terminal/src/host/getset.h

75 lines
3.1 KiB
C
Raw Normal View History

/*++
Copyright (c) Microsoft Corporation
Licensed under the MIT license.
Module Name:
- getset.h
Abstract:
- This file implements the NT console server console state API.
Author:
- Therese Stowell (ThereseS) 5-Dec-1990
Revision History:
--*/
#pragma once
#include "../inc/conattrs.hpp"
class SCREEN_INFORMATION;
Add support for the DECSCNM screen mode (#3817) ## Summary of the Pull Request This adds support for the [`DECSCNM`](https://vt100.net/docs/vt510-rm/DECSCNM.html) private mode escape sequence, which toggles the display between normal and reverse screen modes. When reversed, the background and foreground colors are switched. Tested manually, with [Vttest](https://invisible-island.net/vttest/), and with some new unit tests. ## References This also fixes issue #72 for the most part, although if you toggle the mode too fast, there is no discernible flash. ## PR Checklist * [x] Closes #3773 * [x] CLA signed. If not, go over [here](https://cla.opensource.microsoft.com/microsoft/Terminal) and sign the CLA * [x] Tests added/passed * [ ] Requires documentation to be updated * [ ] I've discussed this with core contributors already. If not checked, I'm ready to accept this work might be rejected in favor of a different grand plan. Issue number where discussion took place: #xxx ## Detailed Description of the Pull Request / Additional comments I've implemented this as a new flag in the `Settings` class, along with updates to the `LookupForegroundColor` and `LookupBackgroundColor` methods, to switch the returned foreground and background colors when that flag is set. It also required a new private API in the `ConGetSet` interface to toggle the setting. And that API is then called from the `AdaptDispatch` class when the screen mode escape sequence is received. The last thing needed was to add a step to the `HardReset` method, to reset the mode back to normal, which is one of the `RIS` requirements. Note that this does currently work in the Windows Terminal, but once #2661 is implemented that may no longer be the case. It might become necessary to let the mode change sequences pass through conpty, and handle the color reversing on the client side. ## Validation Steps Performed I've added a state machine test to make sure the escape sequence is dispatched correctly, and a screen buffer test to confirm that the mode change does alter the interpretation of colors as expected. I've also confirmed that the various "light background" tests in Vttest now display correctly, and that the `tput flash` command (in a bash shell) does actually cause the screen to flash.
2020-01-22 23:29:50 +01:00
[[nodiscard]] NTSTATUS DoSrvPrivateSetScreenMode(const bool reverseMode);
Add support for VT100 Auto Wrap Mode (DECAWM) (#3943) ## Summary of the Pull Request This adds support for the [`DECAWM`](https://vt100.net/docs/vt510-rm/DECAWM) private mode escape sequence, which controls whether or not the output wraps to the next line when the cursor reaches the right edge of the screen. Tested manually, with [Vttest](https://invisible-island.net/vttest/), and with some new unit tests. ## PR Checklist * [x] Closes #3826 * [x] CLA signed. If not, go over [here](https://cla.opensource.microsoft.com/microsoft/Terminal) and sign the CLA * [x] Tests added/passed * [ ] Requires documentation to be updated * [x] I've discussed this with core contributors already. If not checked, I'm ready to accept this work might be rejected in favor of a different grand plan. Issue number where discussion took place: #3826 ## Detailed Description of the Pull Request / Additional comments The idea was to repurpose the existing `ENABLE_WRAP_AT_EOL_OUTPUT` mode, but the problem with that was it didn't work in VT mode - specifically, disabling it didn't prevent the wrapping from happening. This was because in VT mode the `WC_DELAY_EOL_WRAP` behaviour takes affect, and that bypasses the usual codepath where `ENABLE_WRAP_AT_EOL_OUTPUT` is checked, To fix this, I had to add additional checks in the `WriteCharsLegacy` function (7dbefe06e41f191a0e83cfefe4896b66094c4089) to make sure the `WC_DELAY_EOL_WRAP` mode is only activated when `ENABLE_WRAP_AT_EOL_OUTPUT` is also set. Once that was fixed, though, another issue came to light: the `ENABLE_WRAP_AT_EOL_OUTPUT` mode doesn't actually work as documented. According to the docs, "if this mode is disabled, the last character in the row is overwritten with any subsequent characters". What actually happens is the cursor jumps back to the position at the start of the write, which could be anywhere on the line. This seems completely broken to me, but I've checked in the Windows XP, and it has the same behaviour, so it looks like that's the way it has always been. So I've added a fix for this (9df98497ca38f7d0ea42623b723a8e2ecf9a4ab9), but it is only applied in VT mode. Once that basic functionality was in place, though, we just needed a private API in the `ConGetSet` interface to toggle the mode, and then that API could be called from the `AdaptDispatch` class when the `DECAWM` escape sequence was received. One last thing was to reenable the mode in reponse to a `DECSTR` soft reset. Technically the auto wrap mode was disabled by default on many of the DEC terminals, and some documentation suggests that `DECSTR` should reset it to that state, But most modern terminals (including XTerm) expect the wrapping to be enabled by default, and `DECSTR` reenables that state, so that's the behaviour I've copied. ## Validation Steps Performed I've add a state machine test to confirm the `DECAWM` escape is dispatched correctly, and a screen buffer test to make sure the output is wrapped or clamped as appropriate for the two states. I've also confirmed that the "wrap around" test is now working correctly in the _Test of screen features_ in Vttest.
2020-02-04 01:20:21 +01:00
[[nodiscard]] NTSTATUS DoSrvPrivateSetAutoWrapMode(const bool wrapAtEOL);
Add support for the DECSCNM screen mode (#3817) ## Summary of the Pull Request This adds support for the [`DECSCNM`](https://vt100.net/docs/vt510-rm/DECSCNM.html) private mode escape sequence, which toggles the display between normal and reverse screen modes. When reversed, the background and foreground colors are switched. Tested manually, with [Vttest](https://invisible-island.net/vttest/), and with some new unit tests. ## References This also fixes issue #72 for the most part, although if you toggle the mode too fast, there is no discernible flash. ## PR Checklist * [x] Closes #3773 * [x] CLA signed. If not, go over [here](https://cla.opensource.microsoft.com/microsoft/Terminal) and sign the CLA * [x] Tests added/passed * [ ] Requires documentation to be updated * [ ] I've discussed this with core contributors already. If not checked, I'm ready to accept this work might be rejected in favor of a different grand plan. Issue number where discussion took place: #xxx ## Detailed Description of the Pull Request / Additional comments I've implemented this as a new flag in the `Settings` class, along with updates to the `LookupForegroundColor` and `LookupBackgroundColor` methods, to switch the returned foreground and background colors when that flag is set. It also required a new private API in the `ConGetSet` interface to toggle the setting. And that API is then called from the `AdaptDispatch` class when the screen mode escape sequence is received. The last thing needed was to add a step to the `HardReset` method, to reset the mode back to normal, which is one of the `RIS` requirements. Note that this does currently work in the Windows Terminal, but once #2661 is implemented that may no longer be the case. It might become necessary to let the mode change sequences pass through conpty, and handle the color reversing on the client side. ## Validation Steps Performed I've added a state machine test to make sure the escape sequence is dispatched correctly, and a screen buffer test to confirm that the mode change does alter the interpretation of colors as expected. I've also confirmed that the various "light background" tests in Vttest now display correctly, and that the `tput flash` command (in a bash shell) does actually cause the screen to flash.
2020-01-22 23:29:50 +01:00
void DoSrvPrivateShowCursor(SCREEN_INFORMATION& screenInfo, const bool show) noexcept;
void DoSrvPrivateAllowCursorBlinking(SCREEN_INFORMATION& screenInfo, const bool fEnable);
[[nodiscard]] NTSTATUS DoSrvPrivateSetScrollingRegion(SCREEN_INFORMATION& screenInfo, const SMALL_RECT& scrollMargins);
Add support for all the line feed control sequences (#3271) ## Summary of the Pull Request This adds support for the `FF` (form feed) and `VT` (vertical tab) [control characters](https://vt100.net/docs/vt510-rm/chapter4.html#T4-1), as well as the [`NEL` (Next Line)](https://vt100.net/docs/vt510-rm/NEL.html) and [`IND` (Index)](https://vt100.net/docs/vt510-rm/IND.html) escape sequences. ## References #976 discusses the conflict between VT100 Index sequence and the VT52 cursor back sequence. ## PR Checklist * [x] Closes #3189 * [x] CLA signed. If not, go over [here](https://cla.opensource.microsoft.com/microsoft/Terminal) and sign the CLA * [x] Tests added/passed * [ ] Requires documentation to be updated * [x] I've discussed this with core contributors already. If not checked, I'm ready to accept this work might be rejected in favor of a different grand plan. Issue number where discussion took place: #3189 ## Detailed Description of the Pull Request / Additional comments I've added a `LineFeed` method to the `ITermDispatch` interface, with an enum parameter specifying the required line feed type (i.e. with carriage return, without carriage return, or dependent on the [`LNM` mode](https://vt100.net/docs/vt510-rm/LNM.html)). The output state machine can then call that method to handle the various line feed control characters (parsed in the `ActionExecute` method), as well the `NEL` and `IND` escape sequences (parsed in the `ActionEscDispatch` method). The `AdaptDispatch` implementation of `LineFeed` then forwards the call to a new `PrivateLineFeed` method in the `ConGetSet` interface, which simply takes a bool parameter specifying whether a carriage return is required or not. In the case of mode-dependent line feeds, the `AdaptDispatch` implementation determines whether the return is necessary or not, based on the existing _AutoReturnOnNewLine_ setting (which I'm obtaining via another new `PrivateGetLineFeedMode` method). Ultimately we'll want to support changing the mode via the [`LNM` escape sequence](https://vt100.net/docs/vt510-rm/LNM.html), but there's no urgent need for that now. And using the existing _AutoReturnOnNewLine_ setting as a substitute for the mode gives us backwards compatible behaviour, since that will be true for the Windows shells (which expect a linefeed to also generate a carriage return), and false in a WSL bash shell (which won't want the carriage return by default). As for the actual `PrivateLineFeed` implementation, that is just a simplified version of how the line feed would previously have been executed in the `WriteCharsLegacy` function. This includes setting the cursor to "On" (with `Cursor::SetIsOn`), potentially clearing the wrap property of the line being left (with `CharRow::SetWrapForced` false), and then setting the new position using `AdjustCursorPosition` with the _fKeepCursorVisible_ parameter set to false. I'm unsure whether the `SetIsOn` call is really necessary, and I think the way the forced wrap is handled needs a rethink in general, but for now this should at least be compatible with the existing behaviour. Finally, in order to make this all work in the _Windows Terminal_ app, I also had to add a basic implementation of the `ITermDispatch::LineFeed` method in the `TerminalDispatch` class. There is currently no need to support mode-specific line feeds here, so this simply forwards a `\n` or `\r\n` to the `Execute` method, which is ultimately handled by the `Terminal::_WriteBuffer` implementation. ## Validation Steps Performed I've added output engine tests which confirm that the various control characters and escape sequences trigger the dispatch method correctly. Then I've added adapter tests which confirm the various dispatch options trigger the `PrivateLineFeed` API correctly. And finally I added some screen buffer tests that check the actual results of the `NEL` and `IND` sequences, which covers both forms of the `PrivateLineFeed` API (i.e. with and without a carriage return). I've also run the _Test of cursor movements_ in the [Vttest](https://invisible-island.net/vttest/) utility, and confirmed that screens 1, 2, and 5 are now working correctly. The first two depend on `NEL` and `IND` being supported, and screen 5 requires the `VT` control character.
2020-01-15 14:41:55 +01:00
[[nodiscard]] NTSTATUS DoSrvPrivateLineFeed(SCREEN_INFORMATION& screenInfo, const bool withReturn);
[[nodiscard]] NTSTATUS DoSrvPrivateReverseLineFeed(SCREEN_INFORMATION& screenInfo);
[[nodiscard]] NTSTATUS DoSrvPrivateUseAlternateScreenBuffer(SCREEN_INFORMATION& screenInfo);
void DoSrvPrivateUseMainScreenBuffer(SCREEN_INFORMATION& screenInfo);
Make sure that EraseAll moves the Terminal viewport (#5683) The Erase All VT sequence (`^[[2J`) is supposed to erase the entire contents of the viewport. The way it usually does this is by shifting the entirety of the viewport contents into scrollback, and starting the new viewport below it. Currently, conpty doesn't propagate that state change correctly. When conpty gets a 2J, it simply erases the content of the connected terminal's viewport, by writing over it with spaces. Conpty didn't really have a good way of communicating "your viewport should move", it only knew "the buffer is now full of spaces". This would lead to bugs like #2832, where pressing <kbd>ctrl+L</kbd> in `bash` would delete the current contents of the viewport, instead of moving the viewport down. This PR makes sure that when conpty sees a 2J, it passes that through directly to the connected terminal application as well. Fortunately, 2J was already implemented in the Windows Terminal, so this actually fixes the behavior of <kbd>ctrl+L</kbd>/`clear` in WSL in the Terminal. ## References * #4252 - right now this isn't the _most_ optimal scenario, we're literally just printing a 2J, then we'll perform "erase line" `height` times. The erase line operations are all redundant at this point - the entire viewport is blank, but conpty doesn't really know that. Fortunately, #4252 was already filed for me to come through and optimize this path. ## PR Checklist * [x] Closes #2832 * [x] I work here * [x] Tests added/passed * [n/a] Requires documentation to be updated ## Validation Steps Performed * ran tests * compared <kbd>ctrl+L</kbd> with its behavior in conhost * compared `clear` with its behavior in conhost
2020-05-05 03:36:30 +02:00
[[nodiscard]] HRESULT DoSrvPrivateEraseAll(SCREEN_INFORMATION& screenInfo);
[[nodiscard]] HRESULT DoSrvPrivateClearBuffer(SCREEN_INFORMATION& screenInfo);
void DoSrvSetCursorStyle(SCREEN_INFORMATION& screenInfo,
const CursorType cursorType);
OSC 8 support for conhost and terminal (#7251) <!-- Enter a brief description/summary of your PR here. What does it fix/what does it change/how was it tested (even manually, if necessary)? --> ## Summary of the Pull Request Conhost can now support OSC8 sequences (as specified [here](https://gist.github.com/egmontkob/eb114294efbcd5adb1944c9f3cb5feda)). Terminal also supports those sequences and additionally hyperlinks can be opened by Ctrl+LeftClicking on them. <!-- Other than the issue solved, is this relevant to any other issues/existing PRs? --> ## References #204 <!-- Please review the items on the PR checklist before submitting--> ## PR Checklist * [X] Closes #204 * [ ] CLA signed. If not, go over [here](https://cla.opensource.microsoft.com/microsoft/Terminal) and sign the CLA * [ ] Tests added/passed * [ ] Documentation updated. If checked, please file a pull request on [our docs repo](https://github.com/MicrosoftDocs/terminal) and link it here: #xxx * [ ] Schema updated. * [ ] I've discussed this with core contributors already. If not checked, I'm ready to accept this work might be rejected in favor of a different grand plan. Issue number where discussion took place: #xxx <!-- Provide a more detailed description of the PR, other things fixed or any additional comments/features here --> ## Detailed Description of the Pull Request / Additional comments Added support to: - parse OSC8 sequences and extract URIs from them (conhost and terminal) - add hyperlink uri data to textbuffer/screeninformation, associated with a hyperlink id (conhost and terminal) - attach hyperlink ids to text to allow for uri extraction from the textbuffer/screeninformation (conhost and terminal) - process ctrl+leftclick to open a hyperlink in the clicked region if present <!-- Describe how you validated the behavior. Add automated tests wherever possible, but list manual validation steps taken as well --> ## Validation Steps Performed Open up a PowerShell tab and type ```PowerShell ${ESC}=[char]27 Write-Host "${ESC}]8;;https://github.com/microsoft/terminal${ESC}\This is a link!${ESC}]8;;${ESC}\" ``` Ctrl+LeftClick on the link correctly brings you to the terminal page on github ![hyperlink](https://user-images.githubusercontent.com/26824113/89953536-45a6f580-dbfd-11ea-8e0d-8a3cd25c634a.gif)
2020-09-03 19:52:39 +02:00
void DoSrvAddHyperlink(SCREEN_INFORMATION& screenInfo,
const std::wstring_view uri,
const std::wstring_view params);
void DoSrvEndHyperlink(SCREEN_INFORMATION& screenInfo);
Add support for downloadable soft fonts (#10011) This PR adds conhost support for downloadable soft fonts - also known as dynamically redefinable character sets (DRCS) - using the `DECDLD` escape sequence. These fonts are typically designed to work on a specific terminal model, and each model tends to have a different character cell size. So in order to support as many models as possible, the code attempts to detect the original target size of the font, and then scale the glyphs to fit our current cell size. Once a font has been downloaded to the terminal, it can be designated in the same way you would a standard character set, using an `SCS` escape sequence. The identification string for the set is defined by the `DECDLD` sequence. Internally we map the characters in this set to code points `U+EF20` to `U+EF7F` in the Unicode private use are (PUA). Then in the renderer, any characters in that range are split off into separate runs, which get painted with a special font. The font itself is dynamically generated as an in-memory resource, constructed from the downloaded character bitmaps which have been scaled to the appropriate size. If no soft fonts are in use, then no mapping of the PUA code points will take place, so this shouldn't interfere with anyone using those code points for something else, as along as they aren't also trying to use soft fonts. I also tried to pick a PUA range that hadn't already been snatched up by Nerd Fonts, but if we do receive reports of a conflict, it's easy enough to change. ## Validation Steps Performed I added an adapter test that runs through a bunch of parameter variations for the `DECDLD` sequence, to make sure we're correctly detecting the font sizes for most of the known DEC terminal models. I've also tested manually on a wide range of existing fonts, of varying dimensions, and from multiple sources, and made sure they all worked reasonably well. Closes #9164
2021-08-06 22:41:02 +02:00
[[nodiscard]] HRESULT DoSrvUpdateSoftFont(const gsl::span<const uint16_t> bitPattern,
const SIZE cellSize,
const size_t centeringHint) noexcept;
void DoSrvPrivateRefreshWindow(const SCREEN_INFORMATION& screenInfo);
Improve support for VT character sets (#4496) This PR improves our VT character set support, enabling the [`SCS`] escape sequences to designate into all four G-sets with both 94- and 96-character sets, and supports invoking those G-sets into both the GL and GR areas of the code table, with [locking shifts] and [single shifts]. It also adds [`DOCS`] sequences to switch between UTF-8 and the ISO-2022 coding system (which is what the VT character sets require), and adds support for a lot more characters sets, up to around the level of a VT510. [`SCS`]: https://vt100.net/docs/vt510-rm/SCS.html [locking shifts]: https://vt100.net/docs/vt510-rm/LS.html [single shifts]: https://vt100.net/docs/vt510-rm/SS.html [`DOCS`]: https://en.wikipedia.org/wiki/ISO/IEC_2022#Interaction_with_other_coding_systems ## Detailed Description of the Pull Request / Additional comments To make it easier for us to declare a bunch of character sets, I've made a little `constexpr` class that can build up a mapping table from a base character set (ASCII or Latin1), along with a collection of mappings for the characters the deviate from the base set. Many of the character sets are simple variations of ASCII, so they're easy to define this way. This class then casts directly to a `wstring_view` which is how the translation tables are represented in most of the code. We have an array of four of these tables representing the four G-sets, two instances for the active left and right tables, and one instance for the single shift table. Initially we had just one `DesignateCharset` method, which could select the active character set. We now have two designate methods (for 94- and 96- character sets), and each takes a G-set number specifying the target of the designation, and a pair of characters identifying the character set that will be designated (at the higher VT levels, character sets are often identified by more than one character). There are then two new `LockingShift` methods to invoke these G-sets into either the GL or GR area of the code table, and a `SingleShift` method which invokes a G-set temporarily (for just the next character that is output). I should mention here that I had to make some changes to the state machine to make these single shift sequences work. The problem is that the input state machine treats `SS3` as the start of a control sequence, while the output state machine needs it to be dispatched immediately (it's literally the _Single Shift 3_ escape sequence). To make that work, I've added a `ParseControlSequenceAfterSs3` callback in the `IStateMachineEngine` interface to decide which behavior is appropriate. When it comes to mapping a character, it's simply an array reference into the appropriate `wstring_view` table. If the single shift table is set, that takes preference. Otherwise the GL table is used for characters in the range 0x20 to 0x7F, and the GR table for characters 0xA0 to 0xFF (technically some character sets will only map up to 0x7E and 0xFE, but that's easily controlled by the length of the `wstring_view`). The `DEL` character is a bit of a special case. By default it's meant to be ignored like the `NUL` character (it's essentially a time-fill character). However, it's possible that it could be remapped to a printable character in a 96-character set, so we need to check for that after the translation. This is handled in the `AdaptDispatch::Print` method, so it doesn't interfere with the primary `PrintString` code path. The biggest problem with this whole process, though, is that the GR mappings only really make sense if you have access to the raw output, but by the time the output gets to us, it would already have been translated to Unicode by the active code page. And in the case of UTF-8, the characters we eventually receive may originally have been composed from two or more code points. The way I've dealt with this was to disable the GR translations by default, and then added support for a pair of ISO-2022 `DOCS` sequences, which can switch the code page between UTF-8 and ISO-8859-1. When the code page is ISO-8859-1, we're essentially receiving the raw output bytes, so it's safe to enable the GR translations. This is not strictly correct ISO-2022 behavior, and there are edge cases where it's not going to work, but it's the best solution I could come up with. ## Validation Steps Performed As a result of the `SS3` changes in the state machine engine, I've had to move the existing `SS3` tests from the `OutputEngineTest` to the `InputEngineTest`, otherwise they would now fail (technically they should never have been output tests). I've added no additional unit tests, but I have done a lot of manual testing, and made sure we passed all the character set tests in Vttest (at least for the character sets we currently support). Note that this required a slightly hacked version of the app, since by default it doesn't expose a lot of the test to low-level terminals, and we currently identify as a VT100. Closes #3377 Closes #3487
2020-06-04 21:40:15 +02:00
[[nodiscard]] HRESULT DoSrvSetConsoleOutputCodePage(const unsigned int codepage);
void DoSrvGetConsoleOutputCodePage(unsigned int& codepage);
[[nodiscard]] NTSTATUS DoSrvPrivateSuppressResizeRepaint();
void DoSrvIsConsolePty(bool& isPty);
void DoSrvPrivateDeleteLines(const size_t count);
void DoSrvPrivateInsertLines(const size_t count);
void DoSrvPrivateMoveToBottom(SCREEN_INFORMATION& screenInfo);
Correct fill attributes when scrolling and erasing (#3100) ## Summary of the Pull Request Operations that erase areas of the screen are typically meant to do so using the current color attributes, but with the rendition attributes reset (what we refer to as meta attributes). This also includes scroll operations that have to clear the area of the screen that has scrolled into view. The only exception is the _Erase Scrollback_ operation, which needs to reset the buffer with the default attributes. This PR updates all of these cases to apply the correct attributes when scrolling and erasing. ## PR Checklist * [x] Closes #2553 * [x] CLA signed. If not, go over [here](https://cla.opensource.microsoft.com/microsoft/Terminal) and sign the CLA * [x] Tests added/passed * [ ] Requires documentation to be updated * [ ] I've not really discussed this with core contributors. I'm ready to accept this work might be rejected in favor of a different grand plan. ## Detailed Description of the Pull Request / Additional comments My initial plan was to use a special case legacy attribute value to indicate the "standard erase attribute" which could safely be passed through the legacy APIs. But this wouldn't cover the cases that required default attributes to be used. And then with the changes in PR #2668 and #2987, it became clear that our requirements could be better achieved with a couple of new private APIs that wouldn't have to depend on legacy attribute hacks at all. To that end, I've added the `PrivateFillRegion` and `PrivateScrollRegion` APIs to the `ConGetSet` interface. These are just thin wrappers around the existing `SCREEN_INFORMATION::Write` method and the `ScrollRegion` function respectively, but with a simple boolean parameter to choose between filling with default attributes or the standard erase attributes (i.e the current colors but with meta attributes reset). With those new APIs in place, I could then update most scroll operations to use `PrivateScrollRegion`, and most erase operations to use `PrivateFillRegion`. The functions affected by scrolling included: * `DoSrvPrivateReverseLineFeed` (the RI command) * `DoSrvPrivateModifyLinesImpl` (the IL and DL commands) * `AdaptDispatch::_InsertDeleteHelper` (the ICH and DCH commands) * `AdaptDispatch::_ScrollMovement` (the SU and SD commands) The functions affected by erasing included: * `AdaptDispatch::_EraseSingleLineHelper` (the EL command, and most ED variants) * `AdaptDispatch::EraseCharacters` (the ECH command) While updating these erase methods, I noticed that both of them also required boundary fixes similar to those in PR #2505 (i.e. the horizontal extent of the erase operation should apply to the full width of the buffer, and not just the current viewport width), so I've addressed that at the same time. In addition to the changes above, there were also a few special cases, the first being the line feed handling, which required updating in a number of places to use the correct erase attributes: * `SCREEN_INFORMATION::InitializeCursorRowAttributes` - this is used to initialise the rows that pan into view when the viewport is moved down the buffer. * `TextBuffer::IncrementCircularBuffer` - this occurs when we scroll passed the very end of the buffer, and a recycled row now needs to be reinitialised. * `AdjustCursorPosition` - when within margin boundaries, this relies on a couple of direct calls to `ScrollRegion` which needed to be passed the correct fill attributes. The second special case was the full screen erase sequence (`ESC 2 J`), which is handled separately from the other ED sequences. This required updating the `SCREEN_INFORMATION::VtEraseAll` method to use the standard erase attributes, and also required changes to the horizontal extent of the filled area, since it should have been clearing the full buffer width (the same issue as the other erase operations mentioned above). Finally, there was the `AdaptDispatch::_EraseScrollback` method, which uses both scroll and fill operations, which could now be handled by the new `PrivateScrollRegion` and `PrivateFillRegion` APIs. But in this case we needed to fill with the default attributes rather than the standard erase attributes. And again this implementation needed some changes to make sure the full width of the active area was retained after the erase, similar to the horizontal boundary issues with the other erase operations. Once all these changes were made, there were a few areas of the code that could then be simplified quite a bit. The `FillConsoleOutputCharacterW`, `FillConsoleOutputAttribute`, and `ScrollConsoleScreenBufferW` were no longer needed in the `ConGetSet` interface, so all of that code could now be removed. The `_EraseSingleLineDistanceHelper` and `_EraseAreaHelper` methods in the `AdaptDispatch` class were also no longer required and could be removed. Then there were the hacks to handle legacy default colors in the `FillConsoleOutputAttributeImpl` and `ScrollConsoleScreenBufferWImpl` implementations. Since those hacks were only needed for VT operations, and the VT code no longer calls those methods, there was no longer a need to retain that behaviour (in fact there are probably some edge cases where that behaviour might have been considered a bug when reached via the public console APIs). ## Validation Steps Performed For most of the scrolling operations there were already existing tests in place, and those could easily be extended to check that the meta attributes were correctly reset when filling the revealed lines of the scrolling region. In the screen buffer tests, I made updates of that sort to the `ScrollOperations` method (handling SU, SD, IL, DL, and RI), the `InsertChars` and `DeleteChars` methods (ICH and DCH), and the `VtNewlinePastViewport` method (LF). I also added a new `VtNewlinePastEndOfBuffer` test to check the case where the line feed causes the viewport to pan past the end of the buffer. The erase operations, however, were being covered by adapter tests, and those aren't really suited for this kind of functionality (the same sort of issue came up in PR #2505). As a result I've had to reimplement those tests as screen buffer tests. Most of the erase operations are covered by the `EraseTests` method, except the for the scrollback erase which has a dedicated `EraseScrollbackTests` method. I've also had to replace the `HardReset` adapter test, but that was already mostly covered by the `HardResetBuffer` screen buffer test, which I've now extended slightly (it could do with some more checks, but I think that can wait for a future PR when we're fixing other RIS issues).
2019-12-11 00:14:40 +01:00
[[nodiscard]] HRESULT DoSrvPrivateFillRegion(SCREEN_INFORMATION& screenInfo,
const COORD startPosition,
const size_t fillLength,
const wchar_t fillChar,
const bool standardFillAttrs) noexcept;
[[nodiscard]] HRESULT DoSrvPrivateScrollRegion(SCREEN_INFORMATION& screenInfo,
const SMALL_RECT scrollRect,
const std::optional<SMALL_RECT> clipRect,
const COORD destinationOrigin,
const bool standardFillAttrs) noexcept;