch of parameter variations for the `DECDLD` sequence, to make sure we're correctly detecting the font sizes for most of the known DEC terminal models. I've also tested manually on a wide range of existing fonts, of varying dimensions, and from multiple sources, and made sure they all worked reasonably well. Closes #9164
2021-08-06 22:41:02 +02:00
const bool usingSoftFont,
const bool isSettingDefaultBrushes) noexcept override;
[[nodiscard]] HRESULT UpdateFont(const FontInfoDesired& FontInfoDesired,
_Out_ FontInfo& FontInfo) noexcept override;
Add support for downloadable soft fonts (#10011) This PR adds conhost support for downloadable soft fonts - also known as dynamically redefinable character sets (DRCS) - using the `DECDLD` escape sequence. These fonts are typically designed to work on a specific terminal model, and each model tends to have a different character cell size. So in order to support as many models as possible, the code attempts to detect the original target size of the font, and then scale the glyphs to fit our current cell size. Once a font has been downloaded to the terminal, it can be designated in the same way you would a standard character set, using an `SCS` escape sequence. The identification string for the set is defined by the `DECDLD` sequence. Internally we map the characters in this set to code points `U+EF20` to `U+EF7F` in the Unicode private use are (PUA). Then in the renderer, any characters in that range are split off into separate runs, which get painted with a special font. The font itself is dynamically generated as an in-memory resource, constructed from the downloaded character bitmaps which have been scaled to the appropriate size. If no soft fonts are in use, then no mapping of the PUA code points will take place, so this shouldn't interfere with anyone using those code points for something else, as along as they aren't also trying to use soft fonts. I also tried to pick a PUA range that hadn't already been snatched up by Nerd Fonts, but if we do receive reports of a conflict, it's easy enough to change. ## Validation Steps Performed I added an adapter test that runs through a bunch of parameter variations for the `DECDLD` sequence, to make sure we're correctly detecting the font sizes for most of the known DEC terminal models. I've also tested manually on a wide range of existing fonts, of varying dimensions, and from multiple sources, and made sure they all worked reasonably well. Closes #9164
2021-08-06 22:41:02 +02:00
[[nodiscard]] HRESULT UpdateSoftFont(const gsl::span<const uint16_t> bitPattern,
const SIZE cellSize,
const size_t centeringHint) noexcept override;
[[nodiscard]] HRESULT UpdateDpi(const int iDpi) noexcept override;
[[nodiscard]] HRESULT UpdateViewport(const SMALL_RECT srNewViewport) noexcept override;
[[nodiscard]] HRESULT GetProposedFont(const FontInfoDesired& FontDesired,
_Out_ FontInfo& Font,
const int iDpi) noexcept override;
Eliminate more transient allocations: Titles and invalid rectangles and bitmap runs and utf8 conversions (#8621) ## References * See also #8617 ## PR Checklist * [x] Supports #3075 * [x] I work here. * [x] Manual test. ## Detailed Description of the Pull Request / Additional comments ### Window Title Generation Every time the renderer checks the title, it's doing two bad things that I've fixed: 1. It's assembling the prefix to the full title doing a concatenation. No one ever gets just the prefix ever after it is set besides the concat. So instead of storing prefix and the title, I store the assembled prefix + title and the bare title. 2. A copy must be made because it was returning `std::wstring` instead of `std::wstring&`. Now it returns the ref. ### Dirty Area Return Every time the renderer checks the dirty area, which is sometimes multiple times per pass (regular text printing, again for selection, etc.), a vector is created off the heap to return the rectangles. The consumers only ever iterate this data. Now we return a span over a rectangle or rectangles that the engine must store itself. 1. For some renderers, it's always a constant 1 element. They update that 1 element when dirty is queried and return it in the span with a span size of 1. 2. For other renderers with more complex behavior, they're already holding a cached vector of rectangles. Now it's effectively giving out the ref to those in the span for iteration. ### Bitmap Runs The `til::bitmap` used a `std::optional<std::vector<til::rectangle>>` inside itself to cache its runs and would clear the optional when the runs became invalidated. Unfortunately doing `.reset()` to clear the optional will destroy the underlying vector and have it release its memory. We know it's about to get reallocated again, so we're just going to make it a `std::pmr::vector` and give it a memory pool. The alternative solution here was to use a `bool` and `std::vector<til::rectangle>` and just flag when the vector was invalid, but that was honestly more code changes and I love excuses to try out PMR now. Also, instead of returning the ref to the vector... I'm just returning a span now. Everyone just iterates it anyway, may as well not share the implementation detail. ### UTF-8 conversions When testing with Terminal and looking at the `conhost.exe`'s PTY renderer, it spends a TON of allocation time on converting all the UTF-16 stuff inside to UTF-8 before it sends it out the PTY. This was because `ConvertToA` was allocating a string inside itself and returning it just to have it freed after printing and looping back around again... as a PTY does. The change here is to use `til::u16u8` that accepts a buffer out parameter so the caller can just hold onto it. ## Validation Steps Performed - [x] `big.txt` in conhost.exe (GDI renderer) - [x] `big.txt` in Terminal (DX, PTY renderer) - [x] Ensure WDDM and BGFX build under Razzle with this change.
2021-02-16 21:52:33 +01:00
[[nodiscard]] HRESULT GetDirtyArea(gsl::span<const til::rectangle>& area) noexcept override;
[[nodiscard]] HRESULT GetFontSize(_Out_ COORD* const pFontSize) noexcept override;
[[nodiscard]] HRESULT IsGlyphWideByFont(const std::wstring_view glyph, _Out_ bool* const pResult) noexcept override;
protected:
Eliminate more transient allocations: Titles and invalid rectangles and bitmap runs and utf8 conversions (#8621) ## References * See also #8617 ## PR Checklist * [x] Supports #3075 * [x] I work here. * [x] Manual test. ## Detailed Description of the Pull Request / Additional comments ### Window Title Generation Every time the renderer checks the title, it's doing two bad things that I've fixed: 1. It's assembling the prefix to the full title doing a concatenation. No one ever gets just the prefix ever after it is set besides the concat. So instead of storing prefix and the title, I store the assembled prefix + title and the bare title. 2. A copy must be made because it was returning `std::wstring` instead of `std::wstring&`. Now it returns the ref. ### Dirty Area Return Every time the renderer checks the dirty area, which is sometimes multiple times per pass (regular text printing, again for selection, etc.), a vector is created off the heap to return the rectangles. The consumers only ever iterate this data. Now we return a span over a rectangle or rectangles that the engine must store itself. 1. For some renderers, it's always a constant 1 element. They update that 1 element when dirty is queried and return it in the span with a span size of 1. 2. For other renderers with more complex behavior, they're already holding a cached vector of rectangles. Now it's effectively giving out the ref to those in the span for iteration. ### Bitmap Runs The `til::bitmap` used a `std::optional<std::vector<til::rectangle>>` inside itself to cache its runs and would clear the optional when the runs became invalidated. Unfortunately doing `.reset()` to clear the optional will destroy the underlying vector and have it release its memory. We know it's about to get reallocated again, so we're just going to make it a `std::pmr::vector` and give it a memory pool. The alternative solution here was to use a `bool` and `std::vector<til::rectangle>` and just flag when the vector was invalid, but that was honestly more code changes and I love excuses to try out PMR now. Also, instead of returning the ref to the vector... I'm just returning a span now. Everyone just iterates it anyway, may as well not share the implementation detail. ### UTF-8 conversions When testing with Terminal and looking at the `conhost.exe`'s PTY renderer, it spends a TON of allocation time on converting all the UTF-16 stuff inside to UTF-8 before it sends it out the PTY. This was because `ConvertToA` was allocating a string inside itself and returning it just to have it freed after printing and looping back around again... as a PTY does. The change here is to use `til::u16u8` that accepts a buffer out parameter so the caller can just hold onto it. ## Validation Steps Performed - [x] `big.txt` in conhost.exe (GDI renderer) - [x] `big.txt` in Terminal (DX, PTY renderer) - [x] Ensure WDDM and BGFX build under Razzle with this change.
2021-02-16 21:52:33 +01:00
[[nodiscard]] HRESULT _DoUpdateTitle(_In_ const std::wstring_view newTitle) noexcept override;
private:
HWND _hwndTargetWindow;
[[nodiscard]] static HRESULT s_SetWindowLongWHelper(const HWND hWnd,
const int nIndex,
const LONG dwNewLong) noexcept;
bool _fPaintStarted;
Eliminate more transient allocations: Titles and invalid rectangles and bitmap runs and utf8 conversions (#8621) ## References * See also #8617 ## PR Checklist * [x] Supports #3075 * [x] I work here. * [x] Manual test. ## Detailed Description of the Pull Request / Additional comments ### Window Title Generation Every time the renderer checks the title, it's doing two bad things that I've fixed: 1. It's assembling the prefix to the full title doing a concatenation. No one ever gets just the prefix ever after it is set besides the concat. So instead of storing prefix and the title, I store the assembled prefix + title and the bare title. 2. A copy must be made because it was returning `std::wstring` instead of `std::wstring&`. Now it returns the ref. ### Dirty Area Return Every time the renderer checks the dirty area, which is sometimes multiple times per pass (regular text printing, again for selection, etc.), a vector is created off the heap to return the rectangles. The consumers only ever iterate this data. Now we return a span over a rectangle or rectangles that the engine must store itself. 1. For some renderers, it's always a constant 1 element. They update that 1 element when dirty is queried and return it in the span with a span size of 1. 2. For other renderers with more complex behavior, they're already holding a cached vector of rectangles. Now it's effectively giving out the ref to those in the span for iteration. ### Bitmap Runs The `til::bitmap` used a `std::optional<std::vector<til::rectangle>>` inside itself to cache its runs and would clear the optional when the runs became invalidated. Unfortunately doing `.reset()` to clear the optional will destroy the underlying vector and have it release its memory. We know it's about to get reallocated again, so we're just going to make it a `std::pmr::vector` and give it a memory pool. The alternative solution here was to use a `bool` and `std::vector<til::rectangle>` and just flag when the vector was invalid, but that was honestly more code changes and I love excuses to try out PMR now. Also, instead of returning the ref to the vector... I'm just returning a span now. Everyone just iterates it anyway, may as well not share the implementation detail. ### UTF-8 conversions When testing with Terminal and looking at the `conhost.exe`'s PTY renderer, it spends a TON of allocation time on converting all the UTF-16 stuff inside to UTF-8 before it sends it out the PTY. This was because `ConvertToA` was allocating a string inside itself and returning it just to have it freed after printing and looping back around again... as a PTY does. The change here is to use `til::u16u8` that accepts a buffer out parameter so the caller can just hold onto it. ## Validation Steps Performed - [x] `big.txt` in conhost.exe (GDI renderer) - [x] `big.txt` in Terminal (DX, PTY renderer) - [x] Ensure WDDM and BGFX build under Razzle with this change.
2021-02-16 21:52:33 +01:00
til::rectangle _invalidCharacters;
PAINTSTRUCT _psInvalidData;
HDC _hdcMemoryContext;
bool _isTrueTypeFont;
UINT _fontCodepage;
HFONT _hfont;
HFONT _hfontItalic;
TEXTMETRICW _tmFontMetrics;
Add support for downloadable soft fonts (#10011) This PR adds conhost support for downloadable soft fonts - also known as dynamically redefinable character sets (DRCS) - using the `DECDLD` escape sequence. These fonts are typically designed to work on a specific terminal model, and each model tends to have a different character cell size. So in order to support as many models as possible, the code attempts to detect the original target size of the font, and then scale the glyphs to fit our current cell size. Once a font has been downloaded to the terminal, it can be designated in the same way you would a standard character set, using an `SCS` escape sequence. The identification string for the set is defined by the `DECDLD` sequence. Internally we map the characters in this set to code points `U+EF20` to `U+EF7F` in the Unicode private use are (PUA). Then in the renderer, any characters in that range are split off into separate runs, which get painted with a special font. The font itself is dynamically generated as an in-memory resource, constructed from the downloaded character bitmaps which have been scaled to the appropriate size. If no soft fonts are in use, then no mapping of the PUA code points will take place, so this shouldn't interfere with anyone using those code points for something else, as along as they aren't also trying to use soft fonts. I also tried to pick a PUA range that hadn't already been snatched up by Nerd Fonts, but if we do receive reports of a conflict, it's easy enough to change. ## Validation Steps Performed I added an adapter test that runs through a bunch of parameter variations for the `DECDLD` sequence, to make sure we're correctly detecting the font sizes for most of the known DEC terminal models. I've also tested manually on a wide range of existing fonts, of varying dimensions, and from multiple sources, and made sure they all worked reasonably well. Closes #9164
2021-08-06 22:41:02 +02:00
FontResource _softFont;
static const size_t s_cPolyTextCache = 80;
POLYTEXTW _pPolyText[s_cPolyTextCache];
size_t _cPolyText;
[[nodiscard]] HRESULT _FlushBufferLines() noexcept;
std::vector<RECT> cursorInvertRects;
Add support for double-width/double-height lines in conhost (#8664) This PR adds support for the VT line rendition attributes, which allow for double-width and double-height line renditions. These renditions are enabled with the `DECDWL` (double-width line) and `DECDHL` (double-height line) escape sequences. Both reset to the default rendition with the `DECSWL` (single-width line) escape sequence. For now this functionality is only supported by the GDI renderer in conhost. There are a lot of changes, so this is just a general overview of the main areas affected. Previously it was safe to assume that the screen had a fixed width, at least for a given point in time. But now we need to deal with the possibility of different lines have different widths, so all the functions that are constrained by the right border (text wrapping, cursor movement operations, and sequences like `EL` and `ICH`) now need to lookup the width of the active line in order to behave correctly. Similarly it used to be safe to assume that buffer and screen coordinates were the same thing, but that is no longer true. Lots of places now need to translate back and forth between coordinate systems dependent on the line rendition. This includes clipboard handling, the conhost color selection and search, accessibility location tracking and screen reading, IME editor positioning, "snapping" the viewport, and of course all the rendering calculations. For the rendering itself, I've had to introduce a new `PrepareLineTransform` method that the render engines can use to setup the necessary transform matrix for a given line rendition. This is also now used to handle the horizontal viewport offset, since that could no longer be achieved just by changing the target coordinates (on a double width line, the viewport offset may be halfway through a character). I've also had to change the renderer's existing `InvalidateCursor` method to take a `SMALL_RECT` rather than a `COORD`, to allow for the cursor being a variable width. Technically this was already a problem, because the cursor could occupy two screen cells when over a double-width character, but now it can be anything between one and four screen cells (e.g. a double-width character on the double-width line). In terms of architectural changes, there is now a new `lineRendition` field in the `ROW` class that keeps track of the line rendition for each row, and several new methods in the `ROW` and `TextBuffer` classes for manipulating that state. This includes a few helper methods for handling the various issues discussed above, e.g. position clamping and translating between coordinate systems. ## Validation Steps Performed I've manually confirmed all the double-width and double-height tests in _Vttest_ are now working as expected, and the _VT100 Torture Test_ now renders correctly (at least the line rendition aspects). I've also got my own test scripts that check many of the line rendition boundary cases and have confirmed that those are now passing. I've manually tested as many areas of the conhost UI that I could think of, that might be affected by line rendition, including things like searching, selection, copying, and color highlighting. For accessibility, I've confirmed that the _Magnifier_ and _Narrator_ correctly handle double-width lines. And I've also tested the Japanese IME, which while not perfect, is at least useable. Closes #7865
2021-02-18 06:44:50 +01:00
XFORM cursorInvertTransform;
Refactor grid line renderers with support for more line types (#7107) This is a refactoring of the grid line renderers, adjusting the line widths to scale with the font size, and optimising the implementation to cut down on the number of draw calls. It also extends the supported grid line types to include true underlines and strike-through lines in the style of the active font. The main gist of the optimisation was to render the horizontal lines with a single draw call, instead of a loop with lots of little strokes joined together. In the case of the vertical lines, which still needed to be handled in a loop, I've tried to move the majority of static calculations outside the loop, so there is bit of optimisation there too. At the same time this code was updated to support a variable stroke width for the lines, instead of having them hardcoded to 1 pixel. The width is now calculated as a fraction of the font size (0.025 "em"), which is still going to be 1 pixel wide in most typical usage, but will scale up appropriately if you zoom in far enough. And in preparation for supporting the SGR strike-through attribute, and true underlines, I've extended the grid line renders with options for handling those line types as well. The offset and thickness of the lines is obtained from the font metrics (rounded to a pixel width, with a minimum of one pixel), so they match the style of the font. VALIDATION For now we're still only rendering grid lines, and only the top and bottom lines in the case of the DirectX renderer in Windows Terminal. So to test, I hacked in some code to force the renderer to use all the different options, confirming that they were working in both the GDI and DirectX renderers. I've tested the output with a number of different fonts, comparing it with the same text rendered in WordPad. For the most part they match exactly, but there can be slight differences when we adjust the font size for grid alignment. And in the case of the GDI renderer, where we're working with pixel heights rather than points, it's difficult to match the sizes exactly. This is a first step towards supporting the strike-through attribute (#6205) and true underlines (#2915). Closes #6911
2020-07-31 00:43:37 +02:00
struct LineMetrics
{
int gridlineWidth;
int underlineOffset;
Add support for the "doubly underlined" graphic rendition attribute (#7223) This PR adds support for the ANSI _doubly underlined_ graphic rendition attribute, which is enabled by the `SGR 21` escape sequence. There was already an `ExtendedAttributes::DoublyUnderlined` flag in the `TextAttribute` class, but I needed to add `SetDoublyUnderlined` and `IsDoublyUnderlined` methods to access that flag, and update the `SetGraphicsRendition` methods of the two dispatchers to set the attribute on receipt of the `SGR 21` sequence. I also had to update the existing `SGR 24` handler to reset _DoublyUnderlined_ in addition to _Underlined_, since they share the same reset sequence. For the rendering, I've added a new grid line type, which essentially just draws an additional line with the same thickness as the regular underline, but slightly below it - I found a gap of around 0.05 "em" between the lines looked best. If there isn't enough space in the cell for that gap, the second line will be clamped to overlap the first, so you then just get a thicker line. If there isn't even enough space below for a thicker line, we move the offset _above_ the first line, but just enough to make it thicker. The only other complication was the update of the `Xterm256Engine` in the VT renderer. As mentioned above, the two underline attributes share the same reset sequence, so to forward that state over conpty we require a slightly more complicated process than with most other attributes (similar to _Bold_ and _Faint_). We first check whether either underline attribute needs to be turned off to send the reset sequence, and then check individually if each of them needs to be turned back on again. ## Validation Steps Performed For testing, I've extended the existing attribute tests in `AdapterTest`, `VTRendererTest`, and `ScreenBufferTests`, to make sure we're covering both the _Underlined_ and _DoublyUnderlined_ attributes. I've also manually tested the `SGR 21` sequence in conhost and Windows Terminal, with a variety of fonts and font sizes, to make sure the rendering was reasonably distinguishable from a single underline. Closes #2916
2020-08-10 19:06:16 +02:00
int underlineOffset2;
Refactor grid line renderers with support for more line types (#7107) This is a refactoring of the grid line renderers, adjusting the line widths to scale with the font size, and optimising the implementation to cut down on the number of draw calls. It also extends the supported grid line types to include true underlines and strike-through lines in the style of the active font. The main gist of the optimisation was to render the horizontal lines with a single draw call, instead of a loop with lots of little strokes joined together. In the case of the vertical lines, which still needed to be handled in a loop, I've tried to move the majority of static calculations outside the loop, so there is bit of optimisation there too. At the same time this code was updated to support a variable stroke width for the lines, instead of having them hardcoded to 1 pixel. The width is now calculated as a fraction of the font size (0.025 "em"), which is still going to be 1 pixel wide in most typical usage, but will scale up appropriately if you zoom in far enough. And in preparation for supporting the SGR strike-through attribute, and true underlines, I've extended the grid line renders with options for handling those line types as well. The offset and thickness of the lines is obtained from the font metrics (rounded to a pixel width, with a minimum of one pixel), so they match the style of the font. VALIDATION For now we're still only rendering grid lines, and only the top and bottom lines in the case of the DirectX renderer in Windows Terminal. So to test, I hacked in some code to force the renderer to use all the different options, confirming that they were working in both the GDI and DirectX renderers. I've tested the output with a number of different fonts, comparing it with the same text rendered in WordPad. For the most part they match exactly, but there can be slight differences when we adjust the font size for grid alignment. And in the case of the GDI renderer, where we're working with pixel heights rather than points, it's difficult to match the sizes exactly. This is a first step towards supporting the strike-through attribute (#6205) and true underlines (#2915). Closes #6911
2020-07-31 00:43:37 +02:00
int underlineWidth;
int strikethroughOffset;
int strikethroughWidth;
};
LineMetrics _lineMetrics;
COORD _coordFontLast;
int _iCurrentDpi;
static const int s_iBaseDpi = USER_DEFAULT_SCREEN_DPI;
SIZE _szMemorySurface;
HBITMAP _hbitmapMemorySurface;
[[nodiscard]] HRESULT _PrepareMemoryBitmap(const HWND hwnd) noexcept;
SIZE _szInvalidScroll;
RECT _rcInvalid;
bool _fInvalidRectUsed;
COLORREF _lastFg;
COLORREF _lastBg;
Add support for downloadable soft fonts (#10011) This PR adds conhost support for downloadable soft fonts - also known as dynamically redefinable character sets (DRCS) - using the `DECDLD` escape sequence. These fonts are typically designed to work on a specific terminal model, and each model tends to have a different character cell size. So in order to support as many models as possible, the code attempts to detect the original target size of the font, and then scale the glyphs to fit our current cell size. Once a font has been downloaded to the terminal, it can be designated in the same way you would a standard character set, using an `SCS` escape sequence. The identification string for the set is defined by the `DECDLD` sequence. Internally we map the characters in this set to code points `U+EF20` to `U+EF7F` in the Unicode private use are (PUA). Then in the renderer, any characters in that range are split off into separate runs, which get painted with a special font. The font itself is dynamically generated as an in-memory resource, constructed from the downloaded character bitmaps which have been scaled to the appropriate size. If no soft fonts are in use, then no mapping of the PUA code points will take place, so this shouldn't interfere with anyone using those code points for something else, as along as they aren't also trying to use soft fonts. I also tried to pick a PUA range that hadn't already been snatched up by Nerd Fonts, but if we do receive reports of a conflict, it's easy enough to change. ## Validation Steps Performed I added an adapter test that runs through a bunch of parameter variations for the `DECDLD` sequence, to make sure we're correctly detecting the font sizes for most of the known DEC terminal models. I've also tested manually on a wide range of existing fonts, of varying dimensions, and from multiple sources, and made sure they all worked reasonably well. Closes #9164
2021-08-06 22:41:02 +02:00
enum class FontType : size_t
{
Default,
Italic,
Soft
};
FontType _lastFontType;
Add support for double-width/double-height lines in conhost (#8664) This PR adds support for the VT line rendition attributes, which allow for double-width and double-height line renditions. These renditions are enabled with the `DECDWL` (double-width line) and `DECDHL` (double-height line) escape sequences. Both reset to the default rendition with the `DECSWL` (single-width line) escape sequence. For now this functionality is only supported by the GDI renderer in conhost. There are a lot of changes, so this is just a general overview of the main areas affected. Previously it was safe to assume that the screen had a fixed width, at least for a given point in time. But now we need to deal with the possibility of different lines have different widths, so all the functions that are constrained by the right border (text wrapping, cursor movement operations, and sequences like `EL` and `ICH`) now need to lookup the width of the active line in order to behave correctly. Similarly it used to be safe to assume that buffer and screen coordinates were the same thing, but that is no longer true. Lots of places now need to translate back and forth between coordinate systems dependent on the line rendition. This includes clipboard handling, the conhost color selection and search, accessibility location tracking and screen reading, IME editor positioning, "snapping" the viewport, and of course all the rendering calculations. For the rendering itself, I've had to introduce a new `PrepareLineTransform` method that the render engines can use to setup the necessary transform matrix for a given line rendition. This is also now used to handle the horizontal viewport offset, since that could no longer be achieved just by changing the target coordinates (on a double width line, the viewport offset may be halfway through a character). I've also had to change the renderer's existing `InvalidateCursor` method to take a `SMALL_RECT` rather than a `COORD`, to allow for the cursor being a variable width. Technically this was already a problem, because the cursor could occupy two screen cells when over a double-width character, but now it can be anything between one and four screen cells (e.g. a double-width character on the double-width line). In terms of architectural changes, there is now a new `lineRendition` field in the `ROW` class that keeps track of the line rendition for each row, and several new methods in the `ROW` and `TextBuffer` classes for manipulating that state. This includes a few helper methods for handling the various issues discussed above, e.g. position clamping and translating between coordinate systems. ## Validation Steps Performed I've manually confirmed all the double-width and double-height tests in _Vttest_ are now working as expected, and the _VT100 Torture Test_ now renders correctly (at least the line rendition aspects). I've also got my own test scripts that check many of the line rendition boundary cases and have confirmed that those are now passing. I've manually tested as many areas of the conhost UI that I could think of, that might be affected by line rendition, including things like searching, selection, copying, and color highlighting. For accessibility, I've confirmed that the _Magnifier_ and _Narrator_ correctly handle double-width lines. And I've also tested the Japanese IME, which while not perfect, is at least useable. Closes #7865
2021-02-18 06:44:50 +01:00
XFORM _currentLineTransform;
LineRendition _currentLineRendition;
// Memory pooling to save alloc/free work to the OS for things
// frequently created and dropped.
// It's important the pool is first so it can be given to the others on construction.
std::pmr::unsynchronized_pool_resource _pool;
std::pmr::vector<std::pmr::wstring> _polyStrings;
std::pmr::vector<std::pmr::basic_string<int>> _polyWidths;
[[nodiscard]] HRESULT _InvalidCombine(const RECT* const prc) noexcept;
[[nodiscard]] HRESULT _InvalidOffset(const POINT* const ppt) noexcept;
[[nodiscard]] HRESULT _InvalidRestrict() noexcept;
[[nodiscard]] HRESULT _InvalidateRect(const RECT* const prc) noexcept;
[[nodiscard]] HRESULT _PaintBackgroundColor(const RECT* const prc) noexcept;
static const ULONG s_ulMinCursorHeightPercent = 25;
static const ULONG s_ulMaxCursorHeightPercent = 100;
[[nodiscard]] HRESULT _ScaleByFont(const COORD* const pcoord, _Out_ POINT* const pPoint) const noexcept;
[[nodiscard]] HRESULT _ScaleByFont(const SMALL_RECT* const psr, _Out_ RECT* const prc) const noexcept;
[[nodiscard]] HRESULT _ScaleByFont(const RECT* const prc, _Out_ SMALL_RECT* const psr) const noexcept;
static int s_ScaleByDpi(const int iPx, const int iDpi);
static int s_ShrinkByDpi(const int iPx, const int iDpi);
POINT _GetInvalidRectPoint() const;
SIZE _GetInvalidRectSize() const;
SIZE _GetRectSize(const RECT* const pRect) const;
void _OrRect(_In_ RECT* const pRectExisting, const RECT* const pRectToOr) const;
bool _IsFontTrueType() const;
[[nodiscard]] HRESULT _GetProposedFont(const FontInfoDesired& FontDesired,
_Out_ FontInfo& Font,
const int iDpi,
_Inout_ wil::unique_hfont& hFont,
_Inout_ wil::unique_hfont& hFontItalic) noexcept;
COORD _GetFontSize() const;
bool _IsMinimized() const;
bool _IsWindowValid() const;
#ifdef DBG
// Helper functions to diagnose issues with painting from the in-memory buffer.
// These are only actually effective/on in Debug builds when the flag is set using an attached debugger.
bool _fDebug = false;
void _PaintDebugRect(const RECT* const prc) const;
void _DoDebugBlt(const RECT* const prc) const;
void _DebugBltAll() const;
HWND _debugWindow;
void _CreateDebugWindow();
HDC _debugContext;
#endif
};
Add support for double-width/double-height lines in conhost (#8664) This PR adds support for the VT line rendition attributes, which allow for double-width and double-height line renditions. These renditions are enabled with the `DECDWL` (double-width line) and `DECDHL` (double-height line) escape sequences. Both reset to the default rendition with the `DECSWL` (single-width line) escape sequence. For now this functionality is only supported by the GDI renderer in conhost. There are a lot of changes, so this is just a general overview of the main areas affected. Previously it was safe to assume that the screen had a fixed width, at least for a given point in time. But now we need to deal with the possibility of different lines have different widths, so all the functions that are constrained by the right border (text wrapping, cursor movement operations, and sequences like `EL` and `ICH`) now need to lookup the width of the active line in order to behave correctly. Similarly it used to be safe to assume that buffer and screen coordinates were the same thing, but that is no longer true. Lots of places now need to translate back and forth between coordinate systems dependent on the line rendition. This includes clipboard handling, the conhost color selection and search, accessibility location tracking and screen reading, IME editor positioning, "snapping" the viewport, and of course all the rendering calculations. For the rendering itself, I've had to introduce a new `PrepareLineTransform` method that the render engines can use to setup the necessary transform matrix for a given line rendition. This is also now used to handle the horizontal viewport offset, since that could no longer be achieved just by changing the target coordinates (on a double width line, the viewport offset may be halfway through a character). I've also had to change the renderer's existing `InvalidateCursor` method to take a `SMALL_RECT` rather than a `COORD`, to allow for the cursor being a variable width. Technically this was already a problem, because the cursor could occupy two screen cells when over a double-width character, but now it can be anything between one and four screen cells (e.g. a double-width character on the double-width line). In terms of architectural changes, there is now a new `lineRendition` field in the `ROW` class that keeps track of the line rendition for each row, and several new methods in the `ROW` and `TextBuffer` classes for manipulating that state. This includes a few helper methods for handling the various issues discussed above, e.g. position clamping and translating between coordinate systems. ## Validation Steps Performed I've manually confirmed all the double-width and double-height tests in _Vttest_ are now working as expected, and the _VT100 Torture Test_ now renders correctly (at least the line rendition aspects). I've also got my own test scripts that check many of the line rendition boundary cases and have confirmed that those are now passing. I've manually tested as many areas of the conhost UI that I could think of, that might be affected by line rendition, including things like searching, selection, copying, and color highlighting. For accessibility, I've confirmed that the _Magnifier_ and _Narrator_ correctly handle double-width lines. And I've also tested the Japanese IME, which while not perfect, is at least useable. Closes #7865
2021-02-18 06:44:50 +01:00
constexpr XFORM IDENTITY_XFORM = { 1, 0, 0, 1 };
inline bool operator==(const XFORM& lhs, const XFORM& rhs) noexcept
{
return ::memcmp(&lhs, &rhs, sizeof(XFORM)) == 0;
};
}