/* * libpopcnt.h - C/C++ library for counting the number of 1 bits (bit * population count) in an array as quickly as possible using * specialized CPU instructions i.e. POPCNT, AVX2, AVX512, NEON. * * Copyright (c) 2016 - 2019, Kim Walisch * Copyright (c) 2016 - 2018, Wojciech Muła * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #ifndef LIBPOPCNT_H #define LIBPOPCNT_H #include #ifndef __has_builtin #define __has_builtin(x) 0 #endif #ifndef __has_attribute #define __has_attribute(x) 0 #endif #ifdef __GNUC__ #define GNUC_PREREQ(x, y) \ (__GNUC__ > x || (__GNUC__ == x && __GNUC_MINOR__ >= y)) #else #define GNUC_PREREQ(x, y) 0 #endif #ifdef __clang__ #define CLANG_PREREQ(x, y) \ (__clang_major__ > x || (__clang_major__ == x && __clang_minor__ >= y)) #else #define CLANG_PREREQ(x, y) 0 #endif #if (_MSC_VER < 1900) && \ !defined(__cplusplus) #define inline __inline #endif #if (defined(__i386__) || \ defined(__x86_64__) || \ defined(_M_IX86) || \ defined(_M_X64)) #define X86_OR_X64 #endif #if defined(X86_OR_X64) && \ (defined(__cplusplus) || \ defined(_MSC_VER) || \ (GNUC_PREREQ(4, 2) || \ __has_builtin(__sync_val_compare_and_swap))) #define HAVE_CPUID #endif #if GNUC_PREREQ(4, 2) || \ __has_builtin(__builtin_popcount) #define HAVE_BUILTIN_POPCOUNT #endif #if GNUC_PREREQ(4, 2) || \ CLANG_PREREQ(3, 0) #define HAVE_ASM_POPCNT #endif #if defined(HAVE_CPUID) && \ (defined(HAVE_ASM_POPCNT) || \ defined(_MSC_VER)) #define HAVE_POPCNT #endif #if defined(HAVE_CPUID) && \ GNUC_PREREQ(4, 9) #define HAVE_AVX2 #endif #if defined(HAVE_CPUID) && \ GNUC_PREREQ(5, 0) #define HAVE_AVX512 #endif #if defined(HAVE_CPUID) && \ defined(_MSC_VER) && \ defined(__AVX2__) #define HAVE_AVX2 #endif #if defined(HAVE_CPUID) && \ defined(_MSC_VER) && \ defined(__AVX512__) #define HAVE_AVX512 #endif #if defined(HAVE_CPUID) && \ CLANG_PREREQ(3, 8) && \ __has_attribute(target) && \ (!defined(_MSC_VER) || defined(__AVX2__)) && \ (!defined(__apple_build_version__) || __apple_build_version__ >= 8000000) #define HAVE_AVX2 #define HAVE_AVX512 #endif #ifdef __cplusplus extern "C" { #endif /* * This uses fewer arithmetic operations than any other known * implementation on machines with fast multiplication. * It uses 12 arithmetic operations, one of which is a multiply. * http://en.wikipedia.org/wiki/Hamming_weight#Efficient_implementation */ static inline uint64_t popcount64(uint64_t x) { uint64_t m1 = 0x5555555555555555ll; uint64_t m2 = 0x3333333333333333ll; uint64_t m4 = 0x0F0F0F0F0F0F0F0Fll; uint64_t h01 = 0x0101010101010101ll; x -= (x >> 1) & m1; x = (x & m2) + ((x >> 2) & m2); x = (x + (x >> 4)) & m4; return (x * h01) >> 56; } #if defined(HAVE_ASM_POPCNT) && \ defined(__x86_64__) static inline uint64_t popcnt64(uint64_t x) { __asm__ ("popcnt %1, %0" : "=r" (x) : "0" (x)); return x; } #elif defined(HAVE_ASM_POPCNT) && \ defined(__i386__) static inline uint32_t popcnt32(uint32_t x) { __asm__ ("popcnt %1, %0" : "=r" (x) : "0" (x)); return x; } static inline uint64_t popcnt64(uint64_t x) { return popcnt32((uint32_t) x) + popcnt32((uint32_t)(x >> 32)); } #elif defined(_MSC_VER) && \ defined(_M_X64) #include static inline uint64_t popcnt64(uint64_t x) { return _mm_popcnt_u64(x); } #elif defined(_MSC_VER) && \ defined(_M_IX86) #include static inline uint64_t popcnt64(uint64_t x) { return _mm_popcnt_u32((uint32_t) x) + _mm_popcnt_u32((uint32_t)(x >> 32)); } /* non x86 CPUs */ #elif defined(HAVE_BUILTIN_POPCOUNT) static inline uint64_t popcnt64(uint64_t x) { return __builtin_popcountll(x); } /* no hardware POPCNT, * use pure integer algorithm */ #else static inline uint64_t popcnt64(uint64_t x) { return popcount64(x); } #endif static inline uint64_t popcnt64_unrolled(const uint64_t* data, uint64_t size) { uint64_t i = 0; uint64_t limit = size - size % 4; uint64_t cnt = 0; for (; i < limit; i += 4) { cnt += popcnt64(data[i+0]); cnt += popcnt64(data[i+1]); cnt += popcnt64(data[i+2]); cnt += popcnt64(data[i+3]); } for (; i < size; i++) cnt += popcnt64(data[i]); return cnt; } #if defined(HAVE_CPUID) #if defined(_MSC_VER) #include #include #endif /* %ecx bit flags */ #define bit_POPCNT (1 << 23) /* %ebx bit flags */ #define bit_AVX2 (1 << 5) #define bit_AVX512 (1 << 30) /* xgetbv bit flags */ #define XSTATE_SSE (1 << 1) #define XSTATE_YMM (1 << 2) #define XSTATE_ZMM (7 << 5) static inline void run_cpuid(int eax, int ecx, int* abcd) { #if defined(_MSC_VER) __cpuidex(abcd, eax, ecx); #else int ebx = 0; int edx = 0; #if defined(__i386__) && \ defined(__PIC__) /* in case of PIC under 32-bit EBX cannot be clobbered */ __asm__ ("movl %%ebx, %%edi;" "cpuid;" "xchgl %%ebx, %%edi;" : "=D" (ebx), "+a" (eax), "+c" (ecx), "=d" (edx)); #else __asm__ ("cpuid;" : "+b" (ebx), "+a" (eax), "+c" (ecx), "=d" (edx)); #endif abcd[0] = eax; abcd[1] = ebx; abcd[2] = ecx; abcd[3] = edx; #endif } #if defined(HAVE_AVX2) || \ defined(HAVE_AVX512) static inline int get_xcr0() { int xcr0; #if defined(_MSC_VER) xcr0 = (int) _xgetbv(0); #else __asm__ ("xgetbv" : "=a" (xcr0) : "c" (0) : "%edx" ); #endif return xcr0; } #endif static inline int get_cpuid() { int flags = 0; int abcd[4]; run_cpuid(1, 0, abcd); if ((abcd[2] & bit_POPCNT) == bit_POPCNT) flags |= bit_POPCNT; #if defined(HAVE_AVX2) || \ defined(HAVE_AVX512) int osxsave_mask = (1 << 27); /* ensure OS supports extended processor state management */ if ((abcd[2] & osxsave_mask) != osxsave_mask) return 0; int ymm_mask = XSTATE_SSE | XSTATE_YMM; int zmm_mask = XSTATE_SSE | XSTATE_YMM | XSTATE_ZMM; int xcr0 = get_xcr0(); if ((xcr0 & ymm_mask) == ymm_mask) { run_cpuid(7, 0, abcd); if ((abcd[1] & bit_AVX2) == bit_AVX2) flags |= bit_AVX2; if ((xcr0 & zmm_mask) == zmm_mask) { if ((abcd[1] & bit_AVX512) == bit_AVX512) flags |= bit_AVX512; } } #endif return flags; } #endif /* cpuid */ #if defined(HAVE_AVX2) #include #if !defined(_MSC_VER) __attribute__ ((target ("avx2"))) #endif static inline void CSA256(__m256i* h, __m256i* l, __m256i a, __m256i b, __m256i c) { __m256i u = _mm256_xor_si256(a, b); *h = _mm256_or_si256(_mm256_and_si256(a, b), _mm256_and_si256(u, c)); *l = _mm256_xor_si256(u, c); } #if !defined(_MSC_VER) __attribute__ ((target ("avx2"))) #endif static inline __m256i popcnt256(__m256i v) { __m256i lookup1 = _mm256_setr_epi8( 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8, 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8 ); __m256i lookup2 = _mm256_setr_epi8( 4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0, 4, 3, 3, 2, 3, 2, 2, 1, 3, 2, 2, 1, 2, 1, 1, 0 ); __m256i low_mask = _mm256_set1_epi8(0x0f); __m256i lo = _mm256_and_si256(v, low_mask); __m256i hi = _mm256_and_si256(_mm256_srli_epi16(v, 4), low_mask); __m256i popcnt1 = _mm256_shuffle_epi8(lookup1, lo); __m256i popcnt2 = _mm256_shuffle_epi8(lookup2, hi); return _mm256_sad_epu8(popcnt1, popcnt2); } /* * AVX2 Harley-Seal popcount (4th iteration). * The algorithm is based on the paper "Faster Population Counts * using AVX2 Instructions" by Daniel Lemire, Nathan Kurz and * Wojciech Mula (23 Nov 2016). * @see https://arxiv.org/abs/1611.07612 */ #if !defined(_MSC_VER) __attribute__ ((target ("avx2"))) #endif static inline uint64_t popcnt_avx2(const __m256i* data, uint64_t size) { __m256i cnt = _mm256_setzero_si256(); __m256i ones = _mm256_setzero_si256(); __m256i twos = _mm256_setzero_si256(); __m256i fours = _mm256_setzero_si256(); __m256i eights = _mm256_setzero_si256(); __m256i sixteens = _mm256_setzero_si256(); __m256i twosA, twosB, foursA, foursB, eightsA, eightsB; uint64_t i = 0; uint64_t limit = size - size % 16; uint64_t* cnt64; for(; i < limit; i += 16) { CSA256(&twosA, &ones, ones, data[i+0], data[i+1]); CSA256(&twosB, &ones, ones, data[i+2], data[i+3]); CSA256(&foursA, &twos, twos, twosA, twosB); CSA256(&twosA, &ones, ones, data[i+4], data[i+5]); CSA256(&twosB, &ones, ones, data[i+6], data[i+7]); CSA256(&foursB, &twos, twos, twosA, twosB); CSA256(&eightsA, &fours, fours, foursA, foursB); CSA256(&twosA, &ones, ones, data[i+8], data[i+9]); CSA256(&twosB, &ones, ones, data[i+10], data[i+11]); CSA256(&foursA, &twos, twos, twosA, twosB); CSA256(&twosA, &ones, ones, data[i+12], data[i+13]); CSA256(&twosB, &ones, ones, data[i+14], data[i+15]); CSA256(&foursB, &twos, twos, twosA, twosB); CSA256(&eightsB, &fours, fours, foursA, foursB); CSA256(&sixteens, &eights, eights, eightsA, eightsB); cnt = _mm256_add_epi64(cnt, popcnt256(sixteens)); } cnt = _mm256_slli_epi64(cnt, 4); cnt = _mm256_add_epi64(cnt, _mm256_slli_epi64(popcnt256(eights), 3)); cnt = _mm256_add_epi64(cnt, _mm256_slli_epi64(popcnt256(fours), 2)); cnt = _mm256_add_epi64(cnt, _mm256_slli_epi64(popcnt256(twos), 1)); cnt = _mm256_add_epi64(cnt, popcnt256(ones)); for(; i < size; i++) cnt = _mm256_add_epi64(cnt, popcnt256(data[i])); cnt64 = (uint64_t*) &cnt; return cnt64[0] + cnt64[1] + cnt64[2] + cnt64[3]; } /* Align memory to 32 bytes boundary */ static inline void align_avx2(const uint8_t** p, uint64_t* size, uint64_t* cnt) { for (; (uintptr_t) *p % 8; (*p)++) { *cnt += popcnt64(**p); *size -= 1; } for (; (uintptr_t) *p % 32; (*p) += 8) { *cnt += popcnt64( *(const uint64_t*) *p); *size -= 8; } } #endif #if defined(HAVE_AVX512) #include #if !defined(_MSC_VER) __attribute__ ((target ("avx512bw"))) #endif static inline __m512i popcnt512(__m512i v) { __m512i m1 = _mm512_set1_epi8(0x55); __m512i m2 = _mm512_set1_epi8(0x33); __m512i m4 = _mm512_set1_epi8(0x0F); __m512i t1 = _mm512_sub_epi8(v, (_mm512_srli_epi16(v, 1) & m1)); __m512i t2 = _mm512_add_epi8(t1 & m2, (_mm512_srli_epi16(t1, 2) & m2)); __m512i t3 = _mm512_add_epi8(t2, _mm512_srli_epi16(t2, 4)) & m4; return _mm512_sad_epu8(t3, _mm512_setzero_si512()); } #if !defined(_MSC_VER) __attribute__ ((target ("avx512bw"))) #endif static inline void CSA512(__m512i* h, __m512i* l, __m512i a, __m512i b, __m512i c) { *l = _mm512_ternarylogic_epi32(c, b, a, 0x96); *h = _mm512_ternarylogic_epi32(c, b, a, 0xe8); } /* * AVX512 Harley-Seal popcount (4th iteration). * The algorithm is based on the paper "Faster Population Counts * using AVX2 Instructions" by Daniel Lemire, Nathan Kurz and * Wojciech Mula (23 Nov 2016). * @see https://arxiv.org/abs/1611.07612 */ #if !defined(_MSC_VER) __attribute__ ((target ("avx512bw"))) #endif static inline uint64_t popcnt_avx512(const __m512i* data, const uint64_t size) { __m512i cnt = _mm512_setzero_si512(); __m512i ones = _mm512_setzero_si512(); __m512i twos = _mm512_setzero_si512(); __m512i fours = _mm512_setzero_si512(); __m512i eights = _mm512_setzero_si512(); __m512i sixteens = _mm512_setzero_si512(); __m512i twosA, twosB, foursA, foursB, eightsA, eightsB; uint64_t i = 0; uint64_t limit = size - size % 16; uint64_t* cnt64; for(; i < limit; i += 16) { CSA512(&twosA, &ones, ones, data[i+0], data[i+1]); CSA512(&twosB, &ones, ones, data[i+2], data[i+3]); CSA512(&foursA, &twos, twos, twosA, twosB); CSA512(&twosA, &ones, ones, data[i+4], data[i+5]); CSA512(&twosB, &ones, ones, data[i+6], data[i+7]); CSA512(&foursB, &twos, twos, twosA, twosB); CSA512(&eightsA, &fours, fours, foursA, foursB); CSA512(&twosA, &ones, ones, data[i+8], data[i+9]); CSA512(&twosB, &ones, ones, data[i+10], data[i+11]); CSA512(&foursA, &twos, twos, twosA, twosB); CSA512(&twosA, &ones, ones, data[i+12], data[i+13]); CSA512(&twosB, &ones, ones, data[i+14], data[i+15]); CSA512(&foursB, &twos, twos, twosA, twosB); CSA512(&eightsB, &fours, fours, foursA, foursB); CSA512(&sixteens, &eights, eights, eightsA, eightsB); cnt = _mm512_add_epi64(cnt, popcnt512(sixteens)); } cnt = _mm512_slli_epi64(cnt, 4); cnt = _mm512_add_epi64(cnt, _mm512_slli_epi64(popcnt512(eights), 3)); cnt = _mm512_add_epi64(cnt, _mm512_slli_epi64(popcnt512(fours), 2)); cnt = _mm512_add_epi64(cnt, _mm512_slli_epi64(popcnt512(twos), 1)); cnt = _mm512_add_epi64(cnt, popcnt512(ones)); for(; i < size; i++) cnt = _mm512_add_epi64(cnt, popcnt512(data[i])); cnt64 = (uint64_t*) &cnt; return cnt64[0] + cnt64[1] + cnt64[2] + cnt64[3] + cnt64[4] + cnt64[5] + cnt64[6] + cnt64[7]; } /* Align memory to 64 bytes boundary */ static inline void align_avx512(const uint8_t** p, uint64_t* size, uint64_t* cnt) { for (; (uintptr_t) *p % 8; (*p)++) { *cnt += popcnt64(**p); *size -= 1; } for (; (uintptr_t) *p % 64; (*p) += 8) { *cnt += popcnt64( *(const uint64_t*) *p); *size -= 8; } } #endif /* x86 CPUs */ #if defined(X86_OR_X64) /* Align memory to 8 bytes boundary */ static inline void align_8(const uint8_t** p, uint64_t* size, uint64_t* cnt) { for (; *size > 0 && (uintptr_t) *p % 8; (*p)++) { *cnt += popcount64(**p); *size -= 1; } } static inline uint64_t popcount64_unrolled(const uint64_t* data, uint64_t size) { uint64_t i = 0; uint64_t limit = size - size % 4; uint64_t cnt = 0; for (; i < limit; i += 4) { cnt += popcount64(data[i+0]); cnt += popcount64(data[i+1]); cnt += popcount64(data[i+2]); cnt += popcount64(data[i+3]); } for (; i < size; i++) cnt += popcount64(data[i]); return cnt; } /* * Count the number of 1 bits in the data array * @data: An array * @size: Size of data in bytes */ static inline uint64_t popcnt(const void* data, uint64_t size) { const uint8_t* ptr = (const uint8_t*) data; uint64_t cnt = 0; uint64_t i; #if defined(HAVE_CPUID) #if defined(__cplusplus) /* C++11 thread-safe singleton */ static const int cpuid = get_cpuid(); #else static int cpuid_ = -1; int cpuid = cpuid_; if (cpuid == -1) { cpuid = get_cpuid(); #if defined(_MSC_VER) _InterlockedCompareExchange(&cpuid_, cpuid, -1); #else __sync_val_compare_and_swap(&cpuid_, -1, cpuid); #endif } #endif #endif #if defined(HAVE_AVX512) /* AVX512 requires arrays >= 1024 bytes */ if ((cpuid & bit_AVX512) && size >= 1024) { align_avx512(&ptr, &size, &cnt); cnt += popcnt_avx512((const __m512i*) ptr, size / 64); ptr += size - size % 64; size = size % 64; } #endif #if defined(HAVE_AVX2) /* AVX2 requires arrays >= 512 bytes */ if ((cpuid & bit_AVX2) && size >= 512) { align_avx2(&ptr, &size, &cnt); cnt += popcnt_avx2((const __m256i*) ptr, size / 32); ptr += size - size % 32; size = size % 32; } #endif #if defined(HAVE_POPCNT) if (cpuid & bit_POPCNT) { cnt += popcnt64_unrolled((const uint64_t*) ptr, size / 8); ptr += size - size % 8; size = size % 8; for (i = 0; i < size; i++) cnt += popcnt64(ptr[i]); return cnt; } #endif /* pure integer popcount algorithm */ if (size >= 8) { align_8(&ptr, &size, &cnt); cnt += popcount64_unrolled((const uint64_t*) ptr, size / 8); ptr += size - size % 8; size = size % 8; } /* pure integer popcount algorithm */ for (i = 0; i < size; i++) cnt += popcount64(ptr[i]); return cnt; } #elif defined(__ARM_NEON) || \ defined(__aarch64__) #include /* Align memory to 8 bytes boundary */ static inline void align_8(const uint8_t** p, uint64_t* size, uint64_t* cnt) { for (; *size > 0 && (uintptr_t) *p % 8; (*p)++) { *cnt += popcnt64(**p); *size -= 1; } } static inline uint64x2_t vpadalq(uint64x2_t sum, uint8x16_t t) { return vpadalq_u32(sum, vpaddlq_u16(vpaddlq_u8(t))); } /* * Count the number of 1 bits in the data array * @data: An array * @size: Size of data in bytes */ static inline uint64_t popcnt(const void* data, uint64_t size) { uint64_t cnt = 0; uint64_t chunk_size = 64; const uint8_t* ptr = (const uint8_t*) data; if (size >= chunk_size) { uint64_t i = 0; uint64_t iters = size / chunk_size; uint64x2_t sum = vcombine_u64(vcreate_u64(0), vcreate_u64(0)); uint8x16_t zero = vcombine_u8(vcreate_u8(0), vcreate_u8(0)); do { uint8x16_t t0 = zero; uint8x16_t t1 = zero; uint8x16_t t2 = zero; uint8x16_t t3 = zero; /* * After every 31 iterations we need to add the * temporary sums (t0, t1, t2, t3) to the total sum. * We must ensure that the temporary sums <= 255 * and 31 * 8 bits = 248 which is OK. */ uint64_t limit = (i + 31 < iters) ? i + 31 : iters; /* Each iteration processes 64 bytes */ for (; i < limit; i++) { uint8x16x4_t input = vld4q_u8(ptr); ptr += chunk_size; t0 = vaddq_u8(t0, vcntq_u8(input.val[0])); t1 = vaddq_u8(t1, vcntq_u8(input.val[1])); t2 = vaddq_u8(t2, vcntq_u8(input.val[2])); t3 = vaddq_u8(t3, vcntq_u8(input.val[3])); } sum = vpadalq(sum, t0); sum = vpadalq(sum, t1); sum = vpadalq(sum, t2); sum = vpadalq(sum, t3); } while (i < iters); uint64_t tmp[2]; vst1q_u64(tmp, sum); cnt += tmp[0]; cnt += tmp[1]; } size %= chunk_size; align_8(&ptr, &size, &cnt); const uint64_t* ptr64 = (const uint64_t*) ptr; uint64_t iters = size / 8; for (uint64_t i = 0; i < iters; i++) cnt += popcnt64(ptr64[i]); ptr += size - size % 8; size = size % 8; for (uint64_t i = 0; i < size; i++) cnt += popcnt64(ptr[i]); return cnt; } /* all other CPUs */ #else /* Align memory to 8 bytes boundary */ static inline void align_8(const uint8_t** p, uint64_t* size, uint64_t* cnt) { for (; *size > 0 && (uintptr_t) *p % 8; (*p)++) { *cnt += popcnt64(**p); *size -= 1; } } /* * Count the number of 1 bits in the data array * @data: An array * @size: Size of data in bytes */ static inline uint64_t popcnt(const void* data, uint64_t size) { const uint8_t* ptr = (const uint8_t*) data; uint64_t cnt = 0; uint64_t i; align_8(&ptr, &size, &cnt); cnt += popcnt64_unrolled((const uint64_t*) ptr, size / 8); ptr += size - size % 8; size = size % 8; for (i = 0; i < size; i++) cnt += popcnt64(ptr[i]); return cnt; } #endif #ifdef __cplusplus } /* extern "C" */ #endif #endif /* LIBPOPCNT_H */