terminal/dep/CLI11/CLI11.hpp
Mike Griese 5e51ba4d1f
DEPS: Update CLI11 to 1.9 (#6307)
Updates CLI11 to 1.9. Doesn't look like any of the tests broke.

* [x] I work here
* [x] Ran existing tests
2020-06-02 18:51:17 +00:00

9676 lines
368 KiB
C++

#pragma once
// CLI11: Version 1.9.0
// Originally designed by Henry Schreiner
// https://github.com/CLIUtils/CLI11
//
// This is a standalone header file generated by MakeSingleHeader.py in CLI11/scripts
// from: v1.9.0
//
// From LICENSE:
//
// CLI11 1.8 Copyright (c) 2017-2019 University of Cincinnati, developed by Henry
// Schreiner under NSF AWARD 1414736. All rights reserved.
//
// Redistribution and use in source and binary forms of CLI11, with or without
// modification, are permitted provided that the following conditions are met:
//
// 1. Redistributions of source code must retain the above copyright notice, this
// list of conditions and the following disclaimer.
// 2. Redistributions in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
// 3. Neither the name of the copyright holder nor the names of its contributors
// may be used to endorse or promote products derived from this software without
// specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
// ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
// LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
// ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Standard combined includes:
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <exception>
#include <fstream>
#include <functional>
#include <iomanip>
#include <iostream>
#include <iterator>
#include <limits>
#include <locale>
#include <map>
#include <memory>
#include <numeric>
#include <set>
#include <sstream>
#include <stdexcept>
#include <string>
#include <tuple>
#include <type_traits>
#include <utility>
#include <vector>
// Verbatim copy from CLI/Version.hpp:
#define CLI11_VERSION_MAJOR 1
#define CLI11_VERSION_MINOR 9
#define CLI11_VERSION_PATCH 0
#define CLI11_VERSION "1.9.0"
// Verbatim copy from CLI/Macros.hpp:
// The following version macro is very similar to the one in PyBind11
#if !(defined(_MSC_VER) && __cplusplus == 199711L) && !defined(__INTEL_COMPILER)
#if __cplusplus >= 201402L
#define CLI11_CPP14
#if __cplusplus >= 201703L
#define CLI11_CPP17
#if __cplusplus > 201703L
#define CLI11_CPP20
#endif
#endif
#endif
#elif defined(_MSC_VER) && __cplusplus == 199711L
// MSVC sets _MSVC_LANG rather than __cplusplus (supposedly until the standard is fully implemented)
// Unless you use the /Zc:__cplusplus flag on Visual Studio 2017 15.7 Preview 3 or newer
#if _MSVC_LANG >= 201402L
#define CLI11_CPP14
#if _MSVC_LANG > 201402L && _MSC_VER >= 1910
#define CLI11_CPP17
#if __MSVC_LANG > 201703L && _MSC_VER >= 1910
#define CLI11_CPP20
#endif
#endif
#endif
#endif
#if defined(CLI11_CPP14)
#define CLI11_DEPRECATED(reason) [[deprecated(reason)]]
#elif defined(_MSC_VER)
#define CLI11_DEPRECATED(reason) __declspec(deprecated(reason))
#else
#define CLI11_DEPRECATED(reason) __attribute__((deprecated(reason)))
#endif
// Verbatim copy from CLI/Validators.hpp:
// C standard library
// Only needed for existence checking
#if defined CLI11_CPP17 && defined __has_include && !defined CLI11_HAS_FILESYSTEM
#if __has_include(<filesystem>)
// Filesystem cannot be used if targeting macOS < 10.15
#if defined __MAC_OS_X_VERSION_MIN_REQUIRED && __MAC_OS_X_VERSION_MIN_REQUIRED < 101500
#define CLI11_HAS_FILESYSTEM 0
#else
#include <filesystem>
#if defined __cpp_lib_filesystem && __cpp_lib_filesystem >= 201703
#define CLI11_HAS_FILESYSTEM 1
#else
#define CLI11_HAS_FILESYSTEM 0
#endif
#endif
#endif
#endif
#if defined CLI11_HAS_FILESYSTEM && CLI11_HAS_FILESYSTEM > 0
#include <filesystem> // NOLINT(build/include)
#else
#include <sys/stat.h>
#include <sys/types.h>
#endif
// From CLI/Version.hpp:
// From CLI/Macros.hpp:
// From CLI/StringTools.hpp:
namespace CLI
{
/// Include the items in this namespace to get free conversion of enums to/from streams.
/// (This is available inside CLI as well, so CLI11 will use this without a using statement).
namespace enums
{
/// output streaming for enumerations
template<typename T, typename = typename std::enable_if<std::is_enum<T>::value>::type>
std::ostream& operator<<(std::ostream& in, const T& item)
{
// make sure this is out of the detail namespace otherwise it won't be found when needed
return in << static_cast<typename std::underlying_type<T>::type>(item);
}
} // namespace enums
/// Export to CLI namespace
using enums::operator<<;
namespace detail
{
/// a constant defining an expected max vector size defined to be a big number that could be multiplied by 4 and not
/// produce overflow for some expected uses
constexpr int expected_max_vector_size{ 1 << 29 };
// Based on http://stackoverflow.com/questions/236129/split-a-string-in-c
/// Split a string by a delim
inline std::vector<std::string> split(const std::string& s, char delim)
{
std::vector<std::string> elems;
// Check to see if empty string, give consistent result
if (s.empty())
elems.emplace_back();
else
{
std::stringstream ss;
ss.str(s);
std::string item;
while (std::getline(ss, item, delim))
{
elems.push_back(item);
}
}
return elems;
}
/// Simple function to join a string
template<typename T>
std::string join(const T& v, std::string delim = ",")
{
std::ostringstream s;
auto beg = std::begin(v);
auto end = std::end(v);
if (beg != end)
s << *beg++;
while (beg != end)
{
s << delim << *beg++;
}
return s.str();
}
/// Simple function to join a string from processed elements
template<typename T,
typename Callable,
typename = typename std::enable_if<!std::is_constructible<std::string, Callable>::value>::type>
std::string join(const T& v, Callable func, std::string delim = ",")
{
std::ostringstream s;
auto beg = std::begin(v);
auto end = std::end(v);
if (beg != end)
s << func(*beg++);
while (beg != end)
{
s << delim << func(*beg++);
}
return s.str();
}
/// Join a string in reverse order
template<typename T>
std::string rjoin(const T& v, std::string delim = ",")
{
std::ostringstream s;
for (std::size_t start = 0; start < v.size(); start++)
{
if (start > 0)
s << delim;
s << v[v.size() - start - 1];
}
return s.str();
}
// Based roughly on http://stackoverflow.com/questions/25829143/c-trim-whitespace-from-a-string
/// Trim whitespace from left of string
inline std::string& ltrim(std::string& str)
{
auto it = std::find_if(str.begin(), str.end(), [](char ch) { return !std::isspace<char>(ch, std::locale()); });
str.erase(str.begin(), it);
return str;
}
/// Trim anything from left of string
inline std::string& ltrim(std::string& str, const std::string& filter)
{
auto it = std::find_if(str.begin(), str.end(), [&filter](char ch) { return filter.find(ch) == std::string::npos; });
str.erase(str.begin(), it);
return str;
}
/// Trim whitespace from right of string
inline std::string& rtrim(std::string& str)
{
auto it = std::find_if(str.rbegin(), str.rend(), [](char ch) { return !std::isspace<char>(ch, std::locale()); });
str.erase(it.base(), str.end());
return str;
}
/// Trim anything from right of string
inline std::string& rtrim(std::string& str, const std::string& filter)
{
auto it =
std::find_if(str.rbegin(), str.rend(), [&filter](char ch) { return filter.find(ch) == std::string::npos; });
str.erase(it.base(), str.end());
return str;
}
/// Trim whitespace from string
inline std::string& trim(std::string& str) { return ltrim(rtrim(str)); }
/// Trim anything from string
inline std::string& trim(std::string& str, const std::string filter) { return ltrim(rtrim(str, filter), filter); }
/// Make a copy of the string and then trim it
inline std::string trim_copy(const std::string& str)
{
std::string s = str;
return trim(s);
}
/// remove quotes at the front and back of a string either '"' or '\''
inline std::string& remove_quotes(std::string& str)
{
if (str.length() > 1 && (str.front() == '"' || str.front() == '\''))
{
if (str.front() == str.back())
{
str.pop_back();
str.erase(str.begin(), str.begin() + 1);
}
}
return str;
}
/// Make a copy of the string and then trim it, any filter string can be used (any char in string is filtered)
inline std::string trim_copy(const std::string& str, const std::string& filter)
{
std::string s = str;
return trim(s, filter);
}
/// Print a two part "help" string
inline std::ostream& format_help(std::ostream& out, std::string name, std::string description, std::size_t wid)
{
name = " " + name;
out << std::setw(static_cast<int>(wid)) << std::left << name;
if (!description.empty())
{
if (name.length() >= wid)
out << "\n"
<< std::setw(static_cast<int>(wid)) << "";
for (const char c : description)
{
out.put(c);
if (c == '\n')
{
out << std::setw(static_cast<int>(wid)) << "";
}
}
}
out << "\n";
return out;
}
/// Verify the first character of an option
template<typename T>
bool valid_first_char(T c)
{
return std::isalnum(c, std::locale()) || c == '_' || c == '?' || c == '@';
}
/// Verify following characters of an option
template<typename T>
bool valid_later_char(T c)
{
return valid_first_char(c) || c == '.' || c == '-';
}
/// Verify an option name
inline bool valid_name_string(const std::string& str)
{
if (str.empty() || !valid_first_char(str[0]))
return false;
for (auto c : str.substr(1))
if (!valid_later_char(c))
return false;
return true;
}
/// Verify that str consists of letters only
inline bool isalpha(const std::string& str)
{
return std::all_of(str.begin(), str.end(), [](char c) { return std::isalpha(c, std::locale()); });
}
/// Return a lower case version of a string
inline std::string to_lower(std::string str)
{
std::transform(std::begin(str), std::end(str), std::begin(str), [](const std::string::value_type& x) {
return std::tolower(x, std::locale());
});
return str;
}
/// remove underscores from a string
inline std::string remove_underscore(std::string str)
{
str.erase(std::remove(std::begin(str), std::end(str), '_'), std::end(str));
return str;
}
/// Find and replace a substring with another substring
inline std::string find_and_replace(std::string str, std::string from, std::string to)
{
std::size_t start_pos = 0;
while ((start_pos = str.find(from, start_pos)) != std::string::npos)
{
str.replace(start_pos, from.length(), to);
start_pos += to.length();
}
return str;
}
/// check if the flag definitions has possible false flags
inline bool has_default_flag_values(const std::string& flags)
{
return (flags.find_first_of("{!") != std::string::npos);
}
inline void remove_default_flag_values(std::string& flags)
{
auto loc = flags.find_first_of('{');
while (loc != std::string::npos)
{
auto finish = flags.find_first_of("},", loc + 1);
if ((finish != std::string::npos) && (flags[finish] == '}'))
{
flags.erase(flags.begin() + static_cast<std::ptrdiff_t>(loc),
flags.begin() + static_cast<std::ptrdiff_t>(finish) + 1);
}
loc = flags.find_first_of('{', loc + 1);
}
flags.erase(std::remove(flags.begin(), flags.end(), '!'), flags.end());
}
/// Check if a string is a member of a list of strings and optionally ignore case or ignore underscores
inline std::ptrdiff_t find_member(std::string name,
const std::vector<std::string> names,
bool ignore_case = false,
bool ignore_underscore = false)
{
auto it = std::end(names);
if (ignore_case)
{
if (ignore_underscore)
{
name = detail::to_lower(detail::remove_underscore(name));
it = std::find_if(std::begin(names), std::end(names), [&name](std::string local_name) {
return detail::to_lower(detail::remove_underscore(local_name)) == name;
});
}
else
{
name = detail::to_lower(name);
it = std::find_if(std::begin(names), std::end(names), [&name](std::string local_name) {
return detail::to_lower(local_name) == name;
});
}
}
else if (ignore_underscore)
{
name = detail::remove_underscore(name);
it = std::find_if(std::begin(names), std::end(names), [&name](std::string local_name) {
return detail::remove_underscore(local_name) == name;
});
}
else
it = std::find(std::begin(names), std::end(names), name);
return (it != std::end(names)) ? (it - std::begin(names)) : (-1);
}
/// Find a trigger string and call a modify callable function that takes the current string and starting position of the
/// trigger and returns the position in the string to search for the next trigger string
template<typename Callable>
inline std::string find_and_modify(std::string str, std::string trigger, Callable modify)
{
std::size_t start_pos = 0;
while ((start_pos = str.find(trigger, start_pos)) != std::string::npos)
{
start_pos = modify(str, start_pos);
}
return str;
}
/// Split a string '"one two" "three"' into 'one two', 'three'
/// Quote characters can be ` ' or "
inline std::vector<std::string> split_up(std::string str, char delimiter = '\0')
{
const std::string delims("\'\"`");
auto find_ws = [delimiter](char ch) {
return (delimiter == '\0') ? (std::isspace<char>(ch, std::locale()) != 0) : (ch == delimiter);
};
trim(str);
std::vector<std::string> output;
bool embeddedQuote = false;
char keyChar = ' ';
while (!str.empty())
{
if (delims.find_first_of(str[0]) != std::string::npos)
{
keyChar = str[0];
auto end = str.find_first_of(keyChar, 1);
while ((end != std::string::npos) && (str[end - 1] == '\\'))
{ // deal with escaped quotes
end = str.find_first_of(keyChar, end + 1);
embeddedQuote = true;
}
if (end != std::string::npos)
{
output.push_back(str.substr(1, end - 1));
str = str.substr(end + 1);
}
else
{
output.push_back(str.substr(1));
str = "";
}
}
else
{
auto it = std::find_if(std::begin(str), std::end(str), find_ws);
if (it != std::end(str))
{
std::string value = std::string(str.begin(), it);
output.push_back(value);
str = std::string(it + 1, str.end());
}
else
{
output.push_back(str);
str = "";
}
}
// transform any embedded quotes into the regular character
if (embeddedQuote)
{
output.back() = find_and_replace(output.back(), std::string("\\") + keyChar, std::string(1, keyChar));
embeddedQuote = false;
}
trim(str);
}
return output;
}
/// Add a leader to the beginning of all new lines (nothing is added
/// at the start of the first line). `"; "` would be for ini files
///
/// Can't use Regex, or this would be a subs.
inline std::string fix_newlines(const std::string& leader, std::string input)
{
std::string::size_type n = 0;
while (n != std::string::npos && n < input.size())
{
n = input.find('\n', n);
if (n != std::string::npos)
{
input = input.substr(0, n + 1) + leader + input.substr(n + 1);
n += leader.size();
}
}
return input;
}
/// This function detects an equal or colon followed by an escaped quote after an argument
/// then modifies the string to replace the equality with a space. This is needed
/// to allow the split up function to work properly and is intended to be used with the find_and_modify function
/// the return value is the offset+1 which is required by the find_and_modify function.
inline std::size_t escape_detect(std::string& str, std::size_t offset)
{
auto next = str[offset + 1];
if ((next == '\"') || (next == '\'') || (next == '`'))
{
auto astart = str.find_last_of("-/ \"\'`", offset - 1);
if (astart != std::string::npos)
{
if (str[astart] == ((str[offset] == '=') ? '-' : '/'))
str[offset] = ' '; // interpret this as a space so the split_up works properly
}
}
return offset + 1;
}
/// Add quotes if the string contains spaces
inline std::string& add_quotes_if_needed(std::string& str)
{
if ((str.front() != '"' && str.front() != '\'') || str.front() != str.back())
{
char quote = str.find('"') < str.find('\'') ? '\'' : '"';
if (str.find(' ') != std::string::npos)
{
str.insert(0, 1, quote);
str.append(1, quote);
}
}
return str;
}
} // namespace detail
} // namespace CLI
// From CLI/Error.hpp:
namespace CLI
{
// Use one of these on all error classes.
// These are temporary and are undef'd at the end of this file.
#define CLI11_ERROR_DEF(parent, name) \
protected: \
name(std::string ename, std::string msg, int exit_code) : parent(std::move(ename), std::move(msg), exit_code) {} \
name(std::string ename, std::string msg, ExitCodes exit_code) : parent(std::move(ename), std::move(msg), exit_code) {} \
\
public: \
name(std::string msg, ExitCodes exit_code) : parent(#name, std::move(msg), exit_code) {} \
name(std::string msg, int exit_code) : parent(#name, std::move(msg), exit_code) {}
// This is added after the one above if a class is used directly and builds its own message
#define CLI11_ERROR_SIMPLE(name) \
explicit name(std::string msg) : name(#name, msg, ExitCodes::name) {}
/// These codes are part of every error in CLI. They can be obtained from e using e.exit_code or as a quick shortcut,
/// int values from e.get_error_code().
enum class ExitCodes
{
Success = 0,
IncorrectConstruction = 100,
BadNameString,
OptionAlreadyAdded,
FileError,
ConversionError,
ValidationError,
RequiredError,
RequiresError,
ExcludesError,
ExtrasError,
ConfigError,
InvalidError,
HorribleError,
OptionNotFound,
ArgumentMismatch,
BaseClass = 127
};
// Error definitions
/// @defgroup error_group Errors
/// @brief Errors thrown by CLI11
///
/// These are the errors that can be thrown. Some of them, like CLI::Success, are not really errors.
/// @{
/// All errors derive from this one
class Error : public std::runtime_error
{
int actual_exit_code;
std::string error_name{ "Error" };
public:
int get_exit_code() const { return actual_exit_code; }
std::string get_name() const { return error_name; }
Error(std::string name, std::string msg, int exit_code = static_cast<int>(ExitCodes::BaseClass)) :
runtime_error(msg),
actual_exit_code(exit_code),
error_name(std::move(name)) {}
Error(std::string name, std::string msg, ExitCodes exit_code) :
Error(name, msg, static_cast<int>(exit_code)) {}
};
// Note: Using Error::Error constructors does not work on GCC 4.7
/// Construction errors (not in parsing)
class ConstructionError : public Error
{
CLI11_ERROR_DEF(Error, ConstructionError)
};
/// Thrown when an option is set to conflicting values (non-vector and multi args, for example)
class IncorrectConstruction : public ConstructionError
{
CLI11_ERROR_DEF(ConstructionError, IncorrectConstruction)
CLI11_ERROR_SIMPLE(IncorrectConstruction)
static IncorrectConstruction PositionalFlag(std::string name)
{
return IncorrectConstruction(name + ": Flags cannot be positional");
}
static IncorrectConstruction Set0Opt(std::string name)
{
return IncorrectConstruction(name + ": Cannot set 0 expected, use a flag instead");
}
static IncorrectConstruction SetFlag(std::string name)
{
return IncorrectConstruction(name + ": Cannot set an expected number for flags");
}
static IncorrectConstruction ChangeNotVector(std::string name)
{
return IncorrectConstruction(name + ": You can only change the expected arguments for vectors");
}
static IncorrectConstruction AfterMultiOpt(std::string name)
{
return IncorrectConstruction(
name + ": You can't change expected arguments after you've changed the multi option policy!");
}
static IncorrectConstruction MissingOption(std::string name)
{
return IncorrectConstruction("Option " + name + " is not defined");
}
static IncorrectConstruction MultiOptionPolicy(std::string name)
{
return IncorrectConstruction(name + ": multi_option_policy only works for flags and exact value options");
}
};
/// Thrown on construction of a bad name
class BadNameString : public ConstructionError
{
CLI11_ERROR_DEF(ConstructionError, BadNameString)
CLI11_ERROR_SIMPLE(BadNameString)
static BadNameString OneCharName(std::string name) { return BadNameString("Invalid one char name: " + name); }
static BadNameString BadLongName(std::string name) { return BadNameString("Bad long name: " + name); }
static BadNameString DashesOnly(std::string name)
{
return BadNameString("Must have a name, not just dashes: " + name);
}
static BadNameString MultiPositionalNames(std::string name)
{
return BadNameString("Only one positional name allowed, remove: " + name);
}
};
/// Thrown when an option already exists
class OptionAlreadyAdded : public ConstructionError
{
CLI11_ERROR_DEF(ConstructionError, OptionAlreadyAdded)
explicit OptionAlreadyAdded(std::string name) :
OptionAlreadyAdded(name + " is already added", ExitCodes::OptionAlreadyAdded) {}
static OptionAlreadyAdded Requires(std::string name, std::string other)
{
return OptionAlreadyAdded(name + " requires " + other, ExitCodes::OptionAlreadyAdded);
}
static OptionAlreadyAdded Excludes(std::string name, std::string other)
{
return OptionAlreadyAdded(name + " excludes " + other, ExitCodes::OptionAlreadyAdded);
}
};
// Parsing errors
/// Anything that can error in Parse
class ParseError : public Error
{
CLI11_ERROR_DEF(Error, ParseError)
};
// Not really "errors"
/// This is a successful completion on parsing, supposed to exit
class Success : public ParseError
{
CLI11_ERROR_DEF(ParseError, Success)
Success() :
Success("Successfully completed, should be caught and quit", ExitCodes::Success) {}
};
/// -h or --help on command line
class CallForHelp : public ParseError
{
CLI11_ERROR_DEF(ParseError, CallForHelp)
CallForHelp() :
CallForHelp("This should be caught in your main function, see examples", ExitCodes::Success) {}
};
/// Usually something like --help-all on command line
class CallForAllHelp : public ParseError
{
CLI11_ERROR_DEF(ParseError, CallForAllHelp)
CallForAllHelp() :
CallForAllHelp("This should be caught in your main function, see examples", ExitCodes::Success) {}
};
/// Does not output a diagnostic in CLI11_PARSE, but allows to return from main() with a specific error code.
class RuntimeError : public ParseError
{
CLI11_ERROR_DEF(ParseError, RuntimeError)
explicit RuntimeError(int exit_code = 1) :
RuntimeError("Runtime error", exit_code) {}
};
/// Thrown when parsing an INI file and it is missing
class FileError : public ParseError
{
CLI11_ERROR_DEF(ParseError, FileError)
CLI11_ERROR_SIMPLE(FileError)
static FileError Missing(std::string name) { return FileError(name + " was not readable (missing?)"); }
};
/// Thrown when conversion call back fails, such as when an int fails to coerce to a string
class ConversionError : public ParseError
{
CLI11_ERROR_DEF(ParseError, ConversionError)
CLI11_ERROR_SIMPLE(ConversionError)
ConversionError(std::string member, std::string name) :
ConversionError("The value " + member + " is not an allowed value for " + name) {}
ConversionError(std::string name, std::vector<std::string> results) :
ConversionError("Could not convert: " + name + " = " + detail::join(results)) {}
static ConversionError TooManyInputsFlag(std::string name)
{
return ConversionError(name + ": too many inputs for a flag");
}
static ConversionError TrueFalse(std::string name)
{
return ConversionError(name + ": Should be true/false or a number");
}
};
/// Thrown when validation of results fails
class ValidationError : public ParseError
{
CLI11_ERROR_DEF(ParseError, ValidationError)
CLI11_ERROR_SIMPLE(ValidationError)
explicit ValidationError(std::string name, std::string msg) :
ValidationError(name + ": " + msg) {}
};
/// Thrown when a required option is missing
class RequiredError : public ParseError
{
CLI11_ERROR_DEF(ParseError, RequiredError)
explicit RequiredError(std::string name) :
RequiredError(name + " is required", ExitCodes::RequiredError) {}
static RequiredError Subcommand(std::size_t min_subcom)
{
if (min_subcom == 1)
{
return RequiredError("A subcommand");
}
return RequiredError("Requires at least " + std::to_string(min_subcom) + " subcommands",
ExitCodes::RequiredError);
}
static RequiredError
Option(std::size_t min_option, std::size_t max_option, std::size_t used, const std::string& option_list)
{
if ((min_option == 1) && (max_option == 1) && (used == 0))
return RequiredError("Exactly 1 option from [" + option_list + "]");
if ((min_option == 1) && (max_option == 1) && (used > 1))
{
return RequiredError("Exactly 1 option from [" + option_list + "] is required and " + std::to_string(used) +
" were given",
ExitCodes::RequiredError);
}
if ((min_option == 1) && (used == 0))
return RequiredError("At least 1 option from [" + option_list + "]");
if (used < min_option)
{
return RequiredError("Requires at least " + std::to_string(min_option) + " options used and only " +
std::to_string(used) + "were given from [" + option_list + "]",
ExitCodes::RequiredError);
}
if (max_option == 1)
return RequiredError("Requires at most 1 options be given from [" + option_list + "]",
ExitCodes::RequiredError);
return RequiredError("Requires at most " + std::to_string(max_option) + " options be used and " +
std::to_string(used) + "were given from [" + option_list + "]",
ExitCodes::RequiredError);
}
};
/// Thrown when the wrong number of arguments has been received
class ArgumentMismatch : public ParseError
{
CLI11_ERROR_DEF(ParseError, ArgumentMismatch)
CLI11_ERROR_SIMPLE(ArgumentMismatch)
ArgumentMismatch(std::string name, int expected, std::size_t recieved) :
ArgumentMismatch(expected > 0 ? ("Expected exactly " + std::to_string(expected) + " arguments to " + name +
", got " + std::to_string(recieved)) :
("Expected at least " + std::to_string(-expected) + " arguments to " + name +
", got " + std::to_string(recieved)),
ExitCodes::ArgumentMismatch) {}
static ArgumentMismatch AtLeast(std::string name, int num, std::size_t received)
{
return ArgumentMismatch(name + ": At least " + std::to_string(num) + " required but received " +
std::to_string(received));
}
static ArgumentMismatch AtMost(std::string name, int num, std::size_t received)
{
return ArgumentMismatch(name + ": At Most " + std::to_string(num) + " required but received " +
std::to_string(received));
}
static ArgumentMismatch TypedAtLeast(std::string name, int num, std::string type)
{
return ArgumentMismatch(name + ": " + std::to_string(num) + " required " + type + " missing");
}
static ArgumentMismatch FlagOverride(std::string name)
{
return ArgumentMismatch(name + " was given a disallowed flag override");
}
};
/// Thrown when a requires option is missing
class RequiresError : public ParseError
{
CLI11_ERROR_DEF(ParseError, RequiresError)
RequiresError(std::string curname, std::string subname) :
RequiresError(curname + " requires " + subname, ExitCodes::RequiresError) {}
};
/// Thrown when an excludes option is present
class ExcludesError : public ParseError
{
CLI11_ERROR_DEF(ParseError, ExcludesError)
ExcludesError(std::string curname, std::string subname) :
ExcludesError(curname + " excludes " + subname, ExitCodes::ExcludesError) {}
};
/// Thrown when too many positionals or options are found
class ExtrasError : public ParseError
{
CLI11_ERROR_DEF(ParseError, ExtrasError)
explicit ExtrasError(std::vector<std::string> args) :
ExtrasError((args.size() > 1 ? "The following arguments were not expected: " : "The following argument was not expected: ") +
detail::rjoin(args, " "),
ExitCodes::ExtrasError) {}
ExtrasError(const std::string& name, std::vector<std::string> args) :
ExtrasError(name,
(args.size() > 1 ? "The following arguments were not expected: " : "The following argument was not expected: ") +
detail::rjoin(args, " "),
ExitCodes::ExtrasError) {}
};
/// Thrown when extra values are found in an INI file
class ConfigError : public ParseError
{
CLI11_ERROR_DEF(ParseError, ConfigError)
CLI11_ERROR_SIMPLE(ConfigError)
static ConfigError Extras(std::string item) { return ConfigError("INI was not able to parse " + item); }
static ConfigError NotConfigurable(std::string item)
{
return ConfigError(item + ": This option is not allowed in a configuration file");
}
};
/// Thrown when validation fails before parsing
class InvalidError : public ParseError
{
CLI11_ERROR_DEF(ParseError, InvalidError)
explicit InvalidError(std::string name) :
InvalidError(name + ": Too many positional arguments with unlimited expected args", ExitCodes::InvalidError)
{
}
};
/// This is just a safety check to verify selection and parsing match - you should not ever see it
/// Strings are directly added to this error, but again, it should never be seen.
class HorribleError : public ParseError
{
CLI11_ERROR_DEF(ParseError, HorribleError)
CLI11_ERROR_SIMPLE(HorribleError)
};
// After parsing
/// Thrown when counting a non-existent option
class OptionNotFound : public Error
{
CLI11_ERROR_DEF(Error, OptionNotFound)
explicit OptionNotFound(std::string name) :
OptionNotFound(name + " not found", ExitCodes::OptionNotFound) {}
};
#undef CLI11_ERROR_DEF
#undef CLI11_ERROR_SIMPLE
/// @}
} // namespace CLI
// From CLI/TypeTools.hpp:
namespace CLI
{
// Type tools
// Utilities for type enabling
namespace detail
{
// Based generally on https://rmf.io/cxx11/almost-static-if
/// Simple empty scoped class
enum class enabler
{
};
/// An instance to use in EnableIf
constexpr enabler dummy = {};
} // namespace detail
/// A copy of enable_if_t from C++14, compatible with C++11.
///
/// We could check to see if C++14 is being used, but it does not hurt to redefine this
/// (even Google does this: https://github.com/google/skia/blob/master/include/private/SkTLogic.h)
/// It is not in the std namespace anyway, so no harm done.
template<bool B, class T = void>
using enable_if_t = typename std::enable_if<B, T>::type;
/// A copy of std::void_t from C++17 (helper for C++11 and C++14)
template<typename... Ts>
struct make_void
{
using type = void;
};
/// A copy of std::void_t from C++17 - same reasoning as enable_if_t, it does not hurt to redefine
template<typename... Ts>
using void_t = typename make_void<Ts...>::type;
/// A copy of std::conditional_t from C++14 - same reasoning as enable_if_t, it does not hurt to redefine
template<bool B, class T, class F>
using conditional_t = typename std::conditional<B, T, F>::type;
/// Check to see if something is a vector (fail check by default)
template<typename T>
struct is_vector : std::false_type
{
};
/// Check to see if something is a vector (true if actually a vector)
template<class T, class A>
struct is_vector<std::vector<T, A>> : std::true_type
{
};
/// Check to see if something is a vector (true if actually a const vector)
template<class T, class A>
struct is_vector<const std::vector<T, A>> : std::true_type
{
};
/// Check to see if something is bool (fail check by default)
template<typename T>
struct is_bool : std::false_type
{
};
/// Check to see if something is bool (true if actually a bool)
template<>
struct is_bool<bool> : std::true_type
{
};
/// Check to see if something is a shared pointer
template<typename T>
struct is_shared_ptr : std::false_type
{
};
/// Check to see if something is a shared pointer (True if really a shared pointer)
template<typename T>
struct is_shared_ptr<std::shared_ptr<T>> : std::true_type
{
};
/// Check to see if something is a shared pointer (True if really a shared pointer)
template<typename T>
struct is_shared_ptr<const std::shared_ptr<T>> : std::true_type
{
};
/// Check to see if something is copyable pointer
template<typename T>
struct is_copyable_ptr
{
static bool const value = is_shared_ptr<T>::value || std::is_pointer<T>::value;
};
/// This can be specialized to override the type deduction for IsMember.
template<typename T>
struct IsMemberType
{
using type = T;
};
/// The main custom type needed here is const char * should be a string.
template<>
struct IsMemberType<const char*>
{
using type = std::string;
};
namespace detail
{
// These are utilities for IsMember and other transforming objects
/// Handy helper to access the element_type generically. This is not part of is_copyable_ptr because it requires that
/// pointer_traits<T> be valid.
/// not a pointer
template<typename T, typename Enable = void>
struct element_type
{
using type = T;
};
template<typename T>
struct element_type<T, typename std::enable_if<is_copyable_ptr<T>::value>::type>
{
using type = typename std::pointer_traits<T>::element_type;
};
/// Combination of the element type and value type - remove pointer (including smart pointers) and get the value_type of
/// the container
template<typename T>
struct element_value_type
{
using type = typename element_type<T>::type::value_type;
};
/// Adaptor for set-like structure: This just wraps a normal container in a few utilities that do almost nothing.
template<typename T, typename _ = void>
struct pair_adaptor : std::false_type
{
using value_type = typename T::value_type;
using first_type = typename std::remove_const<value_type>::type;
using second_type = typename std::remove_const<value_type>::type;
/// Get the first value (really just the underlying value)
template<typename Q>
static auto first(Q&& pair_value) -> decltype(std::forward<Q>(pair_value))
{
return std::forward<Q>(pair_value);
}
/// Get the second value (really just the underlying value)
template<typename Q>
static auto second(Q&& pair_value) -> decltype(std::forward<Q>(pair_value))
{
return std::forward<Q>(pair_value);
}
};
/// Adaptor for map-like structure (true version, must have key_type and mapped_type).
/// This wraps a mapped container in a few utilities access it in a general way.
template<typename T>
struct pair_adaptor<
T,
conditional_t<false, void_t<typename T::value_type::first_type, typename T::value_type::second_type>, void>> : std::true_type
{
using value_type = typename T::value_type;
using first_type = typename std::remove_const<typename value_type::first_type>::type;
using second_type = typename std::remove_const<typename value_type::second_type>::type;
/// Get the first value (really just the underlying value)
template<typename Q>
static auto first(Q&& pair_value) -> decltype(std::get<0>(std::forward<Q>(pair_value)))
{
return std::get<0>(std::forward<Q>(pair_value));
}
/// Get the second value (really just the underlying value)
template<typename Q>
static auto second(Q&& pair_value) -> decltype(std::get<1>(std::forward<Q>(pair_value)))
{
return std::get<1>(std::forward<Q>(pair_value));
}
};
// Warning is suppressed due to "bug" in gcc<5.0 and gcc 7.0 with c++17 enabled that generates a Wnarrowing warning
// in the unevaluated context even if the function that was using this wasn't used. The standard says narrowing in
// brace initialization shouldn't be allowed but for backwards compatibility gcc allows it in some contexts. It is a
// little fuzzy what happens in template constructs and I think that was something GCC took a little while to work out.
// But regardless some versions of gcc generate a warning when they shouldn't from the following code so that should be
// suppressed
#ifdef __GNUC__
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wnarrowing"
#endif
// check for constructibility from a specific type and copy assignable used in the parse detection
template<typename T, typename C>
class is_direct_constructible
{
template<typename TT, typename CC>
static auto test(int, std::true_type) -> decltype(
// NVCC warns about narrowing conversions here
#ifdef __CUDACC__
#pragma diag_suppress 2361
#endif
TT { std::declval<CC>() }
#ifdef __CUDACC__
#pragma diag_default 2361
#endif
,
std::is_move_assignable<TT>());
template<typename TT, typename CC>
static auto test(int, std::false_type) -> std::false_type;
template<typename, typename>
static auto test(...) -> std::false_type;
public:
static constexpr bool value = decltype(test<T, C>(0, typename std::is_constructible<T, C>::type()))::value;
};
#ifdef __GNUC__
#pragma GCC diagnostic pop
#endif
// Check for output streamability
// Based on https://stackoverflow.com/questions/22758291/how-can-i-detect-if-a-type-can-be-streamed-to-an-stdostream
template<typename T, typename S = std::ostringstream>
class is_ostreamable
{
template<typename TT, typename SS>
static auto test(int) -> decltype(std::declval<SS&>() << std::declval<TT>(), std::true_type());
template<typename, typename>
static auto test(...) -> std::false_type;
public:
static constexpr bool value = decltype(test<T, S>(0))::value;
};
/// Check for input streamability
template<typename T, typename S = std::istringstream>
class is_istreamable
{
template<typename TT, typename SS>
static auto test(int) -> decltype(std::declval<SS&>() >> std::declval<TT&>(), std::true_type());
template<typename, typename>
static auto test(...) -> std::false_type;
public:
static constexpr bool value = decltype(test<T, S>(0))::value;
};
/// Templated operation to get a value from a stream
template<typename T, enable_if_t<is_istreamable<T>::value, detail::enabler> = detail::dummy>
bool from_stream(const std::string& istring, T& obj)
{
std::istringstream is;
is.str(istring);
is >> obj;
return !is.fail() && !is.rdbuf()->in_avail();
}
template<typename T, enable_if_t<!is_istreamable<T>::value, detail::enabler> = detail::dummy>
bool from_stream(const std::string& /*istring*/, T& /*obj*/)
{
return false;
}
// Check for tuple like types, as in classes with a tuple_size type trait
template<typename S>
class is_tuple_like
{
template<typename SS>
// static auto test(int)
// -> decltype(std::conditional<(std::tuple_size<SS>::value > 0), std::true_type, std::false_type>::type());
static auto test(int) -> decltype(std::tuple_size<SS>::value, std::true_type{});
template<typename>
static auto test(...) -> std::false_type;
public:
static constexpr bool value = decltype(test<S>(0))::value;
};
/// Convert an object to a string (directly forward if this can become a string)
template<typename T, enable_if_t<std::is_constructible<std::string, T>::value, detail::enabler> = detail::dummy>
auto to_string(T&& value) -> decltype(std::forward<T>(value))
{
return std::forward<T>(value);
}
/// Convert an object to a string (streaming must be supported for that type)
template<typename T,
enable_if_t<!std::is_constructible<std::string, T>::value && is_ostreamable<T>::value, detail::enabler> =
detail::dummy>
std::string to_string(T&& value)
{
std::stringstream stream;
stream << value;
return stream.str();
}
/// If conversion is not supported, return an empty string (streaming is not supported for that type)
template<typename T,
enable_if_t<!std::is_constructible<std::string, T>::value && !is_ostreamable<T>::value &&
!is_vector<typename std::remove_reference<typename std::remove_const<T>::type>::type>::value,
detail::enabler> = detail::dummy>
std::string to_string(T&&)
{
return std::string{};
}
/// convert a vector to a string
template<typename T,
enable_if_t<!std::is_constructible<std::string, T>::value && !is_ostreamable<T>::value &&
is_vector<typename std::remove_reference<typename std::remove_const<T>::type>::type>::value,
detail::enabler> = detail::dummy>
std::string to_string(T&& variable)
{
std::vector<std::string> defaults;
defaults.reserve(variable.size());
auto cval = variable.begin();
auto end = variable.end();
while (cval != end)
{
defaults.emplace_back(CLI::detail::to_string(*cval));
++cval;
}
return std::string("[" + detail::join(defaults) + "]");
}
/// special template overload
template<typename T1,
typename T2,
typename T,
enable_if_t<std::is_same<T1, T2>::value, detail::enabler> = detail::dummy>
auto checked_to_string(T&& value) -> decltype(to_string(std::forward<T>(value)))
{
return to_string(std::forward<T>(value));
}
/// special template overload
template<typename T1,
typename T2,
typename T,
enable_if_t<!std::is_same<T1, T2>::value, detail::enabler> = detail::dummy>
std::string checked_to_string(T&&)
{
return std::string{};
}
/// get a string as a convertible value for arithmetic types
template<typename T, enable_if_t<std::is_arithmetic<T>::value, detail::enabler> = detail::dummy>
std::string value_string(const T& value)
{
return std::to_string(value);
}
/// get a string as a convertible value for enumerations
template<typename T, enable_if_t<std::is_enum<T>::value, detail::enabler> = detail::dummy>
std::string value_string(const T& value)
{
return std::to_string(static_cast<typename std::underlying_type<T>::type>(value));
}
/// for other types just use the regular to_string function
template<typename T,
enable_if_t<!std::is_enum<T>::value && !std::is_arithmetic<T>::value, detail::enabler> = detail::dummy>
auto value_string(const T& value) -> decltype(to_string(value))
{
return to_string(value);
}
/// This will only trigger for actual void type
template<typename T, typename Enable = void>
struct type_count
{
static const int value{ 0 };
};
/// Set of overloads to get the type size of an object
template<typename T>
struct type_count<T, typename std::enable_if<is_tuple_like<T>::value>::type>
{
static constexpr int value{ std::tuple_size<T>::value };
};
/// Type size for regular object types that do not look like a tuple
template<typename T>
struct type_count<
T,
typename std::enable_if<!is_vector<T>::value && !is_tuple_like<T>::value && !std::is_void<T>::value>::type>
{
static constexpr int value{ 1 };
};
/// Type size of types that look like a vector
template<typename T>
struct type_count<T, typename std::enable_if<is_vector<T>::value>::type>
{
static constexpr int value{ is_vector<typename T::value_type>::value ? expected_max_vector_size : type_count<typename T::value_type>::value };
};
/// This will only trigger for actual void type
template<typename T, typename Enable = void>
struct expected_count
{
static const int value{ 0 };
};
/// For most types the number of expected items is 1
template<typename T>
struct expected_count<T, typename std::enable_if<!is_vector<T>::value && !std::is_void<T>::value>::type>
{
static constexpr int value{ 1 };
};
/// number of expected items in a vector
template<typename T>
struct expected_count<T, typename std::enable_if<is_vector<T>::value>::type>
{
static constexpr int value{ expected_max_vector_size };
};
// Enumeration of the different supported categorizations of objects
enum class object_category : int
{
integral_value = 2,
unsigned_integral = 4,
enumeration = 6,
boolean_value = 8,
floating_point = 10,
number_constructible = 12,
double_constructible = 14,
integer_constructible = 16,
vector_value = 30,
tuple_value = 35,
// string assignable or greater used in a condition so anything string like must come last
string_assignable = 50,
string_constructible = 60,
other = 200,
};
/// some type that is not otherwise recognized
template<typename T, typename Enable = void>
struct classify_object
{
static constexpr object_category value{ object_category::other };
};
/// Set of overloads to classify an object according to type
template<typename T>
struct classify_object<T,
typename std::enable_if<std::is_integral<T>::value && std::is_signed<T>::value &&
!is_bool<T>::value && !std::is_enum<T>::value>::type>
{
static constexpr object_category value{ object_category::integral_value };
};
/// Unsigned integers
template<typename T>
struct classify_object<
T,
typename std::enable_if<std::is_integral<T>::value && std::is_unsigned<T>::value && !is_bool<T>::value>::type>
{
static constexpr object_category value{ object_category::unsigned_integral };
};
/// Boolean values
template<typename T>
struct classify_object<T, typename std::enable_if<is_bool<T>::value>::type>
{
static constexpr object_category value{ object_category::boolean_value };
};
/// Floats
template<typename T>
struct classify_object<T, typename std::enable_if<std::is_floating_point<T>::value>::type>
{
static constexpr object_category value{ object_category::floating_point };
};
/// String and similar direct assignment
template<typename T>
struct classify_object<
T,
typename std::enable_if<!std::is_floating_point<T>::value && !std::is_integral<T>::value &&
std::is_assignable<T&, std::string>::value && !is_vector<T>::value>::type>
{
static constexpr object_category value{ object_category::string_assignable };
};
/// String and similar constructible and copy assignment
template<typename T>
struct classify_object<
T,
typename std::enable_if<!std::is_floating_point<T>::value && !std::is_integral<T>::value &&
!std::is_assignable<T&, std::string>::value &&
std::is_constructible<T, std::string>::value && !is_vector<T>::value>::type>
{
static constexpr object_category value{ object_category::string_constructible };
};
/// Enumerations
template<typename T>
struct classify_object<T, typename std::enable_if<std::is_enum<T>::value>::type>
{
static constexpr object_category value{ object_category::enumeration };
};
/// Handy helper to contain a bunch of checks that rule out many common types (integers, string like, floating point,
/// vectors, and enumerations
template<typename T>
struct uncommon_type
{
using type = typename std::conditional<!std::is_floating_point<T>::value && !std::is_integral<T>::value &&
!std::is_assignable<T&, std::string>::value &&
!std::is_constructible<T, std::string>::value && !is_vector<T>::value &&
!std::is_enum<T>::value,
std::true_type,
std::false_type>::type;
static constexpr bool value = type::value;
};
/// Assignable from double or int
template<typename T>
struct classify_object<T,
typename std::enable_if<uncommon_type<T>::value && type_count<T>::value == 1 &&
is_direct_constructible<T, double>::value &&
is_direct_constructible<T, int>::value>::type>
{
static constexpr object_category value{ object_category::number_constructible };
};
/// Assignable from int
template<typename T>
struct classify_object<T,
typename std::enable_if<uncommon_type<T>::value && type_count<T>::value == 1 &&
!is_direct_constructible<T, double>::value &&
is_direct_constructible<T, int>::value>::type>
{
static constexpr object_category value{ object_category::integer_constructible };
};
/// Assignable from double
template<typename T>
struct classify_object<T,
typename std::enable_if<uncommon_type<T>::value && type_count<T>::value == 1 &&
is_direct_constructible<T, double>::value &&
!is_direct_constructible<T, int>::value>::type>
{
static constexpr object_category value{ object_category::double_constructible };
};
/// Tuple type
template<typename T>
struct classify_object<T,
typename std::enable_if<(type_count<T>::value >= 2 && !is_vector<T>::value) ||
(is_tuple_like<T>::value && uncommon_type<T>::value &&
!is_direct_constructible<T, double>::value &&
!is_direct_constructible<T, int>::value)>::type>
{
static constexpr object_category value{ object_category::tuple_value };
};
/// Vector type
template<typename T>
struct classify_object<T, typename std::enable_if<is_vector<T>::value>::type>
{
static constexpr object_category value{ object_category::vector_value };
};
// Type name print
/// Was going to be based on
/// http://stackoverflow.com/questions/1055452/c-get-name-of-type-in-template
/// But this is cleaner and works better in this case
template<typename T,
enable_if_t<classify_object<T>::value == object_category::integral_value ||
classify_object<T>::value == object_category::integer_constructible,
detail::enabler> = detail::dummy>
constexpr const char* type_name()
{
return "INT";
}
template<typename T,
enable_if_t<classify_object<T>::value == object_category::unsigned_integral, detail::enabler> = detail::dummy>
constexpr const char* type_name()
{
return "UINT";
}
template<typename T,
enable_if_t<classify_object<T>::value == object_category::floating_point ||
classify_object<T>::value == object_category::number_constructible ||
classify_object<T>::value == object_category::double_constructible,
detail::enabler> = detail::dummy>
constexpr const char* type_name()
{
return "FLOAT";
}
/// Print name for enumeration types
template<typename T,
enable_if_t<classify_object<T>::value == object_category::enumeration, detail::enabler> = detail::dummy>
constexpr const char* type_name()
{
return "ENUM";
}
/// Print name for enumeration types
template<typename T,
enable_if_t<classify_object<T>::value == object_category::boolean_value, detail::enabler> = detail::dummy>
constexpr const char* type_name()
{
return "BOOLEAN";
}
/// Print for all other types
template<typename T,
enable_if_t<classify_object<T>::value >= object_category::string_assignable, detail::enabler> = detail::dummy>
constexpr const char* type_name()
{
return "TEXT";
}
/// Print name for single element tuple types
template<typename T,
enable_if_t<classify_object<T>::value == object_category::tuple_value && type_count<T>::value == 1,
detail::enabler> = detail::dummy>
inline std::string type_name()
{
return type_name<typename std::tuple_element<0, T>::type>();
}
/// Empty string if the index > tuple size
template<typename T, std::size_t I>
inline typename std::enable_if<I == type_count<T>::value, std::string>::type tuple_name()
{
return std::string{};
}
/// Recursively generate the tuple type name
template<typename T, std::size_t I>
inline typename std::enable_if < I<type_count<T>::value, std::string>::type tuple_name()
{
std::string str = std::string(type_name<typename std::tuple_element<I, T>::type>()) + ',' + tuple_name<T, I + 1>();
if (str.back() == ',')
str.pop_back();
return str;
}
/// Print type name for tuples with 2 or more elements
template<typename T,
enable_if_t<classify_object<T>::value == object_category::tuple_value && type_count<T>::value >= 2,
detail::enabler> = detail::dummy>
std::string type_name()
{
auto tname = std::string(1, '[') + tuple_name<T, 0>();
tname.push_back(']');
return tname;
}
/// This one should not be used normally, since vector types print the internal type
template<typename T,
enable_if_t<classify_object<T>::value == object_category::vector_value, detail::enabler> = detail::dummy>
inline std::string type_name()
{
return type_name<typename T::value_type>();
}
// Lexical cast
/// Convert a flag into an integer value typically binary flags
inline int64_t to_flag_value(std::string val)
{
static const std::string trueString("true");
static const std::string falseString("false");
if (val == trueString)
{
return 1;
}
if (val == falseString)
{
return -1;
}
val = detail::to_lower(val);
int64_t ret;
if (val.size() == 1)
{
if (val[0] >= '1' && val[0] <= '9')
{
return (static_cast<int64_t>(val[0]) - '0');
}
switch (val[0])
{
case '0':
case 'f':
case 'n':
case '-':
ret = -1;
break;
case 't':
case 'y':
case '+':
ret = 1;
break;
default:
throw std::invalid_argument("unrecognized character");
}
return ret;
}
if (val == trueString || val == "on" || val == "yes" || val == "enable")
{
ret = 1;
}
else if (val == falseString || val == "off" || val == "no" || val == "disable")
{
ret = -1;
}
else
{
ret = std::stoll(val);
}
return ret;
}
/// Signed integers
template<typename T,
enable_if_t<classify_object<T>::value == object_category::integral_value, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string& input, T& output)
{
try
{
std::size_t n = 0;
std::int64_t output_ll = std::stoll(input, &n, 0);
output = static_cast<T>(output_ll);
return n == input.size() && static_cast<std::int64_t>(output) == output_ll;
}
catch (const std::invalid_argument&)
{
return false;
}
catch (const std::out_of_range&)
{
return false;
}
}
/// Unsigned integers
template<typename T,
enable_if_t<classify_object<T>::value == object_category::unsigned_integral, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string& input, T& output)
{
if (!input.empty() && input.front() == '-')
return false; // std::stoull happily converts negative values to junk without any errors.
try
{
std::size_t n = 0;
std::uint64_t output_ll = std::stoull(input, &n, 0);
output = static_cast<T>(output_ll);
return n == input.size() && static_cast<std::uint64_t>(output) == output_ll;
}
catch (const std::invalid_argument&)
{
return false;
}
catch (const std::out_of_range&)
{
return false;
}
}
/// Boolean values
template<typename T,
enable_if_t<classify_object<T>::value == object_category::boolean_value, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string& input, T& output)
{
try
{
auto out = to_flag_value(input);
output = (out > 0);
return true;
}
catch (const std::invalid_argument&)
{
return false;
}
catch (const std::out_of_range&)
{
// if the number is out of the range of a 64 bit value then it is still a number and for this purpose is still
// valid all we care about the sign
output = (input[0] != '-');
return true;
}
}
/// Floats
template<typename T,
enable_if_t<classify_object<T>::value == object_category::floating_point, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string& input, T& output)
{
try
{
std::size_t n = 0;
output = static_cast<T>(std::stold(input, &n));
return n == input.size();
}
catch (const std::invalid_argument&)
{
return false;
}
catch (const std::out_of_range&)
{
return false;
}
}
/// String and similar direct assignment
template<typename T,
enable_if_t<classify_object<T>::value == object_category::string_assignable, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string& input, T& output)
{
output = input;
return true;
}
/// String and similar constructible and copy assignment
template<
typename T,
enable_if_t<classify_object<T>::value == object_category::string_constructible, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string& input, T& output)
{
output = T(input);
return true;
}
/// Enumerations
template<typename T,
enable_if_t<classify_object<T>::value == object_category::enumeration, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string& input, T& output)
{
typename std::underlying_type<T>::type val;
bool retval = detail::lexical_cast(input, val);
if (!retval)
{
return false;
}
output = static_cast<T>(val);
return true;
}
/// Assignable from double or int
template<
typename T,
enable_if_t<classify_object<T>::value == object_category::number_constructible, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string& input, T& output)
{
int val;
if (lexical_cast(input, val))
{
output = T(val);
return true;
}
else
{
double dval;
if (lexical_cast(input, dval))
{
output = T{ dval };
return true;
}
}
return from_stream(input, output);
}
/// Assignable from int
template<
typename T,
enable_if_t<classify_object<T>::value == object_category::integer_constructible, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string& input, T& output)
{
int val;
if (lexical_cast(input, val))
{
output = T(val);
return true;
}
return from_stream(input, output);
}
/// Assignable from double
template<
typename T,
enable_if_t<classify_object<T>::value == object_category::double_constructible, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string& input, T& output)
{
double val;
if (lexical_cast(input, val))
{
output = T{ val };
return true;
}
return from_stream(input, output);
}
/// Non-string parsable by a stream
template<typename T, enable_if_t<classify_object<T>::value == object_category::other, detail::enabler> = detail::dummy>
bool lexical_cast(const std::string& input, T& output)
{
static_assert(is_istreamable<T>::value,
"option object type must have a lexical cast overload or streaming input operator(>>) defined, if it "
"is convertible from another type use the add_option<T, XC>(...) with XC being the known type");
return from_stream(input, output);
}
/// Assign a value through lexical cast operations
template<
typename T,
typename XC,
enable_if_t<std::is_same<T, XC>::value && (classify_object<T>::value == object_category::string_assignable ||
classify_object<T>::value == object_category::string_constructible),
detail::enabler> = detail::dummy>
bool lexical_assign(const std::string& input, T& output)
{
return lexical_cast(input, output);
}
/// Assign a value through lexical cast operations
template<typename T,
typename XC,
enable_if_t<std::is_same<T, XC>::value && classify_object<T>::value != object_category::string_assignable &&
classify_object<T>::value != object_category::string_constructible,
detail::enabler> = detail::dummy>
bool lexical_assign(const std::string& input, T& output)
{
if (input.empty())
{
output = T{};
return true;
}
return lexical_cast(input, output);
}
/// Assign a value converted from a string in lexical cast to the output value directly
template<
typename T,
typename XC,
enable_if_t<!std::is_same<T, XC>::value && std::is_assignable<T&, XC&>::value, detail::enabler> = detail::dummy>
bool lexical_assign(const std::string& input, T& output)
{
XC val{};
bool parse_result = (!input.empty()) ? lexical_cast<XC>(input, val) : true;
if (parse_result)
{
output = val;
}
return parse_result;
}
/// Assign a value from a lexical cast through constructing a value and move assigning it
template<typename T,
typename XC,
enable_if_t<!std::is_same<T, XC>::value && !std::is_assignable<T&, XC&>::value &&
std::is_move_assignable<T>::value,
detail::enabler> = detail::dummy>
bool lexical_assign(const std::string& input, T& output)
{
XC val{};
bool parse_result = input.empty() ? true : lexical_cast<XC>(input, val);
if (parse_result)
{
output = T(val); // use () form of constructor to allow some implicit conversions
}
return parse_result;
}
/// Lexical conversion if there is only one element
template<
typename T,
typename XC,
enable_if_t<!is_tuple_like<T>::value && !is_tuple_like<XC>::value && !is_vector<T>::value && !is_vector<XC>::value,
detail::enabler> = detail::dummy>
bool lexical_conversion(const std::vector<std ::string>& strings, T& output)
{
return lexical_assign<T, XC>(strings[0], output);
}
/// Lexical conversion if there is only one element but the conversion type is for two call a two element constructor
template<typename T,
typename XC,
enable_if_t<type_count<T>::value == 1 && type_count<XC>::value == 2, detail::enabler> = detail::dummy>
bool lexical_conversion(const std::vector<std ::string>& strings, T& output)
{
typename std::tuple_element<0, XC>::type v1;
typename std::tuple_element<1, XC>::type v2;
bool retval = lexical_assign<decltype(v1), decltype(v1)>(strings[0], v1);
if (strings.size() > 1)
{
retval = retval && lexical_assign<decltype(v2), decltype(v2)>(strings[1], v2);
}
if (retval)
{
output = T{ v1, v2 };
}
return retval;
}
/// Lexical conversion of a vector types
template<class T,
class XC,
enable_if_t<expected_count<T>::value == expected_max_vector_size &&
expected_count<XC>::value == expected_max_vector_size && type_count<XC>::value == 1,
detail::enabler> = detail::dummy>
bool lexical_conversion(const std::vector<std ::string>& strings, T& output)
{
output.clear();
output.reserve(strings.size());
for (const auto& elem : strings)
{
output.emplace_back();
bool retval = lexical_assign<typename T::value_type, typename XC::value_type>(elem, output.back());
if (!retval)
{
return false;
}
}
return (!output.empty());
}
/// Lexical conversion of a vector types with type size of two
template<class T,
class XC,
enable_if_t<expected_count<T>::value == expected_max_vector_size &&
expected_count<XC>::value == expected_max_vector_size && type_count<XC>::value == 2,
detail::enabler> = detail::dummy>
bool lexical_conversion(const std::vector<std ::string>& strings, T& output)
{
output.clear();
for (std::size_t ii = 0; ii < strings.size(); ii += 2)
{
typename std::tuple_element<0, typename XC::value_type>::type v1;
typename std::tuple_element<1, typename XC::value_type>::type v2;
bool retval = lexical_assign<decltype(v1), decltype(v1)>(strings[ii], v1);
if (strings.size() > ii + 1)
{
retval = retval && lexical_assign<decltype(v2), decltype(v2)>(strings[ii + 1], v2);
}
if (retval)
{
output.emplace_back(v1, v2);
}
else
{
return false;
}
}
return (!output.empty());
}
/// Conversion to a vector type using a particular single type as the conversion type
template<class T,
class XC,
enable_if_t<(expected_count<T>::value == expected_max_vector_size) && (expected_count<XC>::value == 1) &&
(type_count<XC>::value == 1),
detail::enabler> = detail::dummy>
bool lexical_conversion(const std::vector<std ::string>& strings, T& output)
{
bool retval = true;
output.clear();
output.reserve(strings.size());
for (const auto& elem : strings)
{
output.emplace_back();
retval = retval && lexical_assign<typename T::value_type, XC>(elem, output.back());
}
return (!output.empty()) && retval;
}
// This one is last since it can call other lexical_conversion functions
/// Lexical conversion if there is only one element but the conversion type is a vector
template<typename T,
typename XC,
enable_if_t<!is_tuple_like<T>::value && !is_vector<T>::value && is_vector<XC>::value, detail::enabler> =
detail::dummy>
bool lexical_conversion(const std::vector<std ::string>& strings, T& output)
{
if (strings.size() > 1 || (!strings.empty() && !(strings.front().empty())))
{
XC val;
auto retval = lexical_conversion<XC, XC>(strings, val);
output = T{ val };
return retval;
}
output = T{};
return true;
}
/// function template for converting tuples if the static Index is greater than the tuple size
template<class T, class XC, std::size_t I>
inline typename std::enable_if<I >= type_count<T>::value, bool>::type tuple_conversion(const std::vector<std::string>&,
T&)
{
return true;
}
/// Tuple conversion operation
template<class T, class XC, std::size_t I>
inline typename std::enable_if <
I<type_count<T>::value, bool>::type tuple_conversion(const std::vector<std::string>& strings, T& output)
{
bool retval = true;
if (strings.size() > I)
{
retval = retval && lexical_assign<typename std::tuple_element<I, T>::type,
typename std::conditional<is_tuple_like<XC>::value,
typename std::tuple_element<I, XC>::type,
XC>::type>(strings[I], std::get<I>(output));
}
retval = retval && tuple_conversion<T, XC, I + 1>(strings, output);
return retval;
}
/// Conversion for tuples
template<class T, class XC, enable_if_t<is_tuple_like<T>::value, detail::enabler> = detail::dummy>
bool lexical_conversion(const std::vector<std ::string>& strings, T& output)
{
static_assert(
!is_tuple_like<XC>::value || type_count<T>::value == type_count<XC>::value,
"if the conversion type is defined as a tuple it must be the same size as the type you are converting to");
return tuple_conversion<T, XC, 0>(strings, output);
}
/// Lexical conversion of a vector types with type_size >2
template<class T,
class XC,
enable_if_t<expected_count<T>::value == expected_max_vector_size &&
expected_count<XC>::value == expected_max_vector_size && (type_count<XC>::value > 2),
detail::enabler> = detail::dummy>
bool lexical_conversion(const std::vector<std ::string>& strings, T& output)
{
bool retval = true;
output.clear();
std::vector<std::string> temp;
std::size_t ii = 0;
std::size_t icount = 0;
std::size_t xcm = type_count<XC>::value;
while (ii < strings.size())
{
temp.push_back(strings[ii]);
++ii;
++icount;
if (icount == xcm || temp.back().empty())
{
if (static_cast<int>(xcm) == expected_max_vector_size)
{
temp.pop_back();
}
output.emplace_back();
retval = retval && lexical_conversion<typename T::value_type, typename XC::value_type>(temp, output.back());
temp.clear();
if (!retval)
{
return false;
}
icount = 0;
}
}
return retval;
}
/// Sum a vector of flag representations
/// The flag vector produces a series of strings in a vector, simple true is represented by a "1", simple false is
/// by
/// "-1" an if numbers are passed by some fashion they are captured as well so the function just checks for the most
/// common true and false strings then uses stoll to convert the rest for summing
template<typename T,
enable_if_t<std::is_integral<T>::value && std::is_unsigned<T>::value, detail::enabler> = detail::dummy>
void sum_flag_vector(const std::vector<std::string>& flags, T& output)
{
int64_t count{ 0 };
for (auto& flag : flags)
{
count += detail::to_flag_value(flag);
}
output = (count > 0) ? static_cast<T>(count) : T{ 0 };
}
/// Sum a vector of flag representations
/// The flag vector produces a series of strings in a vector, simple true is represented by a "1", simple false is
/// by
/// "-1" an if numbers are passed by some fashion they are captured as well so the function just checks for the most
/// common true and false strings then uses stoll to convert the rest for summing
template<typename T,
enable_if_t<std::is_integral<T>::value && std::is_signed<T>::value, detail::enabler> = detail::dummy>
void sum_flag_vector(const std::vector<std::string>& flags, T& output)
{
int64_t count{ 0 };
for (auto& flag : flags)
{
count += detail::to_flag_value(flag);
}
output = static_cast<T>(count);
}
} // namespace detail
} // namespace CLI
// From CLI/Split.hpp:
namespace CLI
{
namespace detail
{
// Returns false if not a short option. Otherwise, sets opt name and rest and returns true
inline bool split_short(const std::string& current, std::string& name, std::string& rest)
{
if (current.size() > 1 && current[0] == '-' && valid_first_char(current[1]))
{
name = current.substr(1, 1);
rest = current.substr(2);
return true;
}
return false;
}
// Returns false if not a long option. Otherwise, sets opt name and other side of = and returns true
inline bool split_long(const std::string& current, std::string& name, std::string& value)
{
if (current.size() > 2 && current.substr(0, 2) == "--" && valid_first_char(current[2]))
{
auto loc = current.find_first_of('=');
if (loc != std::string::npos)
{
name = current.substr(2, loc - 2);
value = current.substr(loc + 1);
}
else
{
name = current.substr(2);
value = "";
}
return true;
}
return false;
}
// Returns false if not a windows style option. Otherwise, sets opt name and value and returns true
inline bool split_windows_style(const std::string& current, std::string& name, std::string& value)
{
if (current.size() > 1 && current[0] == '/' && valid_first_char(current[1]))
{
auto loc = current.find_first_of(':');
if (loc != std::string::npos)
{
name = current.substr(1, loc - 1);
value = current.substr(loc + 1);
}
else
{
name = current.substr(1);
value = "";
}
return true;
}
return false;
}
// Splits a string into multiple long and short names
inline std::vector<std::string> split_names(std::string current)
{
std::vector<std::string> output;
std::size_t val;
while ((val = current.find(",")) != std::string::npos)
{
output.push_back(trim_copy(current.substr(0, val)));
current = current.substr(val + 1);
}
output.push_back(trim_copy(current));
return output;
}
/// extract default flag values either {def} or starting with a !
inline std::vector<std::pair<std::string, std::string>> get_default_flag_values(const std::string& str)
{
std::vector<std::string> flags = split_names(str);
flags.erase(std::remove_if(flags.begin(),
flags.end(),
[](const std::string& name) {
return ((name.empty()) || (!(((name.find_first_of('{') != std::string::npos) &&
(name.back() == '}')) ||
(name[0] == '!'))));
}),
flags.end());
std::vector<std::pair<std::string, std::string>> output;
output.reserve(flags.size());
for (auto& flag : flags)
{
auto def_start = flag.find_first_of('{');
std::string defval = "false";
if ((def_start != std::string::npos) && (flag.back() == '}'))
{
defval = flag.substr(def_start + 1);
defval.pop_back();
flag.erase(def_start, std::string::npos);
}
flag.erase(0, flag.find_first_not_of("-!"));
output.emplace_back(flag, defval);
}
return output;
}
/// Get a vector of short names, one of long names, and a single name
inline std::tuple<std::vector<std::string>, std::vector<std::string>, std::string>
get_names(const std::vector<std::string>& input)
{
std::vector<std::string> short_names;
std::vector<std::string> long_names;
std::string pos_name;
for (std::string name : input)
{
if (name.length() == 0)
{
continue;
}
if (name.length() > 1 && name[0] == '-' && name[1] != '-')
{
if (name.length() == 2 && valid_first_char(name[1]))
short_names.emplace_back(1, name[1]);
else
throw BadNameString::OneCharName(name);
}
else if (name.length() > 2 && name.substr(0, 2) == "--")
{
name = name.substr(2);
if (valid_name_string(name))
long_names.push_back(name);
else
throw BadNameString::BadLongName(name);
}
else if (name == "-" || name == "--")
{
throw BadNameString::DashesOnly(name);
}
else
{
if (pos_name.length() > 0)
throw BadNameString::MultiPositionalNames(name);
pos_name = name;
}
}
return std::tuple<std::vector<std::string>, std::vector<std::string>, std::string>(
short_names, long_names, pos_name);
}
} // namespace detail
} // namespace CLI
// From CLI/ConfigFwd.hpp:
namespace CLI
{
class App;
/// Holds values to load into Options
struct ConfigItem
{
/// This is the list of parents
std::vector<std::string> parents{};
/// This is the name
std::string name{};
/// Listing of inputs
std::vector<std::string> inputs{};
/// The list of parents and name joined by "."
std::string fullname() const
{
std::vector<std::string> tmp = parents;
tmp.emplace_back(name);
return detail::join(tmp, ".");
}
};
/// This class provides a converter for configuration files.
class Config
{
protected:
std::vector<ConfigItem> items{};
public:
/// Convert an app into a configuration
virtual std::string to_config(const App*, bool, bool, std::string) const = 0;
/// Convert a configuration into an app
virtual std::vector<ConfigItem> from_config(std::istream&) const = 0;
/// Get a flag value
virtual std::string to_flag(const ConfigItem& item) const
{
if (item.inputs.size() == 1)
{
return item.inputs.at(0);
}
throw ConversionError::TooManyInputsFlag(item.fullname());
}
/// Parse a config file, throw an error (ParseError:ConfigParseError or FileError) on failure
std::vector<ConfigItem> from_file(const std::string& name)
{
std::ifstream input{ name };
if (!input.good())
throw FileError::Missing(name);
return from_config(input);
}
/// Virtual destructor
virtual ~Config() = default;
};
/// This converter works with INI/TOML files; to write proper TOML files use ConfigTOML
class ConfigBase : public Config
{
protected:
/// the character used for comments
char commentChar = ';';
/// the character used to start an array '\0' is a default to not use
char arrayStart = '\0';
/// the character used to end an array '\0' is a default to not use
char arrayEnd = '\0';
/// the character used to separate elements in an array
char arraySeparator = ' ';
/// the character used separate the name from the value
char valueDelimiter = '=';
public:
std::string
to_config(const App* /*app*/, bool default_also, bool write_description, std::string prefix) const override;
std::vector<ConfigItem> from_config(std::istream& input) const override;
/// Specify the configuration for comment characters
ConfigBase* comment(char cchar)
{
commentChar = cchar;
return this;
}
/// Specify the start and end characters for an array
ConfigBase* arrayBounds(char aStart, char aEnd)
{
arrayStart = aStart;
arrayEnd = aEnd;
return this;
}
/// Specify the delimiter character for an array
ConfigBase* arrayDelimiter(char aSep)
{
arraySeparator = aSep;
return this;
}
/// Specify the delimiter between a name and value
ConfigBase* valueSeparator(char vSep)
{
valueDelimiter = vSep;
return this;
}
};
/// the default Config is the INI file format
using ConfigINI = ConfigBase;
/// ConfigTOML generates a TOML compliant output
class ConfigTOML : public ConfigINI
{
public:
ConfigTOML()
{
commentChar = '#';
arrayStart = '[';
arrayEnd = ']';
arraySeparator = ',';
valueDelimiter = '=';
}
};
} // namespace CLI
// From CLI/Validators.hpp:
namespace CLI
{
class Option;
/// @defgroup validator_group Validators
/// @brief Some validators that are provided
///
/// These are simple `std::string(const std::string&)` validators that are useful. They return
/// a string if the validation fails. A custom struct is provided, as well, with the same user
/// semantics, but with the ability to provide a new type name.
/// @{
///
class Validator
{
protected:
/// This is the description function, if empty the description_ will be used
std::function<std::string()> desc_function_{ []() { return std::string{}; } };
/// This is the base function that is to be called.
/// Returns a string error message if validation fails.
std::function<std::string(std::string&)> func_{ [](std::string&) { return std::string{}; } };
/// The name for search purposes of the Validator
std::string name_{};
/// A Validator will only apply to an indexed value (-1 is all elements)
int application_index_ = -1;
/// Enable for Validator to allow it to be disabled if need be
bool active_{ true };
/// specify that a validator should not modify the input
bool non_modifying_{ false };
public:
Validator() = default;
/// Construct a Validator with just the description string
explicit Validator(std::string validator_desc) :
desc_function_([validator_desc]() { return validator_desc; }) {}
/// Construct Validator from basic information
Validator(std::function<std::string(std::string&)> op, std::string validator_desc, std::string validator_name = "") :
desc_function_([validator_desc]() { return validator_desc; }),
func_(std::move(op)),
name_(std::move(validator_name)) {}
/// Set the Validator operation function
Validator& operation(std::function<std::string(std::string&)> op)
{
func_ = std::move(op);
return *this;
}
/// This is the required operator for a Validator - provided to help
/// users (CLI11 uses the member `func` directly)
std::string operator()(std::string& str) const
{
std::string retstring;
if (active_)
{
if (non_modifying_)
{
std::string value = str;
retstring = func_(value);
}
else
{
retstring = func_(str);
}
}
return retstring;
};
/// This is the required operator for a Validator - provided to help
/// users (CLI11 uses the member `func` directly)
std::string operator()(const std::string& str) const
{
std::string value = str;
return (active_) ? func_(value) : std::string{};
};
/// Specify the type string
Validator& description(std::string validator_desc)
{
desc_function_ = [validator_desc]() { return validator_desc; };
return *this;
}
/// Specify the type string
Validator description(std::string validator_desc) const
{
Validator newval(*this);
newval.desc_function_ = [validator_desc]() { return validator_desc; };
return newval;
}
/// Generate type description information for the Validator
std::string get_description() const
{
if (active_)
{
return desc_function_();
}
return std::string{};
}
/// Specify the type string
Validator& name(std::string validator_name)
{
name_ = std::move(validator_name);
return *this;
}
/// Specify the type string
Validator name(std::string validator_name) const
{
Validator newval(*this);
newval.name_ = std::move(validator_name);
return newval;
}
/// Get the name of the Validator
const std::string& get_name() const { return name_; }
/// Specify whether the Validator is active or not
Validator& active(bool active_val = true)
{
active_ = active_val;
return *this;
}
/// Specify whether the Validator is active or not
Validator active(bool active_val = true) const
{
Validator newval(*this);
newval.active_ = active_val;
return newval;
}
/// Specify whether the Validator can be modifying or not
Validator& non_modifying(bool no_modify = true)
{
non_modifying_ = no_modify;
return *this;
}
/// Specify the application index of a validator
Validator& application_index(int app_index)
{
application_index_ = app_index;
return *this;
};
/// Specify the application index of a validator
Validator application_index(int app_index) const
{
Validator newval(*this);
newval.application_index_ = app_index;
return newval;
};
/// Get the current value of the application index
int get_application_index() const { return application_index_; }
/// Get a boolean if the validator is active
bool get_active() const { return active_; }
/// Get a boolean if the validator is allowed to modify the input returns true if it can modify the input
bool get_modifying() const { return !non_modifying_; }
/// Combining validators is a new validator. Type comes from left validator if function, otherwise only set if the
/// same.
Validator operator&(const Validator& other) const
{
Validator newval;
newval._merge_description(*this, other, " AND ");
// Give references (will make a copy in lambda function)
const std::function<std::string(std::string & filename)>& f1 = func_;
const std::function<std::string(std::string & filename)>& f2 = other.func_;
newval.func_ = [f1, f2](std::string& input) {
std::string s1 = f1(input);
std::string s2 = f2(input);
if (!s1.empty() && !s2.empty())
return std::string("(") + s1 + ") AND (" + s2 + ")";
else
return s1 + s2;
};
newval.active_ = (active_ & other.active_);
newval.application_index_ = application_index_;
return newval;
}
/// Combining validators is a new validator. Type comes from left validator if function, otherwise only set if the
/// same.
Validator operator|(const Validator& other) const
{
Validator newval;
newval._merge_description(*this, other, " OR ");
// Give references (will make a copy in lambda function)
const std::function<std::string(std::string&)>& f1 = func_;
const std::function<std::string(std::string&)>& f2 = other.func_;
newval.func_ = [f1, f2](std::string& input) {
std::string s1 = f1(input);
std::string s2 = f2(input);
if (s1.empty() || s2.empty())
return std::string();
return std::string("(") + s1 + ") OR (" + s2 + ")";
};
newval.active_ = (active_ & other.active_);
newval.application_index_ = application_index_;
return newval;
}
/// Create a validator that fails when a given validator succeeds
Validator operator!() const
{
Validator newval;
const std::function<std::string()>& dfunc1 = desc_function_;
newval.desc_function_ = [dfunc1]() {
auto str = dfunc1();
return (!str.empty()) ? std::string("NOT ") + str : std::string{};
};
// Give references (will make a copy in lambda function)
const std::function<std::string(std::string & res)>& f1 = func_;
newval.func_ = [f1, dfunc1](std::string& test) -> std::string {
std::string s1 = f1(test);
if (s1.empty())
{
return std::string("check ") + dfunc1() + " succeeded improperly";
}
return std::string{};
};
newval.active_ = active_;
newval.application_index_ = application_index_;
return newval;
}
private:
void _merge_description(const Validator& val1, const Validator& val2, const std::string& merger)
{
const std::function<std::string()>& dfunc1 = val1.desc_function_;
const std::function<std::string()>& dfunc2 = val2.desc_function_;
desc_function_ = [=]() {
std::string f1 = dfunc1();
std::string f2 = dfunc2();
if ((f1.empty()) || (f2.empty()))
{
return f1 + f2;
}
return std::string(1, '(') + f1 + ')' + merger + '(' + f2 + ')';
};
}
}; // namespace CLI
/// Class wrapping some of the accessors of Validator
class CustomValidator : public Validator
{
public:
};
// The implementation of the built in validators is using the Validator class;
// the user is only expected to use the const (static) versions (since there's no setup).
// Therefore, this is in detail.
namespace detail
{
/// CLI enumeration of different file types
enum class path_type
{
nonexistant,
file,
directory
};
#if defined CLI11_HAS_FILESYSTEM && CLI11_HAS_FILESYSTEM > 0
/// get the type of the path from a file name
inline path_type check_path(const char* file) noexcept
{
std::error_code ec;
auto stat = std::filesystem::status(file, ec);
if (ec)
{
return path_type::nonexistant;
}
switch (stat.type())
{
case std::filesystem::file_type::none:
case std::filesystem::file_type::not_found:
return path_type::nonexistant;
case std::filesystem::file_type::directory:
return path_type::directory;
case std::filesystem::file_type::symlink:
case std::filesystem::file_type::block:
case std::filesystem::file_type::character:
case std::filesystem::file_type::fifo:
case std::filesystem::file_type::socket:
case std::filesystem::file_type::regular:
case std::filesystem::file_type::unknown:
default:
return path_type::file;
}
}
#else
/// get the type of the path from a file name
inline path_type check_path(const char* file) noexcept
{
#if defined(_MSC_VER)
struct __stat64 buffer;
if (_stat64(file, &buffer) == 0)
{
return ((buffer.st_mode & S_IFDIR) != 0) ? path_type::directory : path_type::file;
}
#else
struct stat buffer;
if (stat(file, &buffer) == 0)
{
return ((buffer.st_mode & S_IFDIR) != 0) ? path_type::directory : path_type::file;
}
#endif
return path_type::nonexistant;
}
#endif
/// Check for an existing file (returns error message if check fails)
class ExistingFileValidator : public Validator
{
public:
ExistingFileValidator() :
Validator("FILE")
{
func_ = [](std::string& filename) {
auto path_result = check_path(filename.c_str());
if (path_result == path_type::nonexistant)
{
return "File does not exist: " + filename;
}
if (path_result == path_type::directory)
{
return "File is actually a directory: " + filename;
}
return std::string();
};
}
};
/// Check for an existing directory (returns error message if check fails)
class ExistingDirectoryValidator : public Validator
{
public:
ExistingDirectoryValidator() :
Validator("DIR")
{
func_ = [](std::string& filename) {
auto path_result = check_path(filename.c_str());
if (path_result == path_type::nonexistant)
{
return "Directory does not exist: " + filename;
}
if (path_result == path_type::file)
{
return "Directory is actually a file: " + filename;
}
return std::string();
};
}
};
/// Check for an existing path
class ExistingPathValidator : public Validator
{
public:
ExistingPathValidator() :
Validator("PATH(existing)")
{
func_ = [](std::string& filename) {
auto path_result = check_path(filename.c_str());
if (path_result == path_type::nonexistant)
{
return "Path does not exist: " + filename;
}
return std::string();
};
}
};
/// Check for an non-existing path
class NonexistentPathValidator : public Validator
{
public:
NonexistentPathValidator() :
Validator("PATH(non-existing)")
{
func_ = [](std::string& filename) {
auto path_result = check_path(filename.c_str());
if (path_result != path_type::nonexistant)
{
return "Path already exists: " + filename;
}
return std::string();
};
}
};
/// Validate the given string is a legal ipv4 address
class IPV4Validator : public Validator
{
public:
IPV4Validator() :
Validator("IPV4")
{
func_ = [](std::string& ip_addr) {
auto result = CLI::detail::split(ip_addr, '.');
if (result.size() != 4)
{
return std::string("Invalid IPV4 address must have four parts (") + ip_addr + ')';
}
int num;
for (const auto& var : result)
{
bool retval = detail::lexical_cast(var, num);
if (!retval)
{
return std::string("Failed parsing number (") + var + ')';
}
if (num < 0 || num > 255)
{
return std::string("Each IP number must be between 0 and 255 ") + var;
}
}
return std::string();
};
}
};
/// Validate the argument is a number and greater than 0
class PositiveNumber : public Validator
{
public:
PositiveNumber() :
Validator("POSITIVE")
{
func_ = [](std::string& number_str) {
double number;
if (!detail::lexical_cast(number_str, number))
{
return std::string("Failed parsing number: (") + number_str + ')';
}
if (number <= 0)
{
return std::string("Number less or equal to 0: (") + number_str + ')';
}
return std::string();
};
}
};
/// Validate the argument is a number and greater than or equal to 0
class NonNegativeNumber : public Validator
{
public:
NonNegativeNumber() :
Validator("NONNEGATIVE")
{
func_ = [](std::string& number_str) {
double number;
if (!detail::lexical_cast(number_str, number))
{
return std::string("Failed parsing number: (") + number_str + ')';
}
if (number < 0)
{
return std::string("Number less than 0: (") + number_str + ')';
}
return std::string();
};
}
};
/// Validate the argument is a number
class Number : public Validator
{
public:
Number() :
Validator("NUMBER")
{
func_ = [](std::string& number_str) {
double number;
if (!detail::lexical_cast(number_str, number))
{
return std::string("Failed parsing as a number (") + number_str + ')';
}
return std::string();
};
}
};
} // namespace detail
// Static is not needed here, because global const implies static.
/// Check for existing file (returns error message if check fails)
const detail::ExistingFileValidator ExistingFile;
/// Check for an existing directory (returns error message if check fails)
const detail::ExistingDirectoryValidator ExistingDirectory;
/// Check for an existing path
const detail::ExistingPathValidator ExistingPath;
/// Check for an non-existing path
const detail::NonexistentPathValidator NonexistentPath;
/// Check for an IP4 address
const detail::IPV4Validator ValidIPV4;
/// Check for a positive number
const detail::PositiveNumber PositiveNumber;
/// Check for a non-negative number
const detail::NonNegativeNumber NonNegativeNumber;
/// Check for a number
const detail::Number Number;
/// Produce a range (factory). Min and max are inclusive.
class Range : public Validator
{
public:
/// This produces a range with min and max inclusive.
///
/// Note that the constructor is templated, but the struct is not, so C++17 is not
/// needed to provide nice syntax for Range(a,b).
template<typename T>
Range(T min, T max)
{
std::stringstream out;
out << detail::type_name<T>() << " in [" << min << " - " << max << "]";
description(out.str());
func_ = [min, max](std::string& input) {
T val;
bool converted = detail::lexical_cast(input, val);
if ((!converted) || (val < min || val > max))
return std::string("Value ") + input + " not in range " + std::to_string(min) + " to " +
std::to_string(max);
return std::string();
};
}
/// Range of one value is 0 to value
template<typename T>
explicit Range(T max) :
Range(static_cast<T>(0), max)
{
}
};
/// Produce a bounded range (factory). Min and max are inclusive.
class Bound : public Validator
{
public:
/// This bounds a value with min and max inclusive.
///
/// Note that the constructor is templated, but the struct is not, so C++17 is not
/// needed to provide nice syntax for Range(a,b).
template<typename T>
Bound(T min, T max)
{
std::stringstream out;
out << detail::type_name<T>() << " bounded to [" << min << " - " << max << "]";
description(out.str());
func_ = [min, max](std::string& input) {
T val;
bool converted = detail::lexical_cast(input, val);
if (!converted)
{
return std::string("Value ") + input + " could not be converted";
}
if (val < min)
input = detail::to_string(min);
else if (val > max)
input = detail::to_string(max);
return std::string{};
};
}
/// Range of one value is 0 to value
template<typename T>
explicit Bound(T max) :
Bound(static_cast<T>(0), max)
{
}
};
namespace detail
{
template<typename T,
enable_if_t<is_copyable_ptr<typename std::remove_reference<T>::type>::value, detail::enabler> = detail::dummy>
auto smart_deref(T value) -> decltype(*value)
{
return *value;
}
template<
typename T,
enable_if_t<!is_copyable_ptr<typename std::remove_reference<T>::type>::value, detail::enabler> = detail::dummy>
typename std::remove_reference<T>::type& smart_deref(T& value)
{
return value;
}
/// Generate a string representation of a set
template<typename T>
std::string generate_set(const T& set)
{
using element_t = typename detail::element_type<T>::type;
using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type; // the type of the object pair
std::string out(1, '{');
out.append(detail::join(
detail::smart_deref(set),
[](const iteration_type_t& v) { return detail::pair_adaptor<element_t>::first(v); },
","));
out.push_back('}');
return out;
}
/// Generate a string representation of a map
template<typename T>
std::string generate_map(const T& map, bool key_only = false)
{
using element_t = typename detail::element_type<T>::type;
using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type; // the type of the object pair
std::string out(1, '{');
out.append(detail::join(
detail::smart_deref(map),
[key_only](const iteration_type_t& v) {
std::string res{ detail::to_string(detail::pair_adaptor<element_t>::first(v)) };
if (!key_only)
{
res.append("->");
res += detail::to_string(detail::pair_adaptor<element_t>::second(v));
}
return res;
},
","));
out.push_back('}');
return out;
}
template<typename C, typename V>
struct has_find
{
template<typename CC, typename VV>
static auto test(int) -> decltype(std::declval<CC>().find(std::declval<VV>()), std::true_type());
template<typename, typename>
static auto test(...) -> decltype(std::false_type());
static const auto value = decltype(test<C, V>(0))::value;
using type = std::integral_constant<bool, value>;
};
/// A search function
template<typename T, typename V, enable_if_t<!has_find<T, V>::value, detail::enabler> = detail::dummy>
auto search(const T& set, const V& val) -> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))>
{
using element_t = typename detail::element_type<T>::type;
auto& setref = detail::smart_deref(set);
auto it = std::find_if(std::begin(setref), std::end(setref), [&val](decltype(*std::begin(setref)) v) {
return (detail::pair_adaptor<element_t>::first(v) == val);
});
return { (it != std::end(setref)), it };
}
/// A search function that uses the built in find function
template<typename T, typename V, enable_if_t<has_find<T, V>::value, detail::enabler> = detail::dummy>
auto search(const T& set, const V& val) -> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))>
{
auto& setref = detail::smart_deref(set);
auto it = setref.find(val);
return { (it != std::end(setref)), it };
}
/// A search function with a filter function
template<typename T, typename V>
auto search(const T& set, const V& val, const std::function<V(V)>& filter_function)
-> std::pair<bool, decltype(std::begin(detail::smart_deref(set)))>
{
using element_t = typename detail::element_type<T>::type;
// do the potentially faster first search
auto res = search(set, val);
if ((res.first) || (!(filter_function)))
{
return res;
}
// if we haven't found it do the longer linear search with all the element translations
auto& setref = detail::smart_deref(set);
auto it = std::find_if(std::begin(setref), std::end(setref), [&](decltype(*std::begin(setref)) v) {
V a{ detail::pair_adaptor<element_t>::first(v) };
a = filter_function(a);
return (a == val);
});
return { (it != std::end(setref)), it };
}
// the following suggestion was made by Nikita Ofitserov(@himikof)
// done in templates to prevent compiler warnings on negation of unsigned numbers
/// Do a check for overflow on signed numbers
template<typename T>
inline typename std::enable_if<std::is_signed<T>::value, T>::type overflowCheck(const T& a, const T& b)
{
if ((a > 0) == (b > 0))
{
return ((std::numeric_limits<T>::max)() / (std::abs)(a) < (std::abs)(b));
}
else
{
return ((std::numeric_limits<T>::min)() / (std::abs)(a) > -(std::abs)(b));
}
}
/// Do a check for overflow on unsigned numbers
template<typename T>
inline typename std::enable_if<!std::is_signed<T>::value, T>::type overflowCheck(const T& a, const T& b)
{
return ((std::numeric_limits<T>::max)() / a < b);
}
/// Performs a *= b; if it doesn't cause integer overflow. Returns false otherwise.
template<typename T>
typename std::enable_if<std::is_integral<T>::value, bool>::type checked_multiply(T& a, T b)
{
if (a == 0 || b == 0 || a == 1 || b == 1)
{
a *= b;
return true;
}
if (a == (std::numeric_limits<T>::min)() || b == (std::numeric_limits<T>::min)())
{
return false;
}
if (overflowCheck(a, b))
{
return false;
}
a *= b;
return true;
}
/// Performs a *= b; if it doesn't equal infinity. Returns false otherwise.
template<typename T>
typename std::enable_if<std::is_floating_point<T>::value, bool>::type checked_multiply(T& a, T b)
{
T c = a * b;
if (std::isinf(c) && !std::isinf(a) && !std::isinf(b))
{
return false;
}
a = c;
return true;
}
} // namespace detail
/// Verify items are in a set
class IsMember : public Validator
{
public:
using filter_fn_t = std::function<std::string(std::string)>;
/// This allows in-place construction using an initializer list
template<typename T, typename... Args>
IsMember(std::initializer_list<T> values, Args&&... args) :
IsMember(std::vector<T>(values), std::forward<Args>(args)...)
{
}
/// This checks to see if an item is in a set (empty function)
template<typename T>
explicit IsMember(T&& set) :
IsMember(std::forward<T>(set), nullptr)
{
}
/// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
/// both sides of the comparison before computing the comparison.
template<typename T, typename F>
explicit IsMember(T set, F filter_function)
{
// Get the type of the contained item - requires a container have ::value_type
// if the type does not have first_type and second_type, these are both value_type
using element_t = typename detail::element_type<T>::type; // Removes (smart) pointers if needed
using item_t = typename detail::pair_adaptor<element_t>::first_type; // Is value_type if not a map
using local_item_t = typename IsMemberType<item_t>::type; // This will convert bad types to good ones
// (const char * to std::string)
// Make a local copy of the filter function, using a std::function if not one already
std::function<local_item_t(local_item_t)> filter_fn = filter_function;
// This is the type name for help, it will take the current version of the set contents
desc_function_ = [set]() { return detail::generate_set(detail::smart_deref(set)); };
// This is the function that validates
// It stores a copy of the set pointer-like, so shared_ptr will stay alive
func_ = [set, filter_fn](std::string& input) {
local_item_t b;
if (!detail::lexical_cast(input, b))
{
throw ValidationError(input); // name is added later
}
if (filter_fn)
{
b = filter_fn(b);
}
auto res = detail::search(set, b, filter_fn);
if (res.first)
{
// Make sure the version in the input string is identical to the one in the set
if (filter_fn)
{
input = detail::value_string(detail::pair_adaptor<element_t>::first(*(res.second)));
}
// Return empty error string (success)
return std::string{};
}
// If you reach this point, the result was not found
std::string out(" not in ");
out += detail::generate_set(detail::smart_deref(set));
return out;
};
}
/// You can pass in as many filter functions as you like, they nest (string only currently)
template<typename T, typename... Args>
IsMember(T&& set, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args&&... other) :
IsMember(
std::forward<T>(set),
[filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
other...)
{
}
};
/// definition of the default transformation object
template<typename T>
using TransformPairs = std::vector<std::pair<std::string, T>>;
/// Translate named items to other or a value set
class Transformer : public Validator
{
public:
using filter_fn_t = std::function<std::string(std::string)>;
/// This allows in-place construction
template<typename... Args>
Transformer(std::initializer_list<std::pair<std::string, std::string>> values, Args&&... args) :
Transformer(TransformPairs<std::string>(values), std::forward<Args>(args)...)
{
}
/// direct map of std::string to std::string
template<typename T>
explicit Transformer(T&& mapping) :
Transformer(std::forward<T>(mapping), nullptr)
{
}
/// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
/// both sides of the comparison before computing the comparison.
template<typename T, typename F>
explicit Transformer(T mapping, F filter_function)
{
static_assert(detail::pair_adaptor<typename detail::element_type<T>::type>::value,
"mapping must produce value pairs");
// Get the type of the contained item - requires a container have ::value_type
// if the type does not have first_type and second_type, these are both value_type
using element_t = typename detail::element_type<T>::type; // Removes (smart) pointers if needed
using item_t = typename detail::pair_adaptor<element_t>::first_type; // Is value_type if not a map
using local_item_t = typename IsMemberType<item_t>::type; // This will convert bad types to good ones
// (const char * to std::string)
// Make a local copy of the filter function, using a std::function if not one already
std::function<local_item_t(local_item_t)> filter_fn = filter_function;
// This is the type name for help, it will take the current version of the set contents
desc_function_ = [mapping]() { return detail::generate_map(detail::smart_deref(mapping)); };
func_ = [mapping, filter_fn](std::string& input) {
local_item_t b;
if (!detail::lexical_cast(input, b))
{
return std::string();
// there is no possible way we can match anything in the mapping if we can't convert so just return
}
if (filter_fn)
{
b = filter_fn(b);
}
auto res = detail::search(mapping, b, filter_fn);
if (res.first)
{
input = detail::value_string(detail::pair_adaptor<element_t>::second(*res.second));
}
return std::string{};
};
}
/// You can pass in as many filter functions as you like, they nest
template<typename T, typename... Args>
Transformer(T&& mapping, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args&&... other) :
Transformer(
std::forward<T>(mapping),
[filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
other...)
{
}
};
/// translate named items to other or a value set
class CheckedTransformer : public Validator
{
public:
using filter_fn_t = std::function<std::string(std::string)>;
/// This allows in-place construction
template<typename... Args>
CheckedTransformer(std::initializer_list<std::pair<std::string, std::string>> values, Args&&... args) :
CheckedTransformer(TransformPairs<std::string>(values), std::forward<Args>(args)...)
{
}
/// direct map of std::string to std::string
template<typename T>
explicit CheckedTransformer(T mapping) :
CheckedTransformer(std::move(mapping), nullptr)
{
}
/// This checks to see if an item is in a set: pointer or copy version. You can pass in a function that will filter
/// both sides of the comparison before computing the comparison.
template<typename T, typename F>
explicit CheckedTransformer(T mapping, F filter_function)
{
static_assert(detail::pair_adaptor<typename detail::element_type<T>::type>::value,
"mapping must produce value pairs");
// Get the type of the contained item - requires a container have ::value_type
// if the type does not have first_type and second_type, these are both value_type
using element_t = typename detail::element_type<T>::type; // Removes (smart) pointers if needed
using item_t = typename detail::pair_adaptor<element_t>::first_type; // Is value_type if not a map
using local_item_t = typename IsMemberType<item_t>::type; // This will convert bad types to good ones
// (const char * to std::string)
using iteration_type_t = typename detail::pair_adaptor<element_t>::value_type; // the type of the object pair //
// the type of the object pair
// Make a local copy of the filter function, using a std::function if not one already
std::function<local_item_t(local_item_t)> filter_fn = filter_function;
auto tfunc = [mapping]() {
std::string out("value in ");
out += detail::generate_map(detail::smart_deref(mapping)) + " OR {";
out += detail::join(
detail::smart_deref(mapping),
[](const iteration_type_t& v) { return detail::to_string(detail::pair_adaptor<element_t>::second(v)); },
",");
out.push_back('}');
return out;
};
desc_function_ = tfunc;
func_ = [mapping, tfunc, filter_fn](std::string& input) {
local_item_t b;
bool converted = detail::lexical_cast(input, b);
if (converted)
{
if (filter_fn)
{
b = filter_fn(b);
}
auto res = detail::search(mapping, b, filter_fn);
if (res.first)
{
input = detail::value_string(detail::pair_adaptor<element_t>::second(*res.second));
return std::string{};
}
}
for (const auto& v : detail::smart_deref(mapping))
{
auto output_string = detail::value_string(detail::pair_adaptor<element_t>::second(v));
if (output_string == input)
{
return std::string();
}
}
return "Check " + input + " " + tfunc() + " FAILED";
};
}
/// You can pass in as many filter functions as you like, they nest
template<typename T, typename... Args>
CheckedTransformer(T&& mapping, filter_fn_t filter_fn_1, filter_fn_t filter_fn_2, Args&&... other) :
CheckedTransformer(
std::forward<T>(mapping),
[filter_fn_1, filter_fn_2](std::string a) { return filter_fn_2(filter_fn_1(a)); },
other...)
{
}
};
/// Helper function to allow ignore_case to be passed to IsMember or Transform
inline std::string ignore_case(std::string item) { return detail::to_lower(item); }
/// Helper function to allow ignore_underscore to be passed to IsMember or Transform
inline std::string ignore_underscore(std::string item) { return detail::remove_underscore(item); }
/// Helper function to allow checks to ignore spaces to be passed to IsMember or Transform
inline std::string ignore_space(std::string item)
{
item.erase(std::remove(std::begin(item), std::end(item), ' '), std::end(item));
item.erase(std::remove(std::begin(item), std::end(item), '\t'), std::end(item));
return item;
}
/// Multiply a number by a factor using given mapping.
/// Can be used to write transforms for SIZE or DURATION inputs.
///
/// Example:
/// With mapping = `{"b"->1, "kb"->1024, "mb"->1024*1024}`
/// one can recognize inputs like "100", "12kb", "100 MB",
/// that will be automatically transformed to 100, 14448, 104857600.
///
/// Output number type matches the type in the provided mapping.
/// Therefore, if it is required to interpret real inputs like "0.42 s",
/// the mapping should be of a type <string, float> or <string, double>.
class AsNumberWithUnit : public Validator
{
public:
/// Adjust AsNumberWithUnit behavior.
/// CASE_SENSITIVE/CASE_INSENSITIVE controls how units are matched.
/// UNIT_OPTIONAL/UNIT_REQUIRED throws ValidationError
/// if UNIT_REQUIRED is set and unit literal is not found.
enum Options
{
CASE_SENSITIVE = 0,
CASE_INSENSITIVE = 1,
UNIT_OPTIONAL = 0,
UNIT_REQUIRED = 2,
DEFAULT = CASE_INSENSITIVE | UNIT_OPTIONAL
};
template<typename Number>
explicit AsNumberWithUnit(std::map<std::string, Number> mapping,
Options opts = DEFAULT,
const std::string& unit_name = "UNIT")
{
description(generate_description<Number>(unit_name, opts));
validate_mapping(mapping, opts);
// transform function
func_ = [mapping, opts](std::string& input) -> std::string {
Number num;
detail::rtrim(input);
if (input.empty())
{
throw ValidationError("Input is empty");
}
// Find split position between number and prefix
auto unit_begin = input.end();
while (unit_begin > input.begin() && std::isalpha(*(unit_begin - 1), std::locale()))
{
--unit_begin;
}
std::string unit{ unit_begin, input.end() };
input.resize(static_cast<std::size_t>(std::distance(input.begin(), unit_begin)));
detail::trim(input);
if (opts & UNIT_REQUIRED && unit.empty())
{
throw ValidationError("Missing mandatory unit");
}
if (opts & CASE_INSENSITIVE)
{
unit = detail::to_lower(unit);
}
bool converted = detail::lexical_cast(input, num);
if (!converted)
{
throw ValidationError(std::string("Value ") + input + " could not be converted to " +
detail::type_name<Number>());
}
if (unit.empty())
{
// No need to modify input if no unit passed
return {};
}
// find corresponding factor
auto it = mapping.find(unit);
if (it == mapping.end())
{
throw ValidationError(unit +
" unit not recognized. "
"Allowed values: " +
detail::generate_map(mapping, true));
}
// perform safe multiplication
bool ok = detail::checked_multiply(num, it->second);
if (!ok)
{
throw ValidationError(detail::to_string(num) + " multiplied by " + unit +
" factor would cause number overflow. Use smaller value.");
}
input = detail::to_string(num);
return {};
};
}
private:
/// Check that mapping contains valid units.
/// Update mapping for CASE_INSENSITIVE mode.
template<typename Number>
static void validate_mapping(std::map<std::string, Number>& mapping, Options opts)
{
for (auto& kv : mapping)
{
if (kv.first.empty())
{
throw ValidationError("Unit must not be empty.");
}
if (!detail::isalpha(kv.first))
{
throw ValidationError("Unit must contain only letters.");
}
}
// make all units lowercase if CASE_INSENSITIVE
if (opts & CASE_INSENSITIVE)
{
std::map<std::string, Number> lower_mapping;
for (auto& kv : mapping)
{
auto s = detail::to_lower(kv.first);
if (lower_mapping.count(s))
{
throw ValidationError(std::string("Several matching lowercase unit representations are found: ") +
s);
}
lower_mapping[detail::to_lower(kv.first)] = kv.second;
}
mapping = std::move(lower_mapping);
}
}
/// Generate description like this: NUMBER [UNIT]
template<typename Number>
static std::string generate_description(const std::string& name, Options opts)
{
std::stringstream out;
out << detail::type_name<Number>() << ' ';
if (opts & UNIT_REQUIRED)
{
out << name;
}
else
{
out << '[' << name << ']';
}
return out.str();
}
};
/// Converts a human-readable size string (with unit literal) to uin64_t size.
/// Example:
/// "100" => 100
/// "1 b" => 100
/// "10Kb" => 10240 // you can configure this to be interpreted as kilobyte (*1000) or kibibyte (*1024)
/// "10 KB" => 10240
/// "10 kb" => 10240
/// "10 kib" => 10240 // *i, *ib are always interpreted as *bibyte (*1024)
/// "10kb" => 10240
/// "2 MB" => 2097152
/// "2 EiB" => 2^61 // Units up to exibyte are supported
class AsSizeValue : public AsNumberWithUnit
{
public:
using result_t = uint64_t;
/// If kb_is_1000 is true,
/// interpret 'kb', 'k' as 1000 and 'kib', 'ki' as 1024
/// (same applies to higher order units as well).
/// Otherwise, interpret all literals as factors of 1024.
/// The first option is formally correct, but
/// the second interpretation is more wide-spread
/// (see https://en.wikipedia.org/wiki/Binary_prefix).
explicit AsSizeValue(bool kb_is_1000) :
AsNumberWithUnit(get_mapping(kb_is_1000))
{
if (kb_is_1000)
{
description("SIZE [b, kb(=1000b), kib(=1024b), ...]");
}
else
{
description("SIZE [b, kb(=1024b), ...]");
}
}
private:
/// Get <size unit, factor> mapping
static std::map<std::string, result_t> init_mapping(bool kb_is_1000)
{
std::map<std::string, result_t> m;
result_t k_factor = kb_is_1000 ? 1000 : 1024;
result_t ki_factor = 1024;
result_t k = 1;
result_t ki = 1;
m["b"] = 1;
for (std::string p : { "k", "m", "g", "t", "p", "e" })
{
k *= k_factor;
ki *= ki_factor;
m[p] = k;
m[p + "b"] = k;
m[p + "i"] = ki;
m[p + "ib"] = ki;
}
return m;
}
/// Cache calculated mapping
static std::map<std::string, result_t> get_mapping(bool kb_is_1000)
{
if (kb_is_1000)
{
static auto m = init_mapping(true);
return m;
}
else
{
static auto m = init_mapping(false);
return m;
}
}
};
namespace detail
{
/// Split a string into a program name and command line arguments
/// the string is assumed to contain a file name followed by other arguments
/// the return value contains is a pair with the first argument containing the program name and the second
/// everything else.
inline std::pair<std::string, std::string> split_program_name(std::string commandline)
{
// try to determine the programName
std::pair<std::string, std::string> vals;
trim(commandline);
auto esp = commandline.find_first_of(' ', 1);
while (detail::check_path(commandline.substr(0, esp).c_str()) != path_type::file)
{
esp = commandline.find_first_of(' ', esp + 1);
if (esp == std::string::npos)
{
// if we have reached the end and haven't found a valid file just assume the first argument is the
// program name
esp = commandline.find_first_of(' ', 1);
break;
}
}
vals.first = commandline.substr(0, esp);
rtrim(vals.first);
// strip the program name
vals.second = (esp != std::string::npos) ? commandline.substr(esp + 1) : std::string{};
ltrim(vals.second);
return vals;
}
} // namespace detail
/// @}
} // namespace CLI
// From CLI/FormatterFwd.hpp:
namespace CLI
{
class Option;
class App;
/// This enum signifies the type of help requested
///
/// This is passed in by App; all user classes must accept this as
/// the second argument.
enum class AppFormatMode
{
Normal, //< The normal, detailed help
All, //< A fully expanded help
Sub, //< Used when printed as part of expanded subcommand
};
/// This is the minimum requirements to run a formatter.
///
/// A user can subclass this is if they do not care at all
/// about the structure in CLI::Formatter.
class FormatterBase
{
protected:
/// @name Options
///@{
/// The width of the first column
std::size_t column_width_{ 30 };
/// @brief The required help printout labels (user changeable)
/// Values are Needs, Excludes, etc.
std::map<std::string, std::string> labels_{};
///@}
/// @name Basic
///@{
public:
FormatterBase() = default;
FormatterBase(const FormatterBase&) = default;
FormatterBase(FormatterBase&&) = default;
/// Adding a destructor in this form to work around bug in GCC 4.7
virtual ~FormatterBase() noexcept {} // NOLINT(modernize-use-equals-default)
/// This is the key method that puts together help
virtual std::string make_help(const App*, std::string, AppFormatMode) const = 0;
///@}
/// @name Setters
///@{
/// Set the "REQUIRED" label
void label(std::string key, std::string val) { labels_[key] = val; }
/// Set the column width
void column_width(std::size_t val) { column_width_ = val; }
///@}
/// @name Getters
///@{
/// Get the current value of a name (REQUIRED, etc.)
std::string get_label(std::string key) const
{
if (labels_.find(key) == labels_.end())
return key;
else
return labels_.at(key);
}
/// Get the current column width
std::size_t get_column_width() const { return column_width_; }
///@}
};
/// This is a specialty override for lambda functions
class FormatterLambda final : public FormatterBase
{
using funct_t = std::function<std::string(const App*, std::string, AppFormatMode)>;
/// The lambda to hold and run
funct_t lambda_;
public:
/// Create a FormatterLambda with a lambda function
explicit FormatterLambda(funct_t funct) :
lambda_(std::move(funct)) {}
/// Adding a destructor (mostly to make GCC 4.7 happy)
~FormatterLambda() noexcept override {} // NOLINT(modernize-use-equals-default)
/// This will simply call the lambda function
std::string make_help(const App* app, std::string name, AppFormatMode mode) const override
{
return lambda_(app, name, mode);
}
};
/// This is the default Formatter for CLI11. It pretty prints help output, and is broken into quite a few
/// overridable methods, to be highly customizable with minimal effort.
class Formatter : public FormatterBase
{
public:
Formatter() = default;
Formatter(const Formatter&) = default;
Formatter(Formatter&&) = default;
/// @name Overridables
///@{
/// This prints out a group of options with title
///
virtual std::string make_group(std::string group, bool is_positional, std::vector<const Option*> opts) const;
/// This prints out just the positionals "group"
virtual std::string make_positionals(const App* app) const;
/// This prints out all the groups of options
std::string make_groups(const App* app, AppFormatMode mode) const;
/// This prints out all the subcommands
virtual std::string make_subcommands(const App* app, AppFormatMode mode) const;
/// This prints out a subcommand
virtual std::string make_subcommand(const App* sub) const;
/// This prints out a subcommand in help-all
virtual std::string make_expanded(const App* sub) const;
/// This prints out all the groups of options
virtual std::string make_footer(const App* app) const;
/// This displays the description line
virtual std::string make_description(const App* app) const;
/// This displays the usage line
virtual std::string make_usage(const App* app, std::string name) const;
/// This puts everything together
std::string make_help(const App* /*app*/, std::string, AppFormatMode) const override;
///@}
/// @name Options
///@{
/// This prints out an option help line, either positional or optional form
virtual std::string make_option(const Option* opt, bool is_positional) const
{
std::stringstream out;
detail::format_help(
out, make_option_name(opt, is_positional) + make_option_opts(opt), make_option_desc(opt), column_width_);
return out.str();
}
/// @brief This is the name part of an option, Default: left column
virtual std::string make_option_name(const Option*, bool) const;
/// @brief This is the options part of the name, Default: combined into left column
virtual std::string make_option_opts(const Option*) const;
/// @brief This is the description. Default: Right column, on new line if left column too large
virtual std::string make_option_desc(const Option*) const;
/// @brief This is used to print the name on the USAGE line
virtual std::string make_option_usage(const Option* opt) const;
///@}
};
} // namespace CLI
// From CLI/Option.hpp:
namespace CLI
{
using results_t = std::vector<std::string>;
/// callback function definition
using callback_t = std::function<bool(const results_t&)>;
class Option;
class App;
using Option_p = std::unique_ptr<Option>;
/// Enumeration of the multiOption Policy selection
enum class MultiOptionPolicy : char
{
Throw, //!< Throw an error if any extra arguments were given
TakeLast, //!< take only the last Expected number of arguments
TakeFirst, //!< take only the first Expected number of arguments
Join, //!< merge all the arguments together into a single string via the delimiter character default('\n')
TakeAll //!< just get all the passed argument regardless
};
/// This is the CRTP base class for Option and OptionDefaults. It was designed this way
/// to share parts of the class; an OptionDefaults can copy to an Option.
template<typename CRTP>
class OptionBase
{
friend App;
protected:
/// The group membership
std::string group_ = std::string("Options");
/// True if this is a required option
bool required_{ false };
/// Ignore the case when matching (option, not value)
bool ignore_case_{ false };
/// Ignore underscores when matching (option, not value)
bool ignore_underscore_{ false };
/// Allow this option to be given in a configuration file
bool configurable_{ true };
/// Disable overriding flag values with '=value'
bool disable_flag_override_{ false };
/// Specify a delimiter character for vector arguments
char delimiter_{ '\0' };
/// Automatically capture default value
bool always_capture_default_{ false };
/// Policy for handling multiple arguments beyond the expected Max
MultiOptionPolicy multi_option_policy_{ MultiOptionPolicy::Throw };
/// Copy the contents to another similar class (one based on OptionBase)
template<typename T>
void copy_to(T* other) const
{
other->group(group_);
other->required(required_);
other->ignore_case(ignore_case_);
other->ignore_underscore(ignore_underscore_);
other->configurable(configurable_);
other->disable_flag_override(disable_flag_override_);
other->delimiter(delimiter_);
other->always_capture_default(always_capture_default_);
other->multi_option_policy(multi_option_policy_);
}
public:
// setters
/// Changes the group membership
CRTP* group(const std::string& name)
{
group_ = name;
return static_cast<CRTP*>(this);
}
/// Set the option as required
CRTP* required(bool value = true)
{
required_ = value;
return static_cast<CRTP*>(this);
}
/// Support Plumbum term
CRTP* mandatory(bool value = true) { return required(value); }
CRTP* always_capture_default(bool value = true)
{
always_capture_default_ = value;
return static_cast<CRTP*>(this);
}
// Getters
/// Get the group of this option
const std::string& get_group() const { return group_; }
/// True if this is a required option
bool get_required() const { return required_; }
/// The status of ignore case
bool get_ignore_case() const { return ignore_case_; }
/// The status of ignore_underscore
bool get_ignore_underscore() const { return ignore_underscore_; }
/// The status of configurable
bool get_configurable() const { return configurable_; }
/// The status of configurable
bool get_disable_flag_override() const { return disable_flag_override_; }
/// Get the current delimiter char
char get_delimiter() const { return delimiter_; }
/// Return true if this will automatically capture the default value for help printing
bool get_always_capture_default() const { return always_capture_default_; }
/// The status of the multi option policy
MultiOptionPolicy get_multi_option_policy() const { return multi_option_policy_; }
// Shortcuts for multi option policy
/// Set the multi option policy to take last
CRTP* take_last()
{
auto self = static_cast<CRTP*>(this);
self->multi_option_policy(MultiOptionPolicy::TakeLast);
return self;
}
/// Set the multi option policy to take last
CRTP* take_first()
{
auto self = static_cast<CRTP*>(this);
self->multi_option_policy(MultiOptionPolicy::TakeFirst);
return self;
}
/// Set the multi option policy to take all arguments
CRTP* take_all()
{
auto self = static_cast<CRTP*>(this);
self->multi_option_policy(MultiOptionPolicy::TakeAll);
return self;
}
/// Set the multi option policy to join
CRTP* join()
{
auto self = static_cast<CRTP*>(this);
self->multi_option_policy(MultiOptionPolicy::Join);
return self;
}
/// Set the multi option policy to join with a specific delimiter
CRTP* join(char delim)
{
auto self = static_cast<CRTP*>(this);
self->delimiter_ = delim;
self->multi_option_policy(MultiOptionPolicy::Join);
return self;
}
/// Allow in a configuration file
CRTP* configurable(bool value = true)
{
configurable_ = value;
return static_cast<CRTP*>(this);
}
/// Allow in a configuration file
CRTP* delimiter(char value = '\0')
{
delimiter_ = value;
return static_cast<CRTP*>(this);
}
};
/// This is a version of OptionBase that only supports setting values,
/// for defaults. It is stored as the default option in an App.
class OptionDefaults : public OptionBase<OptionDefaults>
{
public:
OptionDefaults() = default;
// Methods here need a different implementation if they are Option vs. OptionDefault
/// Take the last argument if given multiple times
OptionDefaults* multi_option_policy(MultiOptionPolicy value = MultiOptionPolicy::Throw)
{
multi_option_policy_ = value;
return this;
}
/// Ignore the case of the option name
OptionDefaults* ignore_case(bool value = true)
{
ignore_case_ = value;
return this;
}
/// Ignore underscores in the option name
OptionDefaults* ignore_underscore(bool value = true)
{
ignore_underscore_ = value;
return this;
}
/// Disable overriding flag values with an '=<value>' segment
OptionDefaults* disable_flag_override(bool value = true)
{
disable_flag_override_ = value;
return this;
}
/// set a delimiter character to split up single arguments to treat as multiple inputs
OptionDefaults* delimiter(char value = '\0')
{
delimiter_ = value;
return this;
}
};
class Option : public OptionBase<Option>
{
friend App;
protected:
/// @name Names
///@{
/// A list of the short names (`-a`) without the leading dashes
std::vector<std::string> snames_{};
/// A list of the long names (`--long`) without the leading dashes
std::vector<std::string> lnames_{};
/// A list of the flag names with the appropriate default value, the first part of the pair should be duplicates of
/// what is in snames or lnames but will trigger a particular response on a flag
std::vector<std::pair<std::string, std::string>> default_flag_values_{};
/// a list of flag names with specified default values;
std::vector<std::string> fnames_{};
/// A positional name
std::string pname_{};
/// If given, check the environment for this option
std::string envname_{};
///@}
/// @name Help
///@{
/// The description for help strings
std::string description_{};
/// A human readable default value, either manually set, captured, or captured by default
std::string default_str_{};
/// A human readable type value, set when App creates this
///
/// This is a lambda function so "types" can be dynamic, such as when a set prints its contents.
std::function<std::string()> type_name_{ []() { return std::string(); } };
/// Run this function to capture a default (ignore if empty)
std::function<std::string()> default_function_{};
///@}
/// @name Configuration
///@{
/// The number of arguments that make up one option. max is the nominal type size, min is the minimum number of
/// strings
int type_size_max_{ 1 };
/// The minimum number of arguments an option should be expecting
int type_size_min_{ 1 };
/// The minimum number of expected values
int expected_min_{ 1 };
/// The maximum number of expected values
int expected_max_{ 1 };
/// A list of Validators to run on each value parsed
std::vector<Validator> validators_{};
/// A list of options that are required with this option
std::set<Option*> needs_{};
/// A list of options that are excluded with this option
std::set<Option*> excludes_{};
///@}
/// @name Other
///@{
/// Remember the parent app
App* parent_{ nullptr };
/// Options store a callback to do all the work
callback_t callback_{};
///@}
/// @name Parsing results
///@{
/// complete Results of parsing
results_t results_{};
/// results after reduction
results_t proc_results_{};
/// enumeration for the option state machine
enum class option_state
{
parsing = 0, //!< The option is currently collecting parsed results
validated = 2, //!< the results have been validated
reduced = 4, //!< a subset of results has been generated
callback_run = 6, //!< the callback has been executed
};
/// Whether the callback has run (needed for INI parsing)
option_state current_option_state_{ option_state::parsing };
/// Specify that extra args beyond type_size_max should be allowed
bool allow_extra_args_{ false };
/// Specify that the option should act like a flag vs regular option
bool flag_like_{ false };
/// Control option to run the callback to set the default
bool run_callback_for_default_{ false };
///@}
/// Making an option by hand is not defined, it must be made by the App class
Option(std::string option_name, std::string option_description, callback_t callback, App* parent) :
description_(std::move(option_description)),
parent_(parent),
callback_(std::move(callback))
{
std::tie(snames_, lnames_, pname_) = detail::get_names(detail::split_names(option_name));
}
public:
/// @name Basic
///@{
Option(const Option&) = delete;
Option& operator=(const Option&) = delete;
/// Count the total number of times an option was passed
std::size_t count() const { return results_.size(); }
/// True if the option was not passed
bool empty() const { return results_.empty(); }
/// This class is true if option is passed.
explicit operator bool() const { return !empty(); }
/// Clear the parsed results (mostly for testing)
void clear()
{
results_.clear();
current_option_state_ = option_state::parsing;
}
///@}
/// @name Setting options
///@{
/// Set the number of expected arguments
Option* expected(int value)
{
if (value < 0)
{
expected_min_ = -value;
if (expected_max_ < expected_min_)
{
expected_max_ = expected_min_;
}
allow_extra_args_ = true;
flag_like_ = false;
}
else if (value == detail::expected_max_vector_size)
{
expected_min_ = 1;
expected_max_ = detail::expected_max_vector_size;
allow_extra_args_ = true;
flag_like_ = false;
}
else
{
expected_min_ = value;
expected_max_ = value;
flag_like_ = (expected_min_ == 0);
}
return this;
}
/// Set the range of expected arguments
Option* expected(int value_min, int value_max)
{
if (value_min < 0)
{
value_min = -value_min;
}
if (value_max < 0)
{
value_max = detail::expected_max_vector_size;
}
if (value_max < value_min)
{
expected_min_ = value_max;
expected_max_ = value_min;
}
else
{
expected_max_ = value_max;
expected_min_ = value_min;
}
return this;
}
/// Set the value of allow_extra_args which allows extra value arguments on the flag or option to be included
/// with each instance
Option* allow_extra_args(bool value = true)
{
allow_extra_args_ = value;
return this;
}
/// Get the current value of allow extra args
bool get_allow_extra_args() const { return allow_extra_args_; }
/// Set the value of run_callback_for_default which controls whether the callback function should be called to set
/// the default This is controlled automatically but could be manipulated by the user.
Option* run_callback_for_default(bool value = true)
{
run_callback_for_default_ = value;
return this;
}
/// Get the current value of run_callback_for_default
bool get_run_callback_for_default() const { return run_callback_for_default_; }
/// Adds a Validator with a built in type name
Option* check(Validator validator, const std::string& validator_name = "")
{
validator.non_modifying();
validators_.push_back(std::move(validator));
if (!validator_name.empty())
validators_.back().name(validator_name);
return this;
}
/// Adds a Validator. Takes a const string& and returns an error message (empty if conversion/check is okay).
Option* check(std::function<std::string(const std::string&)> Validator,
std::string Validator_description = "",
std::string Validator_name = "")
{
validators_.emplace_back(Validator, std::move(Validator_description), std::move(Validator_name));
validators_.back().non_modifying();
return this;
}
/// Adds a transforming Validator with a built in type name
Option* transform(Validator Validator, const std::string& Validator_name = "")
{
validators_.insert(validators_.begin(), std::move(Validator));
if (!Validator_name.empty())
validators_.front().name(Validator_name);
return this;
}
/// Adds a Validator-like function that can change result
Option* transform(const std::function<std::string(std::string)>& func,
std::string transform_description = "",
std::string transform_name = "")
{
validators_.insert(validators_.begin(),
Validator(
[func](std::string& val) {
val = func(val);
return std::string{};
},
std::move(transform_description),
std::move(transform_name)));
return this;
}
/// Adds a user supplied function to run on each item passed in (communicate though lambda capture)
Option* each(const std::function<void(std::string)>& func)
{
validators_.emplace_back(
[func](std::string& inout) {
func(inout);
return std::string{};
},
std::string{});
return this;
}
/// Get a named Validator
Validator* get_validator(const std::string& Validator_name = "")
{
for (auto& Validator : validators_)
{
if (Validator_name == Validator.get_name())
{
return &Validator;
}
}
if ((Validator_name.empty()) && (!validators_.empty()))
{
return &(validators_.front());
}
throw OptionNotFound(std::string{ "Validator " } + Validator_name + " Not Found");
}
/// Get a Validator by index NOTE: this may not be the order of definition
Validator* get_validator(int index)
{
// This is an signed int so that it is not equivalent to a pointer.
if (index >= 0 && index < static_cast<int>(validators_.size()))
{
return &(validators_[static_cast<decltype(validators_)::size_type>(index)]);
}
throw OptionNotFound("Validator index is not valid");
}
/// Sets required options
Option* needs(Option* opt)
{
if (opt != this)
{
needs_.insert(opt);
}
return this;
}
/// Can find a string if needed
template<typename T = App>
Option* needs(std::string opt_name)
{
auto opt = dynamic_cast<T*>(parent_)->get_option_no_throw(opt_name);
if (opt == nullptr)
{
throw IncorrectConstruction::MissingOption(opt_name);
}
return needs(opt);
}
/// Any number supported, any mix of string and Opt
template<typename A, typename B, typename... ARG>
Option* needs(A opt, B opt1, ARG... args)
{
needs(opt);
return needs(opt1, args...);
}
/// Remove needs link from an option. Returns true if the option really was in the needs list.
bool remove_needs(Option* opt)
{
auto iterator = std::find(std::begin(needs_), std::end(needs_), opt);
if (iterator == std::end(needs_))
{
return false;
}
needs_.erase(iterator);
return true;
}
/// Sets excluded options
Option* excludes(Option* opt)
{
if (opt == this)
{
throw(IncorrectConstruction("and option cannot exclude itself"));
}
excludes_.insert(opt);
// Help text should be symmetric - excluding a should exclude b
opt->excludes_.insert(this);
// Ignoring the insert return value, excluding twice is now allowed.
// (Mostly to allow both directions to be excluded by user, even though the library does it for you.)
return this;
}
/// Can find a string if needed
template<typename T = App>
Option* excludes(std::string opt_name)
{
auto opt = dynamic_cast<T*>(parent_)->get_option_no_throw(opt_name);
if (opt == nullptr)
{
throw IncorrectConstruction::MissingOption(opt_name);
}
return excludes(opt);
}
/// Any number supported, any mix of string and Opt
template<typename A, typename B, typename... ARG>
Option* excludes(A opt, B opt1, ARG... args)
{
excludes(opt);
return excludes(opt1, args...);
}
/// Remove needs link from an option. Returns true if the option really was in the needs list.
bool remove_excludes(Option* opt)
{
auto iterator = std::find(std::begin(excludes_), std::end(excludes_), opt);
if (iterator == std::end(excludes_))
{
return false;
}
excludes_.erase(iterator);
return true;
}
/// Sets environment variable to read if no option given
Option* envname(std::string name)
{
envname_ = std::move(name);
return this;
}
/// Ignore case
///
/// The template hides the fact that we don't have the definition of App yet.
/// You are never expected to add an argument to the template here.
template<typename T = App>
Option* ignore_case(bool value = true)
{
if (!ignore_case_ && value)
{
ignore_case_ = value;
auto* parent = dynamic_cast<T*>(parent_);
for (const Option_p& opt : parent->options_)
{
if (opt.get() == this)
{
continue;
}
auto& omatch = opt->matching_name(*this);
if (!omatch.empty())
{
ignore_case_ = false;
throw OptionAlreadyAdded("adding ignore case caused a name conflict with " + omatch);
}
}
}
else
{
ignore_case_ = value;
}
return this;
}
/// Ignore underscores in the option names
///
/// The template hides the fact that we don't have the definition of App yet.
/// You are never expected to add an argument to the template here.
template<typename T = App>
Option* ignore_underscore(bool value = true)
{
if (!ignore_underscore_ && value)
{
ignore_underscore_ = value;
auto* parent = dynamic_cast<T*>(parent_);
for (const Option_p& opt : parent->options_)
{
if (opt.get() == this)
{
continue;
}
auto& omatch = opt->matching_name(*this);
if (!omatch.empty())
{
ignore_underscore_ = false;
throw OptionAlreadyAdded("adding ignore underscore caused a name conflict with " + omatch);
}
}
}
else
{
ignore_underscore_ = value;
}
return this;
}
/// Take the last argument if given multiple times (or another policy)
Option* multi_option_policy(MultiOptionPolicy value = MultiOptionPolicy::Throw)
{
if (value != multi_option_policy_)
{
if (multi_option_policy_ == MultiOptionPolicy::Throw && expected_max_ == detail::expected_max_vector_size &&
expected_min_ > 1)
{ // this bizarre condition is to maintain backwards compatibility
// with the previous behavior of expected_ with vectors
expected_max_ = expected_min_;
}
multi_option_policy_ = value;
current_option_state_ = option_state::parsing;
}
return this;
}
/// Disable flag overrides values, e.g. --flag=<value> is not allowed
Option* disable_flag_override(bool value = true)
{
disable_flag_override_ = value;
return this;
}
///@}
/// @name Accessors
///@{
/// The number of arguments the option expects
int get_type_size() const { return type_size_min_; }
/// The minimum number of arguments the option expects
int get_type_size_min() const { return type_size_min_; }
/// The maximum number of arguments the option expects
int get_type_size_max() const { return type_size_max_; }
/// The environment variable associated to this value
std::string get_envname() const { return envname_; }
/// The set of options needed
std::set<Option*> get_needs() const { return needs_; }
/// The set of options excluded
std::set<Option*> get_excludes() const { return excludes_; }
/// The default value (for help printing)
std::string get_default_str() const { return default_str_; }
/// Get the callback function
callback_t get_callback() const { return callback_; }
/// Get the long names
const std::vector<std::string>& get_lnames() const { return lnames_; }
/// Get the short names
const std::vector<std::string>& get_snames() const { return snames_; }
/// Get the flag names with specified default values
const std::vector<std::string>& get_fnames() const { return fnames_; }
/// The number of times the option expects to be included
int get_expected() const { return expected_min_; }
/// The number of times the option expects to be included
int get_expected_min() const { return expected_min_; }
/// The max number of times the option expects to be included
int get_expected_max() const { return expected_max_; }
/// The total min number of expected string values to be used
int get_items_expected_min() const { return type_size_min_ * expected_min_; }
/// Get the maximum number of items expected to be returned and used for the callback
int get_items_expected_max() const
{
int t = type_size_max_;
return detail::checked_multiply(t, expected_max_) ? t : detail::expected_max_vector_size;
}
/// The total min number of expected string values to be used
int get_items_expected() const { return get_items_expected_min(); }
/// True if the argument can be given directly
bool get_positional() const { return pname_.length() > 0; }
/// True if option has at least one non-positional name
bool nonpositional() const { return (snames_.size() + lnames_.size()) > 0; }
/// True if option has description
bool has_description() const { return description_.length() > 0; }
/// Get the description
const std::string& get_description() const { return description_; }
/// Set the description
Option* description(std::string option_description)
{
description_ = std::move(option_description);
return this;
}
///@}
/// @name Help tools
///@{
/// \brief Gets a comma separated list of names.
/// Will include / prefer the positional name if positional is true.
/// If all_options is false, pick just the most descriptive name to show.
/// Use `get_name(true)` to get the positional name (replaces `get_pname`)
std::string get_name(bool positional = false, //<[input] Show the positional name
bool all_options = false //<[input] Show every option
) const
{
if (get_group().empty())
return {}; // Hidden
if (all_options)
{
std::vector<std::string> name_list;
/// The all list will never include a positional unless asked or that's the only name.
if ((positional && (!pname_.empty())) || (snames_.empty() && lnames_.empty()))
{
name_list.push_back(pname_);
}
if ((get_items_expected() == 0) && (!fnames_.empty()))
{
for (const std::string& sname : snames_)
{
name_list.push_back("-" + sname);
if (check_fname(sname))
{
name_list.back() += "{" + get_flag_value(sname, "") + "}";
}
}
for (const std::string& lname : lnames_)
{
name_list.push_back("--" + lname);
if (check_fname(lname))
{
name_list.back() += "{" + get_flag_value(lname, "") + "}";
}
}
}
else
{
for (const std::string& sname : snames_)
name_list.push_back("-" + sname);
for (const std::string& lname : lnames_)
name_list.push_back("--" + lname);
}
return detail::join(name_list);
}
// This returns the positional name no matter what
if (positional)
return pname_;
// Prefer long name
if (!lnames_.empty())
return std::string(2, '-') + lnames_[0];
// Or short name if no long name
if (!snames_.empty())
return std::string(1, '-') + snames_[0];
// If positional is the only name, it's okay to use that
return pname_;
}
///@}
/// @name Parser tools
///@{
/// Process the callback
void run_callback()
{
if (current_option_state_ == option_state::parsing)
{
_validate_results(results_);
current_option_state_ = option_state::validated;
}
if (current_option_state_ < option_state::reduced)
{
_reduce_results(proc_results_, results_);
current_option_state_ = option_state::reduced;
}
if (current_option_state_ >= option_state::reduced)
{
current_option_state_ = option_state::callback_run;
if (!(callback_))
{
return;
}
const results_t& send_results = proc_results_.empty() ? results_ : proc_results_;
bool local_result = callback_(send_results);
if (!local_result)
throw ConversionError(get_name(), results_);
}
}
/// If options share any of the same names, find it
const std::string& matching_name(const Option& other) const
{
static const std::string estring;
for (const std::string& sname : snames_)
if (other.check_sname(sname))
return sname;
for (const std::string& lname : lnames_)
if (other.check_lname(lname))
return lname;
if (ignore_case_ ||
ignore_underscore_)
{ // We need to do the inverse, in case we are ignore_case or ignore underscore
for (const std::string& sname : other.snames_)
if (check_sname(sname))
return sname;
for (const std::string& lname : other.lnames_)
if (check_lname(lname))
return lname;
}
return estring;
}
/// If options share any of the same names, they are equal (not counting positional)
bool operator==(const Option& other) const { return !matching_name(other).empty(); }
/// Check a name. Requires "-" or "--" for short / long, supports positional name
bool check_name(std::string name) const
{
if (name.length() > 2 && name[0] == '-' && name[1] == '-')
return check_lname(name.substr(2));
if (name.length() > 1 && name.front() == '-')
return check_sname(name.substr(1));
std::string local_pname = pname_;
if (ignore_underscore_)
{
local_pname = detail::remove_underscore(local_pname);
name = detail::remove_underscore(name);
}
if (ignore_case_)
{
local_pname = detail::to_lower(local_pname);
name = detail::to_lower(name);
}
return name == local_pname;
}
/// Requires "-" to be removed from string
bool check_sname(std::string name) const
{
return (detail::find_member(std::move(name), snames_, ignore_case_) >= 0);
}
/// Requires "--" to be removed from string
bool check_lname(std::string name) const
{
return (detail::find_member(std::move(name), lnames_, ignore_case_, ignore_underscore_) >= 0);
}
/// Requires "--" to be removed from string
bool check_fname(std::string name) const
{
if (fnames_.empty())
{
return false;
}
return (detail::find_member(std::move(name), fnames_, ignore_case_, ignore_underscore_) >= 0);
}
/// Get the value that goes for a flag, nominally gets the default value but allows for overrides if not
/// disabled
std::string get_flag_value(const std::string& name, std::string input_value) const
{
static const std::string trueString{ "true" };
static const std::string falseString{ "false" };
static const std::string emptyString{ "{}" };
// check for disable flag override_
if (disable_flag_override_)
{
if (!((input_value.empty()) || (input_value == emptyString)))
{
auto default_ind = detail::find_member(name, fnames_, ignore_case_, ignore_underscore_);
if (default_ind >= 0)
{
// We can static cast this to std::size_t because it is more than 0 in this block
if (default_flag_values_[static_cast<std::size_t>(default_ind)].second != input_value)
{
throw(ArgumentMismatch::FlagOverride(name));
}
}
else
{
if (input_value != trueString)
{
throw(ArgumentMismatch::FlagOverride(name));
}
}
}
}
auto ind = detail::find_member(name, fnames_, ignore_case_, ignore_underscore_);
if ((input_value.empty()) || (input_value == emptyString))
{
if (flag_like_)
{
return (ind < 0) ? trueString : default_flag_values_[static_cast<std::size_t>(ind)].second;
}
else
{
return (ind < 0) ? default_str_ : default_flag_values_[static_cast<std::size_t>(ind)].second;
}
}
if (ind < 0)
{
return input_value;
}
if (default_flag_values_[static_cast<std::size_t>(ind)].second == falseString)
{
try
{
auto val = detail::to_flag_value(input_value);
return (val == 1) ? falseString : (val == (-1) ? trueString : std::to_string(-val));
}
catch (const std::invalid_argument&)
{
return input_value;
}
}
else
{
return input_value;
}
}
/// Puts a result at the end
Option* add_result(std::string s)
{
_add_result(std::move(s), results_);
current_option_state_ = option_state::parsing;
return this;
}
/// Puts a result at the end and get a count of the number of arguments actually added
Option* add_result(std::string s, int& results_added)
{
results_added = _add_result(std::move(s), results_);
current_option_state_ = option_state::parsing;
return this;
}
/// Puts a result at the end
Option* add_result(std::vector<std::string> s)
{
for (auto& str : s)
{
_add_result(std::move(str), results_);
}
current_option_state_ = option_state::parsing;
return this;
}
/// Get a copy of the results
results_t results() const { return results_; }
/// Get a copy of the results
results_t reduced_results() const
{
results_t res = proc_results_.empty() ? results_ : proc_results_;
if (current_option_state_ < option_state::reduced)
{
if (current_option_state_ == option_state::parsing)
{
res = results_;
_validate_results(res);
}
if (!res.empty())
{
results_t extra;
_reduce_results(extra, res);
if (!extra.empty())
{
res = std::move(extra);
}
}
}
return res;
}
/// Get the results as a specified type
template<typename T, enable_if_t<!std::is_const<T>::value, detail::enabler> = detail::dummy>
void results(T& output) const
{
bool retval;
if (current_option_state_ >= option_state::reduced || (results_.size() == 1 && validators_.empty()))
{
const results_t& res = (proc_results_.empty()) ? results_ : proc_results_;
retval = detail::lexical_conversion<T, T>(res, output);
}
else
{
results_t res;
if (results_.empty())
{
if (!default_str_.empty())
{
//_add_results takes an rvalue only
_add_result(std::string(default_str_), res);
_validate_results(res);
results_t extra;
_reduce_results(extra, res);
if (!extra.empty())
{
res = std::move(extra);
}
}
else
{
res.emplace_back();
}
}
else
{
res = reduced_results();
}
retval = detail::lexical_conversion<T, T>(res, output);
}
if (!retval)
{
throw ConversionError(get_name(), results_);
}
}
/// Return the results as the specified type
template<typename T>
T as() const
{
T output;
results(output);
return output;
}
/// See if the callback has been run already
bool get_callback_run() const { return (current_option_state_ == option_state::callback_run); }
///@}
/// @name Custom options
///@{
/// Set the type function to run when displayed on this option
Option* type_name_fn(std::function<std::string()> typefun)
{
type_name_ = std::move(typefun);
return this;
}
/// Set a custom option typestring
Option* type_name(std::string typeval)
{
type_name_fn([typeval]() { return typeval; });
return this;
}
/// Set a custom option size
Option* type_size(int option_type_size)
{
if (option_type_size < 0)
{
// this section is included for backwards compatibility
type_size_max_ = -option_type_size;
type_size_min_ = -option_type_size;
expected_max_ = detail::expected_max_vector_size;
}
else
{
type_size_max_ = option_type_size;
if (type_size_max_ < detail::expected_max_vector_size)
{
type_size_min_ = option_type_size;
}
if (type_size_max_ == 0)
required_ = false;
}
return this;
}
/// Set a custom option type size range
Option* type_size(int option_type_size_min, int option_type_size_max)
{
if (option_type_size_min < 0 || option_type_size_max < 0)
{
// this section is included for backwards compatibility
expected_max_ = detail::expected_max_vector_size;
option_type_size_min = (std::abs)(option_type_size_min);
option_type_size_max = (std::abs)(option_type_size_max);
}
if (option_type_size_min > option_type_size_max)
{
type_size_max_ = option_type_size_min;
type_size_min_ = option_type_size_max;
}
else
{
type_size_min_ = option_type_size_min;
type_size_max_ = option_type_size_max;
}
if (type_size_max_ == 0)
{
required_ = false;
}
return this;
}
/// Set a capture function for the default. Mostly used by App.
Option* default_function(const std::function<std::string()>& func)
{
default_function_ = func;
return this;
}
/// Capture the default value from the original value (if it can be captured)
Option* capture_default_str()
{
if (default_function_)
{
default_str_ = default_function_();
}
return this;
}
/// Set the default value string representation (does not change the contained value)
Option* default_str(std::string val)
{
default_str_ = std::move(val);
return this;
}
/// Set the default value and validate the results and run the callback if appropriate to set the value into the
/// bound value only available for types that can be converted to a string
template<typename X>
Option* default_val(const X& val)
{
std::string val_str = detail::to_string(val);
auto old_option_state = current_option_state_;
results_t old_results{ std::move(results_) };
results_.clear();
try
{
add_result(val_str);
if (run_callback_for_default_)
{
run_callback(); // run callback sets the state we need to reset it again
current_option_state_ = option_state::parsing;
}
else
{
_validate_results(results_);
current_option_state_ = old_option_state;
}
}
catch (const CLI::Error&)
{
// this should be done
results_ = std::move(old_results);
current_option_state_ = old_option_state;
throw;
}
results_ = std::move(old_results);
default_str_ = std::move(val_str);
return this;
}
/// Get the full typename for this option
std::string get_type_name() const
{
std::string full_type_name = type_name_();
if (!validators_.empty())
{
for (auto& Validator : validators_)
{
std::string vtype = Validator.get_description();
if (!vtype.empty())
{
full_type_name += ":" + vtype;
}
}
}
return full_type_name;
}
private:
/// Run the results through the Validators
void _validate_results(results_t& res) const
{
// Run the Validators (can change the string)
if (!validators_.empty())
{
if (type_size_max_ > 1)
{ // in this context index refers to the index in the type
int index = 0;
if (get_items_expected_max() < static_cast<int>(res.size()) &&
multi_option_policy_ == CLI::MultiOptionPolicy::TakeLast)
{
// create a negative index for the earliest ones
index = get_items_expected_max() - static_cast<int>(res.size());
}
for (std::string& result : res)
{
if (result.empty() && type_size_max_ != type_size_min_ && index >= 0)
{
index = 0; // reset index for variable size chunks
continue;
}
auto err_msg = _validate(result, (index >= 0) ? (index % type_size_max_) : index);
if (!err_msg.empty())
throw ValidationError(get_name(), err_msg);
++index;
}
}
else
{
int index = 0;
if (expected_max_ < static_cast<int>(res.size()) &&
multi_option_policy_ == CLI::MultiOptionPolicy::TakeLast)
{
// create a negative index for the earliest ones
index = expected_max_ - static_cast<int>(res.size());
}
for (std::string& result : res)
{
auto err_msg = _validate(result, index);
++index;
if (!err_msg.empty())
throw ValidationError(get_name(), err_msg);
}
}
}
}
/** reduce the results in accordance with the MultiOptionPolicy
@param[out] res results are assigned to res if there if they are different
*/
void _reduce_results(results_t& res, const results_t& original) const
{
// max num items expected or length of vector, always at least 1
// Only valid for a trimming policy
res.clear();
// Operation depends on the policy setting
switch (multi_option_policy_)
{
case MultiOptionPolicy::TakeAll:
break;
case MultiOptionPolicy::TakeLast:
{
// Allow multi-option sizes (including 0)
std::size_t trim_size = std::min<std::size_t>(
static_cast<std::size_t>(std::max<int>(get_items_expected_max(), 1)), original.size());
if (original.size() != trim_size)
{
res.assign(original.end() - static_cast<results_t::difference_type>(trim_size), original.end());
}
}
break;
case MultiOptionPolicy::TakeFirst:
{
std::size_t trim_size = std::min<std::size_t>(
static_cast<std::size_t>(std::max<int>(get_items_expected_max(), 1)), original.size());
if (original.size() != trim_size)
{
res.assign(original.begin(), original.begin() + static_cast<results_t::difference_type>(trim_size));
}
}
break;
case MultiOptionPolicy::Join:
if (results_.size() > 1)
{
res.push_back(detail::join(original, std::string(1, (delimiter_ == '\0') ? '\n' : delimiter_)));
}
break;
case MultiOptionPolicy::Throw:
default:
{
auto num_min = static_cast<std::size_t>(get_items_expected_min());
auto num_max = static_cast<std::size_t>(get_items_expected_max());
if (num_min == 0)
{
num_min = 1;
}
if (num_max == 0)
{
num_max = 1;
}
if (original.size() < num_min)
{
throw ArgumentMismatch::AtLeast(get_name(), static_cast<int>(num_min), original.size());
}
if (original.size() > num_max)
{
throw ArgumentMismatch::AtMost(get_name(), static_cast<int>(num_max), original.size());
}
break;
}
}
}
// Run a result through the Validators
std::string _validate(std::string& result, int index) const
{
std::string err_msg;
if (result.empty() && expected_min_ == 0)
{
// an empty with nothing expected is allowed
return err_msg;
}
for (const auto& vali : validators_)
{
auto v = vali.get_application_index();
if (v == -1 || v == index)
{
try
{
err_msg = vali(result);
}
catch (const ValidationError& err)
{
err_msg = err.what();
}
if (!err_msg.empty())
break;
}
}
return err_msg;
}
/// Add a single result to the result set, taking into account delimiters
int _add_result(std::string&& result, std::vector<std::string>& res) const
{
int result_count = 0;
if (allow_extra_args_ && !result.empty() && result.front() == '[' &&
result.back() == ']')
{ // this is now a vector string likely from the default or user entry
result.pop_back();
for (auto& var : CLI::detail::split(result.substr(1), ','))
{
if (!var.empty())
{
result_count += _add_result(std::move(var), res);
}
}
return result_count;
}
if (delimiter_ == '\0')
{
res.push_back(std::move(result));
++result_count;
}
else
{
if ((result.find_first_of(delimiter_) != std::string::npos))
{
for (const auto& var : CLI::detail::split(result, delimiter_))
{
if (!var.empty())
{
res.push_back(var);
++result_count;
}
}
}
else
{
res.push_back(std::move(result));
++result_count;
}
}
return result_count;
}
}; // namespace CLI
} // namespace CLI
// From CLI/App.hpp:
namespace CLI
{
#ifndef CLI11_PARSE
#define CLI11_PARSE(app, argc, argv) \
try \
{ \
(app).parse((argc), (argv)); \
} \
catch (const CLI::ParseError& e) \
{ \
return (app).exit(e); \
}
#endif
namespace detail
{
enum class Classifier
{
NONE,
POSITIONAL_MARK,
SHORT,
LONG,
WINDOWS,
SUBCOMMAND,
SUBCOMMAND_TERMINATOR
};
struct AppFriend;
} // namespace detail
namespace FailureMessage
{
std::string simple(const App* app, const Error& e);
std::string help(const App* app, const Error& e);
} // namespace FailureMessage
/// enumeration of modes of how to deal with extras in config files
enum class config_extras_mode : char
{
error = 0,
ignore,
capture
};
class App;
using App_p = std::shared_ptr<App>;
class Option_group;
/// Creates a command line program, with very few defaults.
/** To use, create a new `Program()` instance with `argc`, `argv`, and a help description. The templated
* add_option methods make it easy to prepare options. Remember to call `.start` before starting your
* program, so that the options can be evaluated and the help option doesn't accidentally run your program. */
class App
{
friend Option;
friend detail::AppFriend;
protected:
// This library follows the Google style guide for member names ending in underscores
/// @name Basics
///@{
/// Subcommand name or program name (from parser if name is empty)
std::string name_{};
/// Description of the current program/subcommand
std::string description_{};
/// If true, allow extra arguments (ie, don't throw an error). INHERITABLE
bool allow_extras_{ false };
/// If ignore, allow extra arguments in the ini file (ie, don't throw an error). INHERITABLE
/// if error error on an extra argument, and if capture feed it to the app
config_extras_mode allow_config_extras_{ config_extras_mode::ignore };
/// If true, return immediately on an unrecognized option (implies allow_extras) INHERITABLE
bool prefix_command_{ false };
/// If set to true the name was automatically generated from the command line vs a user set name
bool has_automatic_name_{ false };
/// If set to true the subcommand is required to be processed and used, ignored for main app
bool required_{ false };
/// If set to true the subcommand is disabled and cannot be used, ignored for main app
bool disabled_{ false };
/// Flag indicating that the pre_parse_callback has been triggered
bool pre_parse_called_{ false };
/// Flag indicating that the callback for the subcommand should be executed immediately on parse completion which is
/// before help or ini files are processed. INHERITABLE
bool immediate_callback_{ false };
/// This is a function that runs prior to the start of parsing
std::function<void(std::size_t)> pre_parse_callback_{};
/// This is a function that runs when parsing has finished.
std::function<void()> parse_complete_callback_{};
/// This is a function that runs when all processing has completed
std::function<void()> final_callback_{};
///@}
/// @name Options
///@{
/// The default values for options, customizable and changeable INHERITABLE
OptionDefaults option_defaults_{};
/// The list of options, stored locally
std::vector<Option_p> options_{};
///@}
/// @name Help
///@{
/// Footer to put after all options in the help output INHERITABLE
std::string footer_{};
/// This is a function that generates a footer to put after all other options in help output
std::function<std::string()> footer_callback_{};
/// A pointer to the help flag if there is one INHERITABLE
Option* help_ptr_{ nullptr };
/// A pointer to the help all flag if there is one INHERITABLE
Option* help_all_ptr_{ nullptr };
/// This is the formatter for help printing. Default provided. INHERITABLE (same pointer)
std::shared_ptr<FormatterBase> formatter_{ new Formatter() };
/// The error message printing function INHERITABLE
std::function<std::string(const App*, const Error& e)> failure_message_{ FailureMessage::simple };
///@}
/// @name Parsing
///@{
using missing_t = std::vector<std::pair<detail::Classifier, std::string>>;
/// Pair of classifier, string for missing options. (extra detail is removed on returning from parse)
///
/// This is faster and cleaner than storing just a list of strings and reparsing. This may contain the -- separator.
missing_t missing_{};
/// This is a list of pointers to options with the original parse order
std::vector<Option*> parse_order_{};
/// This is a list of the subcommands collected, in order
std::vector<App*> parsed_subcommands_{};
/// this is a list of subcommands that are exclusionary to this one
std::set<App*> exclude_subcommands_{};
/// This is a list of options which are exclusionary to this App, if the options were used this subcommand should
/// not be
std::set<Option*> exclude_options_{};
/// this is a list of subcommands or option groups that are required by this one, the list is not mutual, the
/// listed subcommands do not require this one
std::set<App*> need_subcommands_{};
/// This is a list of options which are required by this app, the list is not mutual, listed options do not need the
/// subcommand not be
std::set<Option*> need_options_{};
///@}
/// @name Subcommands
///@{
/// Storage for subcommand list
std::vector<App_p> subcommands_{};
/// If true, the program name is not case sensitive INHERITABLE
bool ignore_case_{ false };
/// If true, the program should ignore underscores INHERITABLE
bool ignore_underscore_{ false };
/// Allow subcommand fallthrough, so that parent commands can collect commands after subcommand. INHERITABLE
bool fallthrough_{ false };
/// Allow '/' for options for Windows like options. Defaults to true on Windows, false otherwise. INHERITABLE
bool allow_windows_style_options_{
#ifdef _WIN32
true
#else
false
#endif
};
/// specify that positional arguments come at the end of the argument sequence not inheritable
bool positionals_at_end_{ false };
enum class startup_mode : char
{
stable,
enabled,
disabled
};
/// specify the startup mode for the app
/// stable=no change, enabled= startup enabled, disabled=startup disabled
startup_mode default_startup{ startup_mode::stable };
/// if set to true the subcommand can be triggered via configuration files INHERITABLE
bool configurable_{ false };
/// If set to true positional options are validated before assigning INHERITABLE
bool validate_positionals_{ false };
/// A pointer to the parent if this is a subcommand
App* parent_{ nullptr };
/// Counts the number of times this command/subcommand was parsed
std::size_t parsed_{ 0 };
/// Minimum required subcommands (not inheritable!)
std::size_t require_subcommand_min_{ 0 };
/// Max number of subcommands allowed (parsing stops after this number). 0 is unlimited INHERITABLE
std::size_t require_subcommand_max_{ 0 };
/// Minimum required options (not inheritable!)
std::size_t require_option_min_{ 0 };
/// Max number of options allowed. 0 is unlimited (not inheritable)
std::size_t require_option_max_{ 0 };
/// The group membership INHERITABLE
std::string group_{ "Subcommands" };
/// Alias names for the subcommand
std::vector<std::string> aliases_{};
///@}
/// @name Config
///@{
/// Pointer to the config option
Option* config_ptr_{ nullptr };
/// This is the formatter for help printing. Default provided. INHERITABLE (same pointer)
std::shared_ptr<Config> config_formatter_{ new ConfigINI() };
///@}
/// Special private constructor for subcommand
App(std::string app_description, std::string app_name, App* parent) :
name_(std::move(app_name)),
description_(std::move(app_description)),
parent_(parent)
{
// Inherit if not from a nullptr
if (parent_ != nullptr)
{
if (parent_->help_ptr_ != nullptr)
set_help_flag(parent_->help_ptr_->get_name(false, true), parent_->help_ptr_->get_description());
if (parent_->help_all_ptr_ != nullptr)
set_help_all_flag(parent_->help_all_ptr_->get_name(false, true),
parent_->help_all_ptr_->get_description());
/// OptionDefaults
option_defaults_ = parent_->option_defaults_;
// INHERITABLE
failure_message_ = parent_->failure_message_;
allow_extras_ = parent_->allow_extras_;
allow_config_extras_ = parent_->allow_config_extras_;
prefix_command_ = parent_->prefix_command_;
immediate_callback_ = parent_->immediate_callback_;
ignore_case_ = parent_->ignore_case_;
ignore_underscore_ = parent_->ignore_underscore_;
fallthrough_ = parent_->fallthrough_;
validate_positionals_ = parent_->validate_positionals_;
configurable_ = parent_->configurable_;
allow_windows_style_options_ = parent_->allow_windows_style_options_;
group_ = parent_->group_;
footer_ = parent_->footer_;
formatter_ = parent_->formatter_;
config_formatter_ = parent_->config_formatter_;
require_subcommand_max_ = parent_->require_subcommand_max_;
}
}
public:
/// @name Basic
///@{
/// Create a new program. Pass in the same arguments as main(), along with a help string.
explicit App(std::string app_description = "", std::string app_name = "") :
App(app_description, app_name, nullptr)
{
set_help_flag("-h,--help", "Print this help message and exit");
}
App(const App&) = delete;
App& operator=(const App&) = delete;
/// virtual destructor
virtual ~App() = default;
/// Set a callback for execution when all parsing and processing has completed
///
/// Due to a bug in c++11,
/// it is not possible to overload on std::function (fixed in c++14
/// and backported to c++11 on newer compilers). Use capture by reference
/// to get a pointer to App if needed.
App* callback(std::function<void()> app_callback)
{
if (immediate_callback_)
{
parse_complete_callback_ = std::move(app_callback);
}
else
{
final_callback_ = std::move(app_callback);
}
return this;
}
/// Set a callback for execution when all parsing and processing has completed
/// aliased as callback
App* final_callback(std::function<void()> app_callback)
{
final_callback_ = std::move(app_callback);
return this;
}
/// Set a callback to execute when parsing has completed for the app
///
App* parse_complete_callback(std::function<void()> pc_callback)
{
parse_complete_callback_ = std::move(pc_callback);
return this;
}
/// Set a callback to execute prior to parsing.
///
App* preparse_callback(std::function<void(std::size_t)> pp_callback)
{
pre_parse_callback_ = std::move(pp_callback);
return this;
}
/// Set a name for the app (empty will use parser to set the name)
App* name(std::string app_name = "")
{
if (parent_ != nullptr)
{
auto oname = name_;
name_ = app_name;
auto& res = _compare_subcommand_names(*this, *_get_fallthrough_parent());
if (!res.empty())
{
name_ = oname;
throw(OptionAlreadyAdded(app_name + " conflicts with existing subcommand names"));
}
}
else
{
name_ = app_name;
}
has_automatic_name_ = false;
return this;
}
/// Set an alias for the app
App* alias(std::string app_name)
{
if (!detail::valid_name_string(app_name))
{
throw(IncorrectConstruction("alias is not a valid name string"));
}
if (parent_ != nullptr)
{
aliases_.push_back(app_name);
auto& res = _compare_subcommand_names(*this, *_get_fallthrough_parent());
if (!res.empty())
{
aliases_.pop_back();
throw(OptionAlreadyAdded("alias already matches an existing subcommand: " + app_name));
}
}
else
{
aliases_.push_back(app_name);
}
return this;
}
/// Remove the error when extras are left over on the command line.
App* allow_extras(bool allow = true)
{
allow_extras_ = allow;
return this;
}
/// Remove the error when extras are left over on the command line.
App* required(bool require = true)
{
required_ = require;
return this;
}
/// Disable the subcommand or option group
App* disabled(bool disable = true)
{
disabled_ = disable;
return this;
}
/// Set the subcommand to be disabled by default, so on clear(), at the start of each parse it is disabled
App* disabled_by_default(bool disable = true)
{
if (disable)
{
default_startup = startup_mode::disabled;
}
else
{
default_startup = (default_startup == startup_mode::enabled) ? startup_mode::enabled : startup_mode::stable;
}
return this;
}
/// Set the subcommand to be enabled by default, so on clear(), at the start of each parse it is enabled (not
/// disabled)
App* enabled_by_default(bool enable = true)
{
if (enable)
{
default_startup = startup_mode::enabled;
}
else
{
default_startup =
(default_startup == startup_mode::disabled) ? startup_mode::disabled : startup_mode::stable;
}
return this;
}
/// Set the subcommand callback to be executed immediately on subcommand completion
App* immediate_callback(bool immediate = true)
{
immediate_callback_ = immediate;
if (immediate_callback_)
{
if (final_callback_ && !(parse_complete_callback_))
{
std::swap(final_callback_, parse_complete_callback_);
}
}
else if (!(final_callback_) && parse_complete_callback_)
{
std::swap(final_callback_, parse_complete_callback_);
}
return this;
}
/// Set the subcommand to validate positional arguments before assigning
App* validate_positionals(bool validate = true)
{
validate_positionals_ = validate;
return this;
}
/// ignore extras in config files
App* allow_config_extras(bool allow = true)
{
if (allow)
{
allow_config_extras_ = config_extras_mode::capture;
allow_extras_ = true;
}
else
{
allow_config_extras_ = config_extras_mode::error;
}
return this;
}
/// ignore extras in config files
App* allow_config_extras(config_extras_mode mode)
{
allow_config_extras_ = mode;
return this;
}
/// Do not parse anything after the first unrecognized option and return
App* prefix_command(bool allow = true)
{
prefix_command_ = allow;
return this;
}
/// Ignore case. Subcommands inherit value.
App* ignore_case(bool value = true)
{
if (value && !ignore_case_)
{
ignore_case_ = true;
auto* p = (parent_ != nullptr) ? _get_fallthrough_parent() : this;
auto& match = _compare_subcommand_names(*this, *p);
if (!match.empty())
{
ignore_case_ = false; // we are throwing so need to be exception invariant
throw OptionAlreadyAdded("ignore case would cause subcommand name conflicts: " + match);
}
}
ignore_case_ = value;
return this;
}
/// Allow windows style options, such as `/opt`. First matching short or long name used. Subcommands inherit
/// value.
App* allow_windows_style_options(bool value = true)
{
allow_windows_style_options_ = value;
return this;
}
/// Specify that the positional arguments are only at the end of the sequence
App* positionals_at_end(bool value = true)
{
positionals_at_end_ = value;
return this;
}
/// Specify that the subcommand can be triggered by a config file
App* configurable(bool value = true)
{
configurable_ = value;
return this;
}
/// Ignore underscore. Subcommands inherit value.
App* ignore_underscore(bool value = true)
{
if (value && !ignore_underscore_)
{
ignore_underscore_ = true;
auto* p = (parent_ != nullptr) ? _get_fallthrough_parent() : this;
auto& match = _compare_subcommand_names(*this, *p);
if (!match.empty())
{
ignore_underscore_ = false;
throw OptionAlreadyAdded("ignore underscore would cause subcommand name conflicts: " + match);
}
}
ignore_underscore_ = value;
return this;
}
/// Set the help formatter
App* formatter(std::shared_ptr<FormatterBase> fmt)
{
formatter_ = fmt;
return this;
}
/// Set the help formatter
App* formatter_fn(std::function<std::string(const App*, std::string, AppFormatMode)> fmt)
{
formatter_ = std::make_shared<FormatterLambda>(fmt);
return this;
}
/// Set the config formatter
App* config_formatter(std::shared_ptr<Config> fmt)
{
config_formatter_ = fmt;
return this;
}
/// Check to see if this subcommand was parsed, true only if received on command line.
bool parsed() const { return parsed_ > 0; }
/// Get the OptionDefault object, to set option defaults
OptionDefaults* option_defaults() { return &option_defaults_; }
///@}
/// @name Adding options
///@{
/// Add an option, will automatically understand the type for common types.
///
/// To use, create a variable with the expected type, and pass it in after the name.
/// After start is called, you can use count to see if the value was passed, and
/// the value will be initialized properly. Numbers, vectors, and strings are supported.
///
/// ->required(), ->default, and the validators are options,
/// The positional options take an optional number of arguments.
///
/// For example,
///
/// std::string filename;
/// program.add_option("filename", filename, "description of filename");
///
Option* add_option(std::string option_name,
callback_t option_callback,
std::string option_description = "",
bool defaulted = false,
std::function<std::string()> func = {})
{
Option myopt{ option_name, option_description, option_callback, this };
if (std::find_if(std::begin(options_), std::end(options_), [&myopt](const Option_p& v) {
return *v == myopt;
}) == std::end(options_))
{
options_.emplace_back();
Option_p& option = options_.back();
option.reset(new Option(option_name, option_description, option_callback, this));
// Set the default string capture function
option->default_function(func);
// For compatibility with CLI11 1.7 and before, capture the default string here
if (defaulted)
option->capture_default_str();
// Transfer defaults to the new option
option_defaults_.copy_to(option.get());
// Don't bother to capture if we already did
if (!defaulted && option->get_always_capture_default())
option->capture_default_str();
return option.get();
}
// we know something matches now find what it is so we can produce more error information
for (auto& opt : options_)
{
auto& matchname = opt->matching_name(myopt);
if (!matchname.empty())
{
throw(OptionAlreadyAdded("added option matched existing option name: " + matchname));
}
}
// this line should not be reached the above loop should trigger the throw
throw(OptionAlreadyAdded("added option matched existing option name")); // LCOV_EXCL_LINE
}
/// Add option for assigning to a variable
template<typename AssignTo,
typename ConvertTo = AssignTo,
enable_if_t<!std::is_const<ConvertTo>::value, detail::enabler> = detail::dummy>
Option* add_option(std::string option_name,
AssignTo& variable, ///< The variable to set
std::string option_description = "",
bool defaulted = false)
{
auto fun = [&variable](const CLI::results_t& res) { // comment for spacing
return detail::lexical_conversion<AssignTo, ConvertTo>(res, variable);
};
Option* opt = add_option(option_name, fun, option_description, defaulted, [&variable]() {
return CLI::detail::checked_to_string<AssignTo, ConvertTo>(variable);
});
opt->type_name(detail::type_name<ConvertTo>());
// these must be actual lvalues since (std::max) sometimes is defined in terms of references and references
// to structs used in the evaluation can be temporary so that would cause issues.
auto Tcount = detail::type_count<AssignTo>::value;
auto XCcount = detail::type_count<ConvertTo>::value;
opt->type_size((std::max)(Tcount, XCcount));
opt->expected(detail::expected_count<ConvertTo>::value);
opt->run_callback_for_default();
return opt;
}
/// Add option for a callback of a specific type
template<typename T>
Option* add_option_function(std::string option_name,
const std::function<void(const T&)>& func, ///< the callback to execute
std::string option_description = "")
{
auto fun = [func](const CLI::results_t& res) {
T variable;
bool result = detail::lexical_conversion<T, T>(res, variable);
if (result)
{
func(variable);
}
return result;
};
Option* opt = add_option(option_name, std::move(fun), option_description, false);
opt->type_name(detail::type_name<T>());
opt->type_size(detail::type_count<T>::value);
opt->expected(detail::expected_count<T>::value);
return opt;
}
/// Add option with no description or variable assignment
Option* add_option(std::string option_name)
{
return add_option(option_name, CLI::callback_t(), std::string{}, false);
}
/// Add option with description but with no variable assignment or callback
template<typename T,
enable_if_t<std::is_const<T>::value && std::is_constructible<std::string, T>::value, detail::enabler> =
detail::dummy>
Option* add_option(std::string option_name, T& option_description)
{
return add_option(option_name, CLI::callback_t(), option_description, false);
}
/// Set a help flag, replace the existing one if present
Option* set_help_flag(std::string flag_name = "", const std::string& help_description = "")
{
// take flag_description by const reference otherwise add_flag tries to assign to help_description
if (help_ptr_ != nullptr)
{
remove_option(help_ptr_);
help_ptr_ = nullptr;
}
// Empty name will simply remove the help flag
if (!flag_name.empty())
{
help_ptr_ = add_flag(flag_name, help_description);
help_ptr_->configurable(false);
}
return help_ptr_;
}
/// Set a help all flag, replaced the existing one if present
Option* set_help_all_flag(std::string help_name = "", const std::string& help_description = "")
{
// take flag_description by const reference otherwise add_flag tries to assign to flag_description
if (help_all_ptr_ != nullptr)
{
remove_option(help_all_ptr_);
help_all_ptr_ = nullptr;
}
// Empty name will simply remove the help all flag
if (!help_name.empty())
{
help_all_ptr_ = add_flag(help_name, help_description);
help_all_ptr_->configurable(false);
}
return help_all_ptr_;
}
private:
/// Internal function for adding a flag
Option* _add_flag_internal(std::string flag_name, CLI::callback_t fun, std::string flag_description)
{
Option* opt;
if (detail::has_default_flag_values(flag_name))
{
// check for default values and if it has them
auto flag_defaults = detail::get_default_flag_values(flag_name);
detail::remove_default_flag_values(flag_name);
opt = add_option(std::move(flag_name), std::move(fun), std::move(flag_description), false);
for (const auto& fname : flag_defaults)
opt->fnames_.push_back(fname.first);
opt->default_flag_values_ = std::move(flag_defaults);
}
else
{
opt = add_option(std::move(flag_name), std::move(fun), std::move(flag_description), false);
}
// flags cannot have positional values
if (opt->get_positional())
{
auto pos_name = opt->get_name(true);
remove_option(opt);
throw IncorrectConstruction::PositionalFlag(pos_name);
}
opt->multi_option_policy(MultiOptionPolicy::TakeLast);
opt->expected(0);
opt->required(false);
return opt;
}
public:
/// Add a flag with no description or variable assignment
Option* add_flag(std::string flag_name) { return _add_flag_internal(flag_name, CLI::callback_t(), std::string{}); }
/// Add flag with description but with no variable assignment or callback
/// takes a constant string, if a variable string is passed that variable will be assigned the results from the
/// flag
template<typename T,
enable_if_t<std::is_const<T>::value && std::is_constructible<std::string, T>::value, detail::enabler> =
detail::dummy>
Option* add_flag(std::string flag_name, T& flag_description)
{
return _add_flag_internal(flag_name, CLI::callback_t(), flag_description);
}
/// Add option for flag with integer result - defaults to allowing multiple passings, but can be forced to one
/// if `multi_option_policy(CLI::MultiOptionPolicy::Throw)` is used.
template<typename T,
enable_if_t<std::is_integral<T>::value && !is_bool<T>::value, detail::enabler> = detail::dummy>
Option* add_flag(std::string flag_name,
T& flag_count, ///< A variable holding the count
std::string flag_description = "")
{
flag_count = 0;
CLI::callback_t fun = [&flag_count](const CLI::results_t& res) {
try
{
detail::sum_flag_vector(res, flag_count);
}
catch (const std::invalid_argument&)
{
return false;
}
return true;
};
return _add_flag_internal(flag_name, std::move(fun), std::move(flag_description))
->multi_option_policy(MultiOptionPolicy::TakeAll);
}
/// Other type version accepts all other types that are not vectors such as bool, enum, string or other classes
/// that can be converted from a string
template<typename T,
enable_if_t<!is_vector<T>::value && !std::is_const<T>::value &&
(!std::is_integral<T>::value || is_bool<T>::value) &&
!std::is_constructible<std::function<void(int)>, T>::value,
detail::enabler> = detail::dummy>
Option* add_flag(std::string flag_name,
T& flag_result, ///< A variable holding true if passed
std::string flag_description = "")
{
CLI::callback_t fun = [&flag_result](const CLI::results_t& res) {
return CLI::detail::lexical_cast(res[0], flag_result);
};
return _add_flag_internal(flag_name, std::move(fun), std::move(flag_description))->run_callback_for_default();
}
/// Vector version to capture multiple flags.
template<typename T,
enable_if_t<!std::is_assignable<std::function<void(int64_t)>, T>::value, detail::enabler> = detail::dummy>
Option* add_flag(std::string flag_name,
std::vector<T>& flag_results, ///< A vector of values with the flag results
std::string flag_description = "")
{
CLI::callback_t fun = [&flag_results](const CLI::results_t& res) {
bool retval = true;
for (const auto& elem : res)
{
flag_results.emplace_back();
retval &= detail::lexical_cast(elem, flag_results.back());
}
return retval;
};
return _add_flag_internal(flag_name, std::move(fun), std::move(flag_description))
->multi_option_policy(MultiOptionPolicy::TakeAll)
->run_callback_for_default();
}
/// Add option for callback that is triggered with a true flag and takes no arguments
Option* add_flag_callback(std::string flag_name,
std::function<void(void)> function, ///< A function to call, void(void)
std::string flag_description = "")
{
CLI::callback_t fun = [function](const CLI::results_t& res) {
bool trigger{ false };
auto result = CLI::detail::lexical_cast(res[0], trigger);
if (result && trigger)
{
function();
}
return result;
};
return _add_flag_internal(flag_name, std::move(fun), std::move(flag_description));
}
/// Add option for callback with an integer value
Option* add_flag_function(std::string flag_name,
std::function<void(int64_t)> function, ///< A function to call, void(int)
std::string flag_description = "")
{
CLI::callback_t fun = [function](const CLI::results_t& res) {
int64_t flag_count = 0;
detail::sum_flag_vector(res, flag_count);
function(flag_count);
return true;
};
return _add_flag_internal(flag_name, std::move(fun), std::move(flag_description))
->multi_option_policy(MultiOptionPolicy::TakeAll);
}
#ifdef CLI11_CPP14
/// Add option for callback (C++14 or better only)
Option* add_flag(std::string flag_name,
std::function<void(int64_t)> function, ///< A function to call, void(int64_t)
std::string flag_description = "")
{
return add_flag_function(std::move(flag_name), std::move(function), std::move(flag_description));
}
#endif
/// Add set of options (No default, temp reference, such as an inline set) DEPRECATED
template<typename T>
Option* add_set(std::string option_name,
T& member, ///< The selected member of the set
std::set<T> options, ///< The set of possibilities
std::string option_description = "")
{
Option* opt = add_option(option_name, member, std::move(option_description));
opt->check(IsMember{ options });
return opt;
}
/// Add set of options (No default, set can be changed afterwards - do not destroy the set) DEPRECATED
template<typename T>
Option* add_mutable_set(std::string option_name,
T& member, ///< The selected member of the set
const std::set<T>& options, ///< The set of possibilities
std::string option_description = "")
{
Option* opt = add_option(option_name, member, std::move(option_description));
opt->check(IsMember{ &options });
return opt;
}
/// Add set of options (with default, static set, such as an inline set) DEPRECATED
template<typename T>
Option* add_set(std::string option_name,
T& member, ///< The selected member of the set
std::set<T> options, ///< The set of possibilities
std::string option_description,
bool defaulted)
{
Option* opt = add_option(option_name, member, std::move(option_description), defaulted);
opt->check(IsMember{ options });
return opt;
}
/// Add set of options (with default, set can be changed afterwards - do not destroy the set) DEPRECATED
template<typename T>
Option* add_mutable_set(std::string option_name,
T& member, ///< The selected member of the set
const std::set<T>& options, ///< The set of possibilities
std::string option_description,
bool defaulted)
{
Option* opt = add_option(option_name, member, std::move(option_description), defaulted);
opt->check(IsMember{ &options });
return opt;
}
/// Add a complex number
template<typename T, typename XC = double>
Option* add_complex(std::string option_name,
T& variable,
std::string option_description = "",
bool defaulted = false,
std::string label = "COMPLEX")
{
CLI::callback_t fun = [&variable](const results_t& res) {
XC x, y;
bool worked;
if (res.size() >= 2 && !res[1].empty())
{
auto str1 = res[1];
if (str1.back() == 'i' || str1.back() == 'j')
str1.pop_back();
worked = detail::lexical_cast(res[0], x) && detail::lexical_cast(str1, y);
}
else
{
auto str1 = res.front();
auto nloc = str1.find_last_of('-');
if (nloc != std::string::npos && nloc > 0)
{
worked = detail::lexical_cast(str1.substr(0, nloc), x);
str1 = str1.substr(nloc);
if (str1.back() == 'i' || str1.back() == 'j')
str1.pop_back();
worked = worked && detail::lexical_cast(str1, y);
}
else
{
if (str1.back() == 'i' || str1.back() == 'j')
{
str1.pop_back();
worked = detail::lexical_cast(str1, y);
x = XC{ 0 };
}
else
{
worked = detail::lexical_cast(str1, x);
y = XC{ 0 };
}
}
}
if (worked)
variable = T{ x, y };
return worked;
};
auto default_function = [&variable]() { return CLI::detail::checked_to_string<T, T>(variable); };
CLI::Option* opt =
add_option(option_name, std::move(fun), std::move(option_description), defaulted, default_function);
opt->type_name(label)->type_size(1, 2)->delimiter('+')->run_callback_for_default();
return opt;
}
/// Set a configuration ini file option, or clear it if no name passed
Option* set_config(std::string option_name = "",
std::string default_filename = "",
const std::string& help_message = "Read an ini file",
bool config_required = false)
{
// Remove existing config if present
if (config_ptr_ != nullptr)
{
remove_option(config_ptr_);
config_ptr_ = nullptr; // need to remove the config_ptr completely
}
// Only add config if option passed
if (!option_name.empty())
{
config_ptr_ = add_option(option_name, help_message);
if (config_required)
{
config_ptr_->required();
}
if (!default_filename.empty())
{
config_ptr_->default_str(std::move(default_filename));
}
config_ptr_->configurable(false);
}
return config_ptr_;
}
/// Removes an option from the App. Takes an option pointer. Returns true if found and removed.
bool remove_option(Option* opt)
{
// Make sure no links exist
for (Option_p& op : options_)
{
op->remove_needs(opt);
op->remove_excludes(opt);
}
if (help_ptr_ == opt)
help_ptr_ = nullptr;
if (help_all_ptr_ == opt)
help_all_ptr_ = nullptr;
auto iterator =
std::find_if(std::begin(options_), std::end(options_), [opt](const Option_p& v) { return v.get() == opt; });
if (iterator != std::end(options_))
{
options_.erase(iterator);
return true;
}
return false;
}
/// creates an option group as part of the given app
template<typename T = Option_group>
T* add_option_group(std::string group_name, std::string group_description = "")
{
auto option_group = std::make_shared<T>(std::move(group_description), group_name, nullptr);
auto ptr = option_group.get();
// move to App_p for overload resolution on older gcc versions
App_p app_ptr = std::dynamic_pointer_cast<App>(option_group);
add_subcommand(std::move(app_ptr));
return ptr;
}
///@}
/// @name Subcommmands
///@{
/// Add a subcommand. Inherits INHERITABLE and OptionDefaults, and help flag
App* add_subcommand(std::string subcommand_name = "", std::string subcommand_description = "")
{
if (!subcommand_name.empty() && !detail::valid_name_string(subcommand_name))
{
throw IncorrectConstruction("subcommand name is not valid");
}
CLI::App_p subcom = std::shared_ptr<App>(new App(std::move(subcommand_description), subcommand_name, this));
return add_subcommand(std::move(subcom));
}
/// Add a previously created app as a subcommand
App* add_subcommand(CLI::App_p subcom)
{
if (!subcom)
throw IncorrectConstruction("passed App is not valid");
auto ckapp = (name_.empty() && parent_ != nullptr) ? _get_fallthrough_parent() : this;
auto& mstrg = _compare_subcommand_names(*subcom, *ckapp);
if (!mstrg.empty())
{
throw(OptionAlreadyAdded("subcommand name or alias matches existing subcommand: " + mstrg));
}
subcom->parent_ = this;
subcommands_.push_back(std::move(subcom));
return subcommands_.back().get();
}
/// Removes a subcommand from the App. Takes a subcommand pointer. Returns true if found and removed.
bool remove_subcommand(App* subcom)
{
// Make sure no links exist
for (App_p& sub : subcommands_)
{
sub->remove_excludes(subcom);
sub->remove_needs(subcom);
}
auto iterator = std::find_if(
std::begin(subcommands_), std::end(subcommands_), [subcom](const App_p& v) { return v.get() == subcom; });
if (iterator != std::end(subcommands_))
{
subcommands_.erase(iterator);
return true;
}
return false;
}
/// Check to see if a subcommand is part of this command (doesn't have to be in command line)
/// returns the first subcommand if passed a nullptr
App* get_subcommand(const App* subcom) const
{
if (subcom == nullptr)
throw OptionNotFound("nullptr passed");
for (const App_p& subcomptr : subcommands_)
if (subcomptr.get() == subcom)
return subcomptr.get();
throw OptionNotFound(subcom->get_name());
}
/// Check to see if a subcommand is part of this command (text version)
App* get_subcommand(std::string subcom) const
{
auto subc = _find_subcommand(subcom, false, false);
if (subc == nullptr)
throw OptionNotFound(subcom);
return subc;
}
/// Get a pointer to subcommand by index
App* get_subcommand(int index = 0) const
{
if (index >= 0)
{
auto uindex = static_cast<unsigned>(index);
if (uindex < subcommands_.size())
return subcommands_[uindex].get();
}
throw OptionNotFound(std::to_string(index));
}
/// Check to see if a subcommand is part of this command and get a shared_ptr to it
CLI::App_p get_subcommand_ptr(App* subcom) const
{
if (subcom == nullptr)
throw OptionNotFound("nullptr passed");
for (const App_p& subcomptr : subcommands_)
if (subcomptr.get() == subcom)
return subcomptr;
throw OptionNotFound(subcom->get_name());
}
/// Check to see if a subcommand is part of this command (text version)
CLI::App_p get_subcommand_ptr(std::string subcom) const
{
for (const App_p& subcomptr : subcommands_)
if (subcomptr->check_name(subcom))
return subcomptr;
throw OptionNotFound(subcom);
}
/// Get an owning pointer to subcommand by index
CLI::App_p get_subcommand_ptr(int index = 0) const
{
if (index >= 0)
{
auto uindex = static_cast<unsigned>(index);
if (uindex < subcommands_.size())
return subcommands_[uindex];
}
throw OptionNotFound(std::to_string(index));
}
/// Check to see if an option group is part of this App
App* get_option_group(std::string group_name) const
{
for (const App_p& app : subcommands_)
{
if (app->name_.empty() && app->group_ == group_name)
{
return app.get();
}
}
throw OptionNotFound(group_name);
}
/// No argument version of count counts the number of times this subcommand was
/// passed in. The main app will return 1. Unnamed subcommands will also return 1 unless
/// otherwise modified in a callback
std::size_t count() const { return parsed_; }
/// Get a count of all the arguments processed in options and subcommands, this excludes arguments which were
/// treated as extras.
std::size_t count_all() const
{
std::size_t cnt{ 0 };
for (auto& opt : options_)
{
cnt += opt->count();
}
for (auto& sub : subcommands_)
{
cnt += sub->count_all();
}
if (!get_name().empty())
{ // for named subcommands add the number of times the subcommand was called
cnt += parsed_;
}
return cnt;
}
/// Changes the group membership
App* group(std::string group_name)
{
group_ = group_name;
return this;
}
/// The argumentless form of require subcommand requires 1 or more subcommands
App* require_subcommand()
{
require_subcommand_min_ = 1;
require_subcommand_max_ = 0;
return this;
}
/// Require a subcommand to be given (does not affect help call)
/// The number required can be given. Negative values indicate maximum
/// number allowed (0 for any number). Max number inheritable.
App* require_subcommand(int value)
{
if (value < 0)
{
require_subcommand_min_ = 0;
require_subcommand_max_ = static_cast<std::size_t>(-value);
}
else
{
require_subcommand_min_ = static_cast<std::size_t>(value);
require_subcommand_max_ = static_cast<std::size_t>(value);
}
return this;
}
/// Explicitly control the number of subcommands required. Setting 0
/// for the max means unlimited number allowed. Max number inheritable.
App* require_subcommand(std::size_t min, std::size_t max)
{
require_subcommand_min_ = min;
require_subcommand_max_ = max;
return this;
}
/// The argumentless form of require option requires 1 or more options be used
App* require_option()
{
require_option_min_ = 1;
require_option_max_ = 0;
return this;
}
/// Require an option to be given (does not affect help call)
/// The number required can be given. Negative values indicate maximum
/// number allowed (0 for any number).
App* require_option(int value)
{
if (value < 0)
{
require_option_min_ = 0;
require_option_max_ = static_cast<std::size_t>(-value);
}
else
{
require_option_min_ = static_cast<std::size_t>(value);
require_option_max_ = static_cast<std::size_t>(value);
}
return this;
}
/// Explicitly control the number of options required. Setting 0
/// for the max means unlimited number allowed. Max number inheritable.
App* require_option(std::size_t min, std::size_t max)
{
require_option_min_ = min;
require_option_max_ = max;
return this;
}
/// Stop subcommand fallthrough, so that parent commands cannot collect commands after subcommand.
/// Default from parent, usually set on parent.
App* fallthrough(bool value = true)
{
fallthrough_ = value;
return this;
}
/// Check to see if this subcommand was parsed, true only if received on command line.
/// This allows the subcommand to be directly checked.
explicit operator bool() const { return parsed_ > 0; }
///@}
/// @name Extras for subclassing
///@{
/// This allows subclasses to inject code before callbacks but after parse.
///
/// This does not run if any errors or help is thrown.
virtual void pre_callback() {}
///@}
/// @name Parsing
///@{
//
/// Reset the parsed data
void clear()
{
parsed_ = 0;
pre_parse_called_ = false;
missing_.clear();
parsed_subcommands_.clear();
for (const Option_p& opt : options_)
{
opt->clear();
}
for (const App_p& subc : subcommands_)
{
subc->clear();
}
}
/// Parses the command line - throws errors.
/// This must be called after the options are in but before the rest of the program.
void parse(int argc, const char* const* argv)
{
// If the name is not set, read from command line
if (name_.empty() || has_automatic_name_)
{
has_automatic_name_ = true;
name_ = argv[0];
}
std::vector<std::string> args;
args.reserve(static_cast<std::size_t>(argc) - 1);
for (int i = argc - 1; i > 0; i--)
args.emplace_back(argv[i]);
parse(std::move(args));
}
/// Parse a single string as if it contained command line arguments.
/// This function splits the string into arguments then calls parse(std::vector<std::string> &)
/// the function takes an optional boolean argument specifying if the programName is included in the string to
/// process
void parse(std::string commandline, bool program_name_included = false)
{
if (program_name_included)
{
auto nstr = detail::split_program_name(commandline);
if ((name_.empty()) || (has_automatic_name_))
{
has_automatic_name_ = true;
name_ = nstr.first;
}
commandline = std::move(nstr.second);
}
else
detail::trim(commandline);
// the next section of code is to deal with quoted arguments after an '=' or ':' for windows like operations
if (!commandline.empty())
{
commandline = detail::find_and_modify(commandline, "=", detail::escape_detect);
if (allow_windows_style_options_)
commandline = detail::find_and_modify(commandline, ":", detail::escape_detect);
}
auto args = detail::split_up(std::move(commandline));
// remove all empty strings
args.erase(std::remove(args.begin(), args.end(), std::string{}), args.end());
std::reverse(args.begin(), args.end());
parse(std::move(args));
}
/// The real work is done here. Expects a reversed vector.
/// Changes the vector to the remaining options.
void parse(std::vector<std::string>& args)
{
// Clear if parsed
if (parsed_ > 0)
clear();
// parsed_ is incremented in commands/subcommands,
// but placed here to make sure this is cleared when
// running parse after an error is thrown, even by _validate or _configure.
parsed_ = 1;
_validate();
_configure();
// set the parent as nullptr as this object should be the top now
parent_ = nullptr;
parsed_ = 0;
_parse(args);
run_callback();
}
/// The real work is done here. Expects a reversed vector.
void parse(std::vector<std::string>&& args)
{
// Clear if parsed
if (parsed_ > 0)
clear();
// parsed_ is incremented in commands/subcommands,
// but placed here to make sure this is cleared when
// running parse after an error is thrown, even by _validate or _configure.
parsed_ = 1;
_validate();
_configure();
// set the parent as nullptr as this object should be the top now
parent_ = nullptr;
parsed_ = 0;
_parse(std::move(args));
run_callback();
}
/// Provide a function to print a help message. The function gets access to the App pointer and error.
void failure_message(std::function<std::string(const App*, const Error& e)> function)
{
failure_message_ = function;
}
/// Print a nice error message and return the exit code
int exit(const Error& e, std::ostream& out = std::cout, std::ostream& err = std::cerr) const
{
/// Avoid printing anything if this is a CLI::RuntimeError
if (dynamic_cast<const CLI::RuntimeError*>(&e) != nullptr)
return e.get_exit_code();
if (dynamic_cast<const CLI::CallForHelp*>(&e) != nullptr)
{
out << help();
return e.get_exit_code();
}
if (dynamic_cast<const CLI::CallForAllHelp*>(&e) != nullptr)
{
out << help("", AppFormatMode::All);
return e.get_exit_code();
}
if (e.get_exit_code() != static_cast<int>(ExitCodes::Success))
{
if (failure_message_)
err << failure_message_(this, e) << std::flush;
}
return e.get_exit_code();
}
///@}
/// @name Post parsing
///@{
/// Counts the number of times the given option was passed.
std::size_t count(std::string option_name) const { return get_option(option_name)->count(); }
/// Get a subcommand pointer list to the currently selected subcommands (after parsing by default, in command
/// line order; use parsed = false to get the original definition list.)
std::vector<App*> get_subcommands() const { return parsed_subcommands_; }
/// Get a filtered subcommand pointer list from the original definition list. An empty function will provide all
/// subcommands (const)
std::vector<const App*> get_subcommands(const std::function<bool(const App*)>& filter) const
{
std::vector<const App*> subcomms(subcommands_.size());
std::transform(std::begin(subcommands_), std::end(subcommands_), std::begin(subcomms), [](const App_p& v) {
return v.get();
});
if (filter)
{
subcomms.erase(std::remove_if(std::begin(subcomms),
std::end(subcomms),
[&filter](const App* app) { return !filter(app); }),
std::end(subcomms));
}
return subcomms;
}
/// Get a filtered subcommand pointer list from the original definition list. An empty function will provide all
/// subcommands
std::vector<App*> get_subcommands(const std::function<bool(App*)>& filter)
{
std::vector<App*> subcomms(subcommands_.size());
std::transform(std::begin(subcommands_), std::end(subcommands_), std::begin(subcomms), [](const App_p& v) {
return v.get();
});
if (filter)
{
subcomms.erase(
std::remove_if(std::begin(subcomms), std::end(subcomms), [&filter](App* app) { return !filter(app); }),
std::end(subcomms));
}
return subcomms;
}
/// Check to see if given subcommand was selected
bool got_subcommand(const App* subcom) const
{
// get subcom needed to verify that this was a real subcommand
return get_subcommand(subcom)->parsed_ > 0;
}
/// Check with name instead of pointer to see if subcommand was selected
bool got_subcommand(std::string subcommand_name) const { return get_subcommand(subcommand_name)->parsed_ > 0; }
/// Sets excluded options for the subcommand
App* excludes(Option* opt)
{
if (opt == nullptr)
{
throw OptionNotFound("nullptr passed");
}
exclude_options_.insert(opt);
return this;
}
/// Sets excluded subcommands for the subcommand
App* excludes(App* app)
{
if (app == nullptr)
{
throw OptionNotFound("nullptr passed");
}
if (app == this)
{
throw OptionNotFound("cannot self reference in needs");
}
auto res = exclude_subcommands_.insert(app);
// subcommand exclusion should be symmetric
if (res.second)
{
app->exclude_subcommands_.insert(this);
}
return this;
}
App* needs(Option* opt)
{
if (opt == nullptr)
{
throw OptionNotFound("nullptr passed");
}
need_options_.insert(opt);
return this;
}
App* needs(App* app)
{
if (app == nullptr)
{
throw OptionNotFound("nullptr passed");
}
if (app == this)
{
throw OptionNotFound("cannot self reference in needs");
}
need_subcommands_.insert(app);
return this;
}
/// Removes an option from the excludes list of this subcommand
bool remove_excludes(Option* opt)
{
auto iterator = std::find(std::begin(exclude_options_), std::end(exclude_options_), opt);
if (iterator == std::end(exclude_options_))
{
return false;
}
exclude_options_.erase(iterator);
return true;
}
/// Removes a subcommand from the excludes list of this subcommand
bool remove_excludes(App* app)
{
auto iterator = std::find(std::begin(exclude_subcommands_), std::end(exclude_subcommands_), app);
if (iterator == std::end(exclude_subcommands_))
{
return false;
}
auto other_app = *iterator;
exclude_subcommands_.erase(iterator);
other_app->remove_excludes(this);
return true;
}
/// Removes an option from the needs list of this subcommand
bool remove_needs(Option* opt)
{
auto iterator = std::find(std::begin(need_options_), std::end(need_options_), opt);
if (iterator == std::end(need_options_))
{
return false;
}
need_options_.erase(iterator);
return true;
}
/// Removes a subcommand from the needs list of this subcommand
bool remove_needs(App* app)
{
auto iterator = std::find(std::begin(need_subcommands_), std::end(need_subcommands_), app);
if (iterator == std::end(need_subcommands_))
{
return false;
}
need_subcommands_.erase(iterator);
return true;
}
///@}
/// @name Help
///@{
/// Set footer.
App* footer(std::string footer_string)
{
footer_ = std::move(footer_string);
return this;
}
/// Set footer.
App* footer(std::function<std::string()> footer_function)
{
footer_callback_ = std::move(footer_function);
return this;
}
/// Produce a string that could be read in as a config of the current values of the App. Set default_also to
/// include default arguments. Prefix will add a string to the beginning of each option.
std::string config_to_str(bool default_also = false, bool write_description = false) const
{
return config_formatter_->to_config(this, default_also, write_description, "");
}
/// Makes a help message, using the currently configured formatter
/// Will only do one subcommand at a time
std::string help(std::string prev = "", AppFormatMode mode = AppFormatMode::Normal) const
{
if (prev.empty())
prev = get_name();
else
prev += " " + get_name();
// Delegate to subcommand if needed
auto selected_subcommands = get_subcommands();
if (!selected_subcommands.empty())
{
return selected_subcommands.at(0)->help(prev, mode);
}
return formatter_->make_help(this, prev, mode);
}
///@}
/// @name Getters
///@{
/// Access the formatter
std::shared_ptr<FormatterBase> get_formatter() const { return formatter_; }
/// Access the config formatter
std::shared_ptr<Config> get_config_formatter() const { return config_formatter_; }
/// Access the config formatter as a configBase pointer
std::shared_ptr<ConfigBase> get_config_formatter_base() const
{
return std::dynamic_pointer_cast<ConfigBase>(config_formatter_);
}
/// Get the app or subcommand description
std::string get_description() const { return description_; }
/// Set the description of the app
App* description(std::string app_description)
{
description_ = std::move(app_description);
return this;
}
/// Get the list of options (user facing function, so returns raw pointers), has optional filter function
std::vector<const Option*> get_options(const std::function<bool(const Option*)> filter = {}) const
{
std::vector<const Option*> options(options_.size());
std::transform(std::begin(options_), std::end(options_), std::begin(options), [](const Option_p& val) {
return val.get();
});
if (filter)
{
options.erase(std::remove_if(std::begin(options),
std::end(options),
[&filter](const Option* opt) { return !filter(opt); }),
std::end(options));
}
return options;
}
/// Non-const version of the above
std::vector<Option*> get_options(const std::function<bool(Option*)> filter = {})
{
std::vector<Option*> options(options_.size());
std::transform(std::begin(options_), std::end(options_), std::begin(options), [](const Option_p& val) {
return val.get();
});
if (filter)
{
options.erase(
std::remove_if(std::begin(options), std::end(options), [&filter](Option* opt) { return !filter(opt); }),
std::end(options));
}
return options;
}
/// Get an option by name (noexcept non-const version)
Option* get_option_no_throw(std::string option_name) noexcept
{
for (Option_p& opt : options_)
{
if (opt->check_name(option_name))
{
return opt.get();
}
}
for (auto& subc : subcommands_)
{
// also check down into nameless subcommands
if (subc->get_name().empty())
{
auto opt = subc->get_option_no_throw(option_name);
if (opt != nullptr)
{
return opt;
}
}
}
return nullptr;
}
/// Get an option by name (noexcept const version)
const Option* get_option_no_throw(std::string option_name) const noexcept
{
for (const Option_p& opt : options_)
{
if (opt->check_name(option_name))
{
return opt.get();
}
}
for (const auto& subc : subcommands_)
{
// also check down into nameless subcommands
if (subc->get_name().empty())
{
auto opt = subc->get_option_no_throw(option_name);
if (opt != nullptr)
{
return opt;
}
}
}
return nullptr;
}
/// Get an option by name
const Option* get_option(std::string option_name) const
{
auto opt = get_option_no_throw(option_name);
if (opt == nullptr)
{
throw OptionNotFound(option_name);
}
return opt;
}
/// Get an option by name (non-const version)
Option* get_option(std::string option_name)
{
auto opt = get_option_no_throw(option_name);
if (opt == nullptr)
{
throw OptionNotFound(option_name);
}
return opt;
}
/// Shortcut bracket operator for getting a pointer to an option
const Option* operator[](const std::string& option_name) const { return get_option(option_name); }
/// Shortcut bracket operator for getting a pointer to an option
const Option* operator[](const char* option_name) const { return get_option(option_name); }
/// Check the status of ignore_case
bool get_ignore_case() const { return ignore_case_; }
/// Check the status of ignore_underscore
bool get_ignore_underscore() const { return ignore_underscore_; }
/// Check the status of fallthrough
bool get_fallthrough() const { return fallthrough_; }
/// Check the status of the allow windows style options
bool get_allow_windows_style_options() const { return allow_windows_style_options_; }
/// Check the status of the allow windows style options
bool get_positionals_at_end() const { return positionals_at_end_; }
/// Check the status of the allow windows style options
bool get_configurable() const { return configurable_; }
/// Get the group of this subcommand
const std::string& get_group() const { return group_; }
/// Generate and return the footer.
std::string get_footer() const { return (footer_callback_) ? footer_callback_() + '\n' + footer_ : footer_; }
/// Get the required min subcommand value
std::size_t get_require_subcommand_min() const { return require_subcommand_min_; }
/// Get the required max subcommand value
std::size_t get_require_subcommand_max() const { return require_subcommand_max_; }
/// Get the required min option value
std::size_t get_require_option_min() const { return require_option_min_; }
/// Get the required max option value
std::size_t get_require_option_max() const { return require_option_max_; }
/// Get the prefix command status
bool get_prefix_command() const { return prefix_command_; }
/// Get the status of allow extras
bool get_allow_extras() const { return allow_extras_; }
/// Get the status of required
bool get_required() const { return required_; }
/// Get the status of disabled
bool get_disabled() const { return disabled_; }
/// Get the status of disabled
bool get_immediate_callback() const { return immediate_callback_; }
/// Get the status of disabled by default
bool get_disabled_by_default() const { return (default_startup == startup_mode::disabled); }
/// Get the status of disabled by default
bool get_enabled_by_default() const { return (default_startup == startup_mode::enabled); }
/// Get the status of validating positionals
bool get_validate_positionals() const { return validate_positionals_; }
/// Get the status of allow extras
config_extras_mode get_allow_config_extras() const { return allow_config_extras_; }
/// Get a pointer to the help flag.
Option* get_help_ptr() { return help_ptr_; }
/// Get a pointer to the help flag. (const)
const Option* get_help_ptr() const { return help_ptr_; }
/// Get a pointer to the help all flag. (const)
const Option* get_help_all_ptr() const { return help_all_ptr_; }
/// Get a pointer to the config option.
Option* get_config_ptr() { return config_ptr_; }
/// Get a pointer to the config option. (const)
const Option* get_config_ptr() const { return config_ptr_; }
/// Get the parent of this subcommand (or nullptr if master app)
App* get_parent() { return parent_; }
/// Get the parent of this subcommand (or nullptr if master app) (const version)
const App* get_parent() const { return parent_; }
/// Get the name of the current app
const std::string& get_name() const { return name_; }
/// Get the aliases of the current app
const std::vector<std::string>& get_aliases() const { return aliases_; }
/// clear all the aliases of the current App
App* clear_aliases()
{
aliases_.clear();
return this;
}
/// Get a display name for an app
std::string get_display_name() const { return (!name_.empty()) ? name_ : "[Option Group: " + get_group() + "]"; }
/// Check the name, case insensitive and underscore insensitive if set
bool check_name(std::string name_to_check) const
{
std::string local_name = name_;
if (ignore_underscore_)
{
local_name = detail::remove_underscore(name_);
name_to_check = detail::remove_underscore(name_to_check);
}
if (ignore_case_)
{
local_name = detail::to_lower(name_);
name_to_check = detail::to_lower(name_to_check);
}
if (local_name == name_to_check)
{
return true;
}
for (auto les : aliases_)
{
if (ignore_underscore_)
{
les = detail::remove_underscore(les);
}
if (ignore_case_)
{
les = detail::to_lower(les);
}
if (les == name_to_check)
{
return true;
}
}
return false;
}
/// Get the groups available directly from this option (in order)
std::vector<std::string> get_groups() const
{
std::vector<std::string> groups;
for (const Option_p& opt : options_)
{
// Add group if it is not already in there
if (std::find(groups.begin(), groups.end(), opt->get_group()) == groups.end())
{
groups.push_back(opt->get_group());
}
}
return groups;
}
/// This gets a vector of pointers with the original parse order
const std::vector<Option*>& parse_order() const { return parse_order_; }
/// This returns the missing options from the current subcommand
std::vector<std::string> remaining(bool recurse = false) const
{
std::vector<std::string> miss_list;
for (const std::pair<detail::Classifier, std::string>& miss : missing_)
{
miss_list.push_back(std::get<1>(miss));
}
// Get from a subcommand that may allow extras
if (recurse)
{
if (!allow_extras_)
{
for (const auto& sub : subcommands_)
{
if (sub->name_.empty() && !sub->missing_.empty())
{
for (const std::pair<detail::Classifier, std::string>& miss : sub->missing_)
{
miss_list.push_back(std::get<1>(miss));
}
}
}
}
// Recurse into subcommands
for (const App* sub : parsed_subcommands_)
{
std::vector<std::string> output = sub->remaining(recurse);
std::copy(std::begin(output), std::end(output), std::back_inserter(miss_list));
}
}
return miss_list;
}
/// This returns the missing options in a form ready for processing by another command line program
std::vector<std::string> remaining_for_passthrough(bool recurse = false) const
{
std::vector<std::string> miss_list = remaining(recurse);
std::reverse(std::begin(miss_list), std::end(miss_list));
return miss_list;
}
/// This returns the number of remaining options, minus the -- separator
std::size_t remaining_size(bool recurse = false) const
{
auto remaining_options = static_cast<std::size_t>(std::count_if(
std::begin(missing_), std::end(missing_), [](const std::pair<detail::Classifier, std::string>& val) {
return val.first != detail::Classifier::POSITIONAL_MARK;
}));
if (recurse)
{
for (const App_p& sub : subcommands_)
{
remaining_options += sub->remaining_size(recurse);
}
}
return remaining_options;
}
///@}
protected:
/// Check the options to make sure there are no conflicts.
///
/// Currently checks to see if multiple positionals exist with unlimited args and checks if the min and max options
/// are feasible
void _validate() const
{
// count the number of positional only args
auto pcount = std::count_if(std::begin(options_), std::end(options_), [](const Option_p& opt) {
return opt->get_items_expected_max() >= detail::expected_max_vector_size && !opt->nonpositional();
});
if (pcount > 1)
{
auto pcount_req = std::count_if(std::begin(options_), std::end(options_), [](const Option_p& opt) {
return opt->get_items_expected_max() >= detail::expected_max_vector_size && !opt->nonpositional() &&
opt->get_required();
});
if (pcount - pcount_req > 1)
{
throw InvalidError(name_);
}
}
std::size_t nameless_subs{ 0 };
for (const App_p& app : subcommands_)
{
app->_validate();
if (app->get_name().empty())
++nameless_subs;
}
if (require_option_min_ > 0)
{
if (require_option_max_ > 0)
{
if (require_option_max_ < require_option_min_)
{
throw(InvalidError("Required min options greater than required max options",
ExitCodes::InvalidError));
}
}
if (require_option_min_ > (options_.size() + nameless_subs))
{
throw(InvalidError("Required min options greater than number of available options",
ExitCodes::InvalidError));
}
}
}
/// configure subcommands to enable parsing through the current object
/// set the correct fallthrough and prefix for nameless subcommands and manage the automatic enable or disable
/// makes sure parent is set correctly
void _configure()
{
if (default_startup == startup_mode::enabled)
{
disabled_ = false;
}
else if (default_startup == startup_mode::disabled)
{
disabled_ = true;
}
for (const App_p& app : subcommands_)
{
if (app->has_automatic_name_)
{
app->name_.clear();
}
if (app->name_.empty())
{
app->fallthrough_ = false; // make sure fallthrough_ is false to prevent infinite loop
app->prefix_command_ = false;
}
// make sure the parent is set to be this object in preparation for parse
app->parent_ = this;
app->_configure();
}
}
/// Internal function to run (App) callback, bottom up
void run_callback(bool final_mode = false)
{
pre_callback();
// in the main app if immediate_callback_ is set it runs the main callback before the used subcommands
if (!final_mode && parse_complete_callback_)
{
parse_complete_callback_();
}
// run the callbacks for the received subcommands
for (App* subc : get_subcommands())
{
subc->run_callback(true);
}
// now run callbacks for option_groups
for (auto& subc : subcommands_)
{
if (subc->name_.empty() && subc->count_all() > 0)
{
subc->run_callback(true);
}
}
// finally run the main callback
if (final_callback_ && (parsed_ > 0))
{
if (!name_.empty() || count_all() > 0)
{
final_callback_();
}
}
}
/// Check to see if a subcommand is valid. Give up immediately if subcommand max has been reached.
bool _valid_subcommand(const std::string& current, bool ignore_used = true) const
{
// Don't match if max has been reached - but still check parents
if (require_subcommand_max_ != 0 && parsed_subcommands_.size() >= require_subcommand_max_)
{
return parent_ != nullptr && parent_->_valid_subcommand(current, ignore_used);
}
auto com = _find_subcommand(current, true, ignore_used);
if (com != nullptr)
{
return true;
}
// Check parent if exists, else return false
return parent_ != nullptr && parent_->_valid_subcommand(current, ignore_used);
}
/// Selects a Classifier enum based on the type of the current argument
detail::Classifier _recognize(const std::string& current, bool ignore_used_subcommands = true) const
{
std::string dummy1, dummy2;
if (current == "--")
return detail::Classifier::POSITIONAL_MARK;
if (_valid_subcommand(current, ignore_used_subcommands))
return detail::Classifier::SUBCOMMAND;
if (detail::split_long(current, dummy1, dummy2))
return detail::Classifier::LONG;
if (detail::split_short(current, dummy1, dummy2))
{
if (dummy1[0] >= '0' && dummy1[0] <= '9')
{
if (get_option_no_throw(std::string{ '-', dummy1[0] }) == nullptr)
{
return detail::Classifier::NONE;
}
}
return detail::Classifier::SHORT;
}
if ((allow_windows_style_options_) && (detail::split_windows_style(current, dummy1, dummy2)))
return detail::Classifier::WINDOWS;
if ((current == "++") && !name_.empty() && parent_ != nullptr)
return detail::Classifier::SUBCOMMAND_TERMINATOR;
return detail::Classifier::NONE;
}
// The parse function is now broken into several parts, and part of process
/// Read and process a configuration file (main app only)
void _process_config_file()
{
if (config_ptr_ != nullptr)
{
bool config_required = config_ptr_->get_required();
bool file_given = config_ptr_->count() > 0;
auto config_file = config_ptr_->as<std::string>();
if (config_file.empty())
{
if (config_required)
{
throw FileError::Missing("no specified config file");
}
return;
}
auto path_result = detail::check_path(config_file.c_str());
if (path_result == detail::path_type::file)
{
try
{
std::vector<ConfigItem> values = config_formatter_->from_file(config_file);
_parse_config(values);
if (!file_given)
{
config_ptr_->add_result(config_file);
}
}
catch (const FileError&)
{
if (config_required || file_given)
throw;
}
}
else if (config_required || file_given)
{
throw FileError::Missing(config_file);
}
}
}
/// Get envname options if not yet passed. Runs on *all* subcommands.
void _process_env()
{
for (const Option_p& opt : options_)
{
if (opt->count() == 0 && !opt->envname_.empty())
{
char* buffer = nullptr;
std::string ename_string;
#ifdef _MSC_VER
// Windows version
std::size_t sz = 0;
if (_dupenv_s(&buffer, &sz, opt->envname_.c_str()) == 0 && buffer != nullptr)
{
ename_string = std::string(buffer);
free(buffer);
}
#else
// This also works on Windows, but gives a warning
buffer = std::getenv(opt->envname_.c_str());
if (buffer != nullptr)
ename_string = std::string(buffer);
#endif
if (!ename_string.empty())
{
opt->add_result(ename_string);
}
}
}
for (App_p& sub : subcommands_)
{
if (sub->get_name().empty() || !sub->parse_complete_callback_)
sub->_process_env();
}
}
/// Process callbacks. Runs on *all* subcommands.
void _process_callbacks()
{
for (App_p& sub : subcommands_)
{
// process the priority option_groups first
if (sub->get_name().empty() && sub->parse_complete_callback_)
{
if (sub->count_all() > 0)
{
sub->_process_callbacks();
sub->run_callback();
}
}
}
for (const Option_p& opt : options_)
{
if (opt->count() > 0 && !opt->get_callback_run())
{
opt->run_callback();
}
}
for (App_p& sub : subcommands_)
{
if (!sub->parse_complete_callback_)
{
sub->_process_callbacks();
}
}
}
/// Run help flag processing if any are found.
///
/// The flags allow recursive calls to remember if there was a help flag on a parent.
void _process_help_flags(bool trigger_help = false, bool trigger_all_help = false) const
{
const Option* help_ptr = get_help_ptr();
const Option* help_all_ptr = get_help_all_ptr();
if (help_ptr != nullptr && help_ptr->count() > 0)
trigger_help = true;
if (help_all_ptr != nullptr && help_all_ptr->count() > 0)
trigger_all_help = true;
// If there were parsed subcommands, call those. First subcommand wins if there are multiple ones.
if (!parsed_subcommands_.empty())
{
for (const App* sub : parsed_subcommands_)
sub->_process_help_flags(trigger_help, trigger_all_help);
// Only the final subcommand should call for help. All help wins over help.
}
else if (trigger_all_help)
{
throw CallForAllHelp();
}
else if (trigger_help)
{
throw CallForHelp();
}
}
/// Verify required options and cross requirements. Subcommands too (only if selected).
void _process_requirements()
{
// check excludes
bool excluded{ false };
std::string excluder;
for (auto& opt : exclude_options_)
{
if (opt->count() > 0)
{
excluded = true;
excluder = opt->get_name();
}
}
for (auto& subc : exclude_subcommands_)
{
if (subc->count_all() > 0)
{
excluded = true;
excluder = subc->get_display_name();
}
}
if (excluded)
{
if (count_all() > 0)
{
throw ExcludesError(get_display_name(), excluder);
}
// if we are excluded but didn't receive anything, just return
return;
}
// check excludes
bool missing_needed{ false };
std::string missing_need;
for (auto& opt : need_options_)
{
if (opt->count() == 0)
{
missing_needed = true;
missing_need = opt->get_name();
}
}
for (auto& subc : need_subcommands_)
{
if (subc->count_all() == 0)
{
missing_needed = true;
missing_need = subc->get_display_name();
}
}
if (missing_needed)
{
if (count_all() > 0)
{
throw RequiresError(get_display_name(), missing_need);
}
// if we missing something but didn't have any options, just return
return;
}
std::size_t used_options = 0;
for (const Option_p& opt : options_)
{
if (opt->count() != 0)
{
++used_options;
}
// Required but empty
if (opt->get_required() && opt->count() == 0)
{
throw RequiredError(opt->get_name());
}
// Requires
for (const Option* opt_req : opt->needs_)
if (opt->count() > 0 && opt_req->count() == 0)
throw RequiresError(opt->get_name(), opt_req->get_name());
// Excludes
for (const Option* opt_ex : opt->excludes_)
if (opt->count() > 0 && opt_ex->count() != 0)
throw ExcludesError(opt->get_name(), opt_ex->get_name());
}
// check for the required number of subcommands
if (require_subcommand_min_ > 0)
{
auto selected_subcommands = get_subcommands();
if (require_subcommand_min_ > selected_subcommands.size())
throw RequiredError::Subcommand(require_subcommand_min_);
}
// Max error cannot occur, the extra subcommand will parse as an ExtrasError or a remaining item.
// run this loop to check how many unnamed subcommands were actually used since they are considered options
// from the perspective of an App
for (App_p& sub : subcommands_)
{
if (sub->disabled_)
continue;
if (sub->name_.empty() && sub->count_all() > 0)
{
++used_options;
}
}
if (require_option_min_ > used_options || (require_option_max_ > 0 && require_option_max_ < used_options))
{
auto option_list = detail::join(options_, [](const Option_p& ptr) { return ptr->get_name(false, true); });
if (option_list.compare(0, 10, "-h,--help,") == 0)
{
option_list.erase(0, 10);
}
auto subc_list = get_subcommands([](App* app) { return ((app->get_name().empty()) && (!app->disabled_)); });
if (!subc_list.empty())
{
option_list += "," + detail::join(subc_list, [](const App* app) { return app->get_display_name(); });
}
throw RequiredError::Option(require_option_min_, require_option_max_, used_options, option_list);
}
// now process the requirements for subcommands if needed
for (App_p& sub : subcommands_)
{
if (sub->disabled_)
continue;
if (sub->name_.empty() && sub->required_ == false)
{
if (sub->count_all() == 0)
{
if (require_option_min_ > 0 && require_option_min_ <= used_options)
{
continue;
// if we have met the requirement and there is nothing in this option group skip checking
// requirements
}
if (require_option_max_ > 0 && used_options >= require_option_min_)
{
continue;
// if we have met the requirement and there is nothing in this option group skip checking
// requirements
}
}
}
if (sub->count() > 0 || sub->name_.empty())
{
sub->_process_requirements();
}
if (sub->required_ && sub->count_all() == 0)
{
throw(CLI::RequiredError(sub->get_display_name()));
}
}
}
/// Process callbacks and such.
void _process()
{
_process_config_file();
_process_env();
_process_callbacks();
_process_help_flags();
_process_requirements();
}
/// Throw an error if anything is left over and should not be.
void _process_extras()
{
if (!(allow_extras_ || prefix_command_))
{
std::size_t num_left_over = remaining_size();
if (num_left_over > 0)
{
throw ExtrasError(name_, remaining(false));
}
}
for (App_p& sub : subcommands_)
{
if (sub->count() > 0)
sub->_process_extras();
}
}
/// Throw an error if anything is left over and should not be.
/// Modifies the args to fill in the missing items before throwing.
void _process_extras(std::vector<std::string>& args)
{
if (!(allow_extras_ || prefix_command_))
{
std::size_t num_left_over = remaining_size();
if (num_left_over > 0)
{
args = remaining(false);
throw ExtrasError(name_, args);
}
}
for (App_p& sub : subcommands_)
{
if (sub->count() > 0)
sub->_process_extras(args);
}
}
/// Internal function to recursively increment the parsed counter on the current app as well unnamed subcommands
void increment_parsed()
{
++parsed_;
for (App_p& sub : subcommands_)
{
if (sub->get_name().empty())
sub->increment_parsed();
}
}
/// Internal parse function
void _parse(std::vector<std::string>& args)
{
increment_parsed();
_trigger_pre_parse(args.size());
bool positional_only = false;
while (!args.empty())
{
if (!_parse_single(args, positional_only))
{
break;
}
}
if (parent_ == nullptr)
{
_process();
// Throw error if any items are left over (depending on settings)
_process_extras(args);
// Convert missing (pairs) to extras (string only) ready for processing in another app
args = remaining_for_passthrough(false);
}
else if (parse_complete_callback_)
{
_process_env();
_process_callbacks();
_process_help_flags();
_process_requirements();
run_callback();
}
}
/// Internal parse function
void _parse(std::vector<std::string>&& args)
{
// this can only be called by the top level in which case parent == nullptr by definition
// operation is simplified
increment_parsed();
_trigger_pre_parse(args.size());
bool positional_only = false;
while (!args.empty())
{
_parse_single(args, positional_only);
}
_process();
// Throw error if any items are left over (depending on settings)
_process_extras();
}
/// Parse one config param, return false if not found in any subcommand, remove if it is
///
/// If this has more than one dot.separated.name, go into the subcommand matching it
/// Returns true if it managed to find the option, if false you'll need to remove the arg manually.
void _parse_config(std::vector<ConfigItem>& args)
{
for (ConfigItem item : args)
{
if (!_parse_single_config(item) && allow_config_extras_ == config_extras_mode::error)
throw ConfigError::Extras(item.fullname());
}
}
/// Fill in a single config option
bool _parse_single_config(const ConfigItem& item, std::size_t level = 0)
{
if (level < item.parents.size())
{
try
{
auto subcom = get_subcommand(item.parents.at(level));
auto result = subcom->_parse_single_config(item, level + 1);
return result;
}
catch (const OptionNotFound&)
{
return false;
}
}
// check for section open
if (item.name == "++")
{
if (configurable_)
{
increment_parsed();
_trigger_pre_parse(2);
if (parent_ != nullptr)
{
parent_->parsed_subcommands_.push_back(this);
}
}
return true;
}
// check for section close
if (item.name == "--")
{
if (configurable_)
{
_process_callbacks();
_process_requirements();
run_callback();
}
return true;
}
Option* op = get_option_no_throw("--" + item.name);
if (op == nullptr)
{
// If the option was not present
if (get_allow_config_extras() == config_extras_mode::capture)
// Should we worry about classifying the extras properly?
missing_.emplace_back(detail::Classifier::NONE, item.fullname());
return false;
}
if (!op->get_configurable())
throw ConfigError::NotConfigurable(item.fullname());
if (op->empty())
{
// Flag parsing
if (op->get_expected_min() == 0)
{
auto res = config_formatter_->to_flag(item);
res = op->get_flag_value(item.name, res);
op->add_result(res);
}
else
{
op->add_result(item.inputs);
op->run_callback();
}
}
return true;
}
/// Parse "one" argument (some may eat more than one), delegate to parent if fails, add to missing if missing
/// from master return false if the parse has failed and needs to return to parent
bool _parse_single(std::vector<std::string>& args, bool& positional_only)
{
bool retval = true;
detail::Classifier classifier = positional_only ? detail::Classifier::NONE : _recognize(args.back());
switch (classifier)
{
case detail::Classifier::POSITIONAL_MARK:
args.pop_back();
positional_only = true;
if ((!_has_remaining_positionals()) && (parent_ != nullptr))
{
retval = false;
}
else
{
_move_to_missing(classifier, "--");
}
break;
case detail::Classifier::SUBCOMMAND_TERMINATOR:
// treat this like a positional mark if in the parent app
args.pop_back();
retval = false;
break;
case detail::Classifier::SUBCOMMAND:
retval = _parse_subcommand(args);
break;
case detail::Classifier::LONG:
case detail::Classifier::SHORT:
case detail::Classifier::WINDOWS:
// If already parsed a subcommand, don't accept options_
_parse_arg(args, classifier);
break;
case detail::Classifier::NONE:
// Probably a positional or something for a parent (sub)command
retval = _parse_positional(args, false);
if (retval && positionals_at_end_)
{
positional_only = true;
}
break;
// LCOV_EXCL_START
default:
throw HorribleError("unrecognized classifier (you should not see this!)");
// LCOV_EXCL_STOP
}
return retval;
}
/// Count the required remaining positional arguments
std::size_t _count_remaining_positionals(bool required_only = false) const
{
std::size_t retval = 0;
for (const Option_p& opt : options_)
{
if (opt->get_positional() && (!required_only || opt->get_required()))
{
if (opt->get_items_expected_min() > 0 &&
static_cast<int>(opt->count()) < opt->get_items_expected_min())
{
retval += static_cast<std::size_t>(opt->get_items_expected_min()) - opt->count();
}
}
}
return retval;
}
/// Count the required remaining positional arguments
bool _has_remaining_positionals() const
{
for (const Option_p& opt : options_)
{
if (opt->get_positional() && ((static_cast<int>(opt->count()) < opt->get_items_expected_min())))
{
return true;
}
}
return false;
}
/// Parse a positional, go up the tree to check
/// @param haltOnSubcommand if set to true the operation will not process subcommands merely return false
/// Return true if the positional was used false otherwise
bool _parse_positional(std::vector<std::string>& args, bool haltOnSubcommand)
{
const std::string& positional = args.back();
if (positionals_at_end_)
{
// deal with the case of required arguments at the end which should take precedence over other arguments
auto arg_rem = args.size();
auto remreq = _count_remaining_positionals(true);
if (arg_rem <= remreq)
{
for (const Option_p& opt : options_)
{
if (opt->get_positional() && opt->required_)
{
if (static_cast<int>(opt->count()) < opt->get_items_expected_min())
{
if (validate_positionals_)
{
std::string pos = positional;
pos = opt->_validate(pos, 0);
if (!pos.empty())
{
continue;
}
}
opt->add_result(positional);
parse_order_.push_back(opt.get());
args.pop_back();
return true;
}
}
}
}
}
for (const Option_p& opt : options_)
{
// Eat options, one by one, until done
if (opt->get_positional() &&
(static_cast<int>(opt->count()) < opt->get_items_expected_min() || opt->get_allow_extra_args()))
{
if (validate_positionals_)
{
std::string pos = positional;
pos = opt->_validate(pos, 0);
if (!pos.empty())
{
continue;
}
}
opt->add_result(positional);
parse_order_.push_back(opt.get());
args.pop_back();
return true;
}
}
for (auto& subc : subcommands_)
{
if ((subc->name_.empty()) && (!subc->disabled_))
{
if (subc->_parse_positional(args, false))
{
if (!subc->pre_parse_called_)
{
subc->_trigger_pre_parse(args.size());
}
return true;
}
}
}
// let the parent deal with it if possible
if (parent_ != nullptr && fallthrough_)
return _get_fallthrough_parent()->_parse_positional(args, static_cast<bool>(parse_complete_callback_));
/// Try to find a local subcommand that is repeated
auto com = _find_subcommand(args.back(), true, false);
if (com != nullptr && (require_subcommand_max_ == 0 || require_subcommand_max_ > parsed_subcommands_.size()))
{
if (haltOnSubcommand)
{
return false;
}
args.pop_back();
com->_parse(args);
return true;
}
/// now try one last gasp at subcommands that have been executed before, go to root app and try to find a
/// subcommand in a broader way, if one exists let the parent deal with it
auto parent_app = (parent_ != nullptr) ? _get_fallthrough_parent() : this;
com = parent_app->_find_subcommand(args.back(), true, false);
if (com != nullptr && (com->parent_->require_subcommand_max_ == 0 ||
com->parent_->require_subcommand_max_ > com->parent_->parsed_subcommands_.size()))
{
return false;
}
if (positionals_at_end_)
{
throw CLI::ExtrasError(name_, args);
}
/// If this is an option group don't deal with it
if (parent_ != nullptr && name_.empty())
{
return false;
}
/// We are out of other options this goes to missing
_move_to_missing(detail::Classifier::NONE, positional);
args.pop_back();
if (prefix_command_)
{
while (!args.empty())
{
_move_to_missing(detail::Classifier::NONE, args.back());
args.pop_back();
}
}
return true;
}
/// Locate a subcommand by name with two conditions, should disabled subcommands be ignored, and should used
/// subcommands be ignored
App* _find_subcommand(const std::string& subc_name, bool ignore_disabled, bool ignore_used) const noexcept
{
for (const App_p& com : subcommands_)
{
if (com->disabled_ && ignore_disabled)
continue;
if (com->get_name().empty())
{
auto subc = com->_find_subcommand(subc_name, ignore_disabled, ignore_used);
if (subc != nullptr)
{
return subc;
}
}
if (com->check_name(subc_name))
{
if ((!*com) || !ignore_used)
return com.get();
}
}
return nullptr;
}
/// Parse a subcommand, modify args and continue
///
/// Unlike the others, this one will always allow fallthrough
/// return true if the subcommand was processed false otherwise
bool _parse_subcommand(std::vector<std::string>& args)
{
if (_count_remaining_positionals(/* required */ true) > 0)
{
_parse_positional(args, false);
return true;
}
auto com = _find_subcommand(args.back(), true, true);
if (com != nullptr)
{
args.pop_back();
parsed_subcommands_.push_back(com);
com->_parse(args);
auto parent_app = com->parent_;
while (parent_app != this)
{
parent_app->_trigger_pre_parse(args.size());
parent_app->parsed_subcommands_.push_back(com);
parent_app = parent_app->parent_;
}
return true;
}
if (parent_ == nullptr)
throw HorribleError("Subcommand " + args.back() + " missing");
return false;
}
/// Parse a short (false) or long (true) argument, must be at the top of the list
/// return true if the argument was processed or false if nothing was done
bool _parse_arg(std::vector<std::string>& args, detail::Classifier current_type)
{
std::string current = args.back();
std::string arg_name;
std::string value;
std::string rest;
switch (current_type)
{
case detail::Classifier::LONG:
if (!detail::split_long(current, arg_name, value))
throw HorribleError("Long parsed but missing (you should not see this):" + args.back());
break;
case detail::Classifier::SHORT:
if (!detail::split_short(current, arg_name, rest))
throw HorribleError("Short parsed but missing! You should not see this");
break;
case detail::Classifier::WINDOWS:
if (!detail::split_windows_style(current, arg_name, value))
throw HorribleError("windows option parsed but missing! You should not see this");
break;
case detail::Classifier::SUBCOMMAND:
case detail::Classifier::SUBCOMMAND_TERMINATOR:
case detail::Classifier::POSITIONAL_MARK:
case detail::Classifier::NONE:
default:
throw HorribleError("parsing got called with invalid option! You should not see this");
}
auto op_ptr =
std::find_if(std::begin(options_), std::end(options_), [arg_name, current_type](const Option_p& opt) {
if (current_type == detail::Classifier::LONG)
return opt->check_lname(arg_name);
if (current_type == detail::Classifier::SHORT)
return opt->check_sname(arg_name);
// this will only get called for detail::Classifier::WINDOWS
return opt->check_lname(arg_name) || opt->check_sname(arg_name);
});
// Option not found
if (op_ptr == std::end(options_))
{
for (auto& subc : subcommands_)
{
if (subc->name_.empty() && !subc->disabled_)
{
if (subc->_parse_arg(args, current_type))
{
if (!subc->pre_parse_called_)
{
subc->_trigger_pre_parse(args.size());
}
return true;
}
}
}
// If a subcommand, try the master command
if (parent_ != nullptr && fallthrough_)
return _get_fallthrough_parent()->_parse_arg(args, current_type);
// don't capture missing if this is a nameless subcommand
if (parent_ != nullptr && name_.empty())
{
return false;
}
// Otherwise, add to missing
args.pop_back();
_move_to_missing(current_type, current);
return true;
}
args.pop_back();
// Get a reference to the pointer to make syntax bearable
Option_p& op = *op_ptr;
int min_num = (std::min)(op->get_type_size_min(), op->get_items_expected_min());
int max_num = op->get_items_expected_max();
// Make sure we always eat the minimum for unlimited vectors
int collected = 0; // total number of arguments collected
int result_count = 0; // local variable for number of results in a single arg string
// deal with purely flag like things
if (max_num == 0)
{
auto res = op->get_flag_value(arg_name, value);
op->add_result(res);
parse_order_.push_back(op.get());
}
else if (!value.empty())
{ // --this=value
op->add_result(value, result_count);
parse_order_.push_back(op.get());
collected += result_count;
// -Trest
}
else if (!rest.empty())
{
op->add_result(rest, result_count);
parse_order_.push_back(op.get());
rest = "";
collected += result_count;
}
// gather the minimum number of arguments
while (min_num > collected && !args.empty())
{
std::string current_ = args.back();
args.pop_back();
op->add_result(current_, result_count);
parse_order_.push_back(op.get());
collected += result_count;
}
if (min_num > collected)
{ // if we have run out of arguments and the minimum was not met
throw ArgumentMismatch::TypedAtLeast(op->get_name(), min_num, op->get_type_name());
}
if (max_num > collected || op->get_allow_extra_args())
{ // we allow optional arguments
auto remreqpos = _count_remaining_positionals(true);
// we have met the minimum now optionally check up to the maximum
while ((collected < max_num || op->get_allow_extra_args()) && !args.empty() &&
_recognize(args.back(), false) == detail::Classifier::NONE)
{
// If any required positionals remain, don't keep eating
if (remreqpos >= args.size())
{
break;
}
op->add_result(args.back(), result_count);
parse_order_.push_back(op.get());
args.pop_back();
collected += result_count;
}
// Allow -- to end an unlimited list and "eat" it
if (!args.empty() && _recognize(args.back()) == detail::Classifier::POSITIONAL_MARK)
args.pop_back();
// optional flag that didn't receive anything now get the default value
if (min_num == 0 && max_num > 0 && collected == 0)
{
auto res = op->get_flag_value(arg_name, std::string{});
op->add_result(res);
parse_order_.push_back(op.get());
}
}
// if we only partially completed a type then add an empty string for later processing
if (min_num > 0 && op->get_type_size_max() != min_num && collected % op->get_type_size_max() != 0)
{
op->add_result(std::string{});
}
if (!rest.empty())
{
rest = "-" + rest;
args.push_back(rest);
}
return true;
}
/// Trigger the pre_parse callback if needed
void _trigger_pre_parse(std::size_t remaining_args)
{
if (!pre_parse_called_)
{
pre_parse_called_ = true;
if (pre_parse_callback_)
{
pre_parse_callback_(remaining_args);
}
}
else if (immediate_callback_)
{
if (!name_.empty())
{
auto pcnt = parsed_;
auto extras = std::move(missing_);
clear();
parsed_ = pcnt;
pre_parse_called_ = true;
missing_ = std::move(extras);
}
}
}
/// Get the appropriate parent to fallthrough to which is the first one that has a name or the main app
App* _get_fallthrough_parent()
{
if (parent_ == nullptr)
{
throw(HorribleError("No Valid parent"));
}
auto fallthrough_parent = parent_;
while ((fallthrough_parent->parent_ != nullptr) && (fallthrough_parent->get_name().empty()))
{
fallthrough_parent = fallthrough_parent->parent_;
}
return fallthrough_parent;
}
/// Helper function to run through all possible comparisons of subcommand names to check there is no overlap
const std::string& _compare_subcommand_names(const App& subcom, const App& base) const
{
static const std::string estring;
if (subcom.disabled_)
{
return estring;
}
for (auto& subc : base.subcommands_)
{
if (subc.get() != &subcom)
{
if (subc->disabled_)
{
continue;
}
if (!subcom.get_name().empty())
{
if (subc->check_name(subcom.get_name()))
{
return subcom.get_name();
}
}
if (!subc->get_name().empty())
{
if (subcom.check_name(subc->get_name()))
{
return subc->get_name();
}
}
for (const auto& les : subcom.aliases_)
{
if (subc->check_name(les))
{
return les;
}
}
// this loop is needed in case of ignore_underscore or ignore_case on one but not the other
for (const auto& les : subc->aliases_)
{
if (subcom.check_name(les))
{
return les;
}
}
// if the subcommand is an option group we need to check deeper
if (subc->get_name().empty())
{
auto& cmpres = _compare_subcommand_names(subcom, *subc);
if (!cmpres.empty())
{
return cmpres;
}
}
// if the test subcommand is an option group we need to check deeper
if (subcom.get_name().empty())
{
auto& cmpres = _compare_subcommand_names(*subc, subcom);
if (!cmpres.empty())
{
return cmpres;
}
}
}
}
return estring;
}
/// Helper function to place extra values in the most appropriate position
void _move_to_missing(detail::Classifier val_type, const std::string& val)
{
if (allow_extras_ || subcommands_.empty())
{
missing_.emplace_back(val_type, val);
return;
}
// allow extra arguments to be places in an option group if it is allowed there
for (auto& subc : subcommands_)
{
if (subc->name_.empty() && subc->allow_extras_)
{
subc->missing_.emplace_back(val_type, val);
return;
}
}
// if we haven't found any place to put them yet put them in missing
missing_.emplace_back(val_type, val);
}
public:
/// function that could be used by subclasses of App to shift options around into subcommands
void _move_option(Option* opt, App* app)
{
if (opt == nullptr)
{
throw OptionNotFound("the option is NULL");
}
// verify that the give app is actually a subcommand
bool found = false;
for (auto& subc : subcommands_)
{
if (app == subc.get())
{
found = true;
}
}
if (!found)
{
throw OptionNotFound("The Given app is not a subcommand");
}
if ((help_ptr_ == opt) || (help_all_ptr_ == opt))
throw OptionAlreadyAdded("cannot move help options");
if (config_ptr_ == opt)
throw OptionAlreadyAdded("cannot move config file options");
auto iterator =
std::find_if(std::begin(options_), std::end(options_), [opt](const Option_p& v) { return v.get() == opt; });
if (iterator != std::end(options_))
{
const auto& opt_p = *iterator;
if (std::find_if(std::begin(app->options_), std::end(app->options_), [&opt_p](const Option_p& v) {
return (*v == *opt_p);
}) == std::end(app->options_))
{
// only erase after the insertion was successful
app->options_.push_back(std::move(*iterator));
options_.erase(iterator);
}
else
{
throw OptionAlreadyAdded("option was not located: " + opt->get_name());
}
}
else
{
throw OptionNotFound("could not locate the given Option");
}
}
}; // namespace CLI
/// Extension of App to better manage groups of options
class Option_group : public App
{
public:
Option_group(std::string group_description, std::string group_name, App* parent) :
App(std::move(group_description), "", parent)
{
group(group_name);
// option groups should have automatic fallthrough
}
using App::add_option;
/// Add an existing option to the Option_group
Option* add_option(Option* opt)
{
if (get_parent() == nullptr)
{
throw OptionNotFound("Unable to locate the specified option");
}
get_parent()->_move_option(opt, this);
return opt;
}
/// Add an existing option to the Option_group
void add_options(Option* opt) { add_option(opt); }
/// Add a bunch of options to the group
template<typename... Args>
void add_options(Option* opt, Args... args)
{
add_option(opt);
add_options(args...);
}
using App::add_subcommand;
/// Add an existing subcommand to be a member of an option_group
App* add_subcommand(App* subcom)
{
App_p subc = subcom->get_parent()->get_subcommand_ptr(subcom);
subc->get_parent()->remove_subcommand(subcom);
add_subcommand(std::move(subc));
return subcom;
}
};
/// Helper function to enable one option group/subcommand when another is used
inline void TriggerOn(App* trigger_app, App* app_to_enable)
{
app_to_enable->enabled_by_default(false);
app_to_enable->disabled_by_default();
trigger_app->preparse_callback([app_to_enable](std::size_t) { app_to_enable->disabled(false); });
}
/// Helper function to enable one option group/subcommand when another is used
inline void TriggerOn(App* trigger_app, std::vector<App*> apps_to_enable)
{
for (auto& app : apps_to_enable)
{
app->enabled_by_default(false);
app->disabled_by_default();
}
trigger_app->preparse_callback([apps_to_enable](std::size_t) {
for (auto& app : apps_to_enable)
{
app->disabled(false);
}
});
}
/// Helper function to disable one option group/subcommand when another is used
inline void TriggerOff(App* trigger_app, App* app_to_enable)
{
app_to_enable->disabled_by_default(false);
app_to_enable->enabled_by_default();
trigger_app->preparse_callback([app_to_enable](std::size_t) { app_to_enable->disabled(); });
}
/// Helper function to disable one option group/subcommand when another is used
inline void TriggerOff(App* trigger_app, std::vector<App*> apps_to_enable)
{
for (auto& app : apps_to_enable)
{
app->disabled_by_default(false);
app->enabled_by_default();
}
trigger_app->preparse_callback([apps_to_enable](std::size_t) {
for (auto& app : apps_to_enable)
{
app->disabled();
}
});
}
/// Helper function to mark an option as deprecated
inline void deprecate_option(Option* opt, const std::string& replacement = "")
{
Validator deprecate_warning{ [opt, replacement](std::string&) {
std::cout << opt->get_name() << " is deprecated please use '" << replacement
<< "' instead\n";
return std::string();
},
"DEPRECATED" };
deprecate_warning.application_index(0);
opt->check(deprecate_warning);
if (!replacement.empty())
{
opt->description(opt->get_description() + " DEPRECATED: please use '" + replacement + "' instead");
}
}
/// Helper function to mark an option as deprecated
inline void deprecate_option(App* app, const std::string& option_name, const std::string& replacement = "")
{
auto opt = app->get_option(option_name);
deprecate_option(opt, replacement);
}
/// Helper function to mark an option as deprecated
inline void deprecate_option(App& app, const std::string& option_name, const std::string& replacement = "")
{
auto opt = app.get_option(option_name);
deprecate_option(opt, replacement);
}
/// Helper function to mark an option as retired
inline void retire_option(App* app, Option* opt)
{
App temp;
auto option_copy = temp.add_option(opt->get_name(false, true))
->type_size(opt->get_type_size_min(), opt->get_type_size_max())
->expected(opt->get_expected_min(), opt->get_expected_max())
->allow_extra_args(opt->get_allow_extra_args());
app->remove_option(opt);
auto opt2 = app->add_option(option_copy->get_name(false, true), "option has been retired and has no effect")
->type_name("RETIRED")
->default_str("RETIRED")
->type_size(option_copy->get_type_size_min(), option_copy->get_type_size_max())
->expected(option_copy->get_expected_min(), option_copy->get_expected_max())
->allow_extra_args(option_copy->get_allow_extra_args());
Validator retired_warning{ [opt2](std::string&) {
std::cout << "WARNING " << opt2->get_name() << " is retired and has no effect\n";
return std::string();
},
"" };
retired_warning.application_index(0);
opt2->check(retired_warning);
}
/// Helper function to mark an option as retired
inline void retire_option(App& app, Option* opt) { retire_option(&app, opt); }
/// Helper function to mark an option as retired
inline void retire_option(App* app, const std::string& option_name)
{
auto opt = app->get_option_no_throw(option_name);
if (opt != nullptr)
{
retire_option(app, opt);
return;
}
auto opt2 = app->add_option(option_name, "option has been retired and has no effect")
->type_name("RETIRED")
->expected(0, 1)
->default_str("RETIRED");
Validator retired_warning{ [opt2](std::string&) {
std::cout << "WARNING " << opt2->get_name() << " is retired and has no effect\n";
return std::string();
},
"" };
retired_warning.application_index(0);
opt2->check(retired_warning);
}
/// Helper function to mark an option as retired
inline void retire_option(App& app, const std::string& option_name) { retire_option(&app, option_name); }
namespace FailureMessage
{
/// Printout a clean, simple message on error (the default in CLI11 1.5+)
inline std::string simple(const App* app, const Error& e)
{
std::string header = std::string(e.what()) + "\n";
std::vector<std::string> names;
// Collect names
if (app->get_help_ptr() != nullptr)
names.push_back(app->get_help_ptr()->get_name());
if (app->get_help_all_ptr() != nullptr)
names.push_back(app->get_help_all_ptr()->get_name());
// If any names found, suggest those
if (!names.empty())
header += "Run with " + detail::join(names, " or ") + " for more information.\n";
return header;
}
/// Printout the full help string on error (if this fn is set, the old default for CLI11)
inline std::string help(const App* app, const Error& e)
{
std::string header = std::string("ERROR: ") + e.get_name() + ": " + e.what() + "\n";
header += app->help();
return header;
}
} // namespace FailureMessage
namespace detail
{
/// This class is simply to allow tests access to App's protected functions
struct AppFriend
{
/// Wrap _parse_short, perfectly forward arguments and return
template<typename... Args>
static auto parse_arg(App* app, Args&&... args) ->
typename std::result_of<decltype (&App::_parse_arg)(App, Args...)>::type
{
return app->_parse_arg(std::forward<Args>(args)...);
}
/// Wrap _parse_subcommand, perfectly forward arguments and return
template<typename... Args>
static auto parse_subcommand(App* app, Args&&... args) ->
typename std::result_of<decltype (&App::_parse_subcommand)(App, Args...)>::type
{
return app->_parse_subcommand(std::forward<Args>(args)...);
}
/// Wrap the fallthrough parent function to make sure that is working correctly
static App* get_fallthrough_parent(App* app) { return app->_get_fallthrough_parent(); }
};
} // namespace detail
} // namespace CLI
// From CLI/Config.hpp:
namespace CLI
{
namespace detail
{
inline std::string convert_arg_for_ini(const std::string& arg)
{
if (arg.empty())
{
return std::string(2, '"');
}
// some specifically supported strings
if (arg == "true" || arg == "false" || arg == "nan" || arg == "inf")
{
return arg;
}
// floating point conversion can convert some hex codes, but don't try that here
if (arg.compare(0, 2, "0x") != 0 && arg.compare(0, 2, "0X") != 0)
{
double val;
if (detail::lexical_cast(arg, val))
{
return arg;
}
}
// just quote a single non numeric character
if (arg.size() == 1)
{
return std::string("'") + arg + '\'';
}
// handle hex, binary or octal arguments
if (arg.front() == '0')
{
if (arg[1] == 'x')
{
if (std::all_of(arg.begin() + 2, arg.end(), [](char x) {
return (x >= '0' && x <= '9') || (x >= 'A' && x <= 'F') || (x >= 'a' && x <= 'f');
}))
{
return arg;
}
}
else if (arg[1] == 'o')
{
if (std::all_of(arg.begin() + 2, arg.end(), [](char x) { return (x >= '0' && x <= '7'); }))
{
return arg;
}
}
else if (arg[1] == 'b')
{
if (std::all_of(arg.begin() + 2, arg.end(), [](char x) { return (x == '0' || x == '1'); }))
{
return arg;
}
}
}
if (arg.find_first_of('"') == std::string::npos)
{
return std::string("\"") + arg + '"';
}
else
{
return std::string("'") + arg + '\'';
}
}
/// Comma separated join, adds quotes if needed
inline std::string
ini_join(const std::vector<std::string>& args, char sepChar = ',', char arrayStart = '[', char arrayEnd = ']')
{
std::string joined;
if (args.size() > 1 && arrayStart != '\0')
{
joined.push_back(arrayStart);
}
std::size_t start = 0;
for (const auto& arg : args)
{
if (start++ > 0)
{
joined.push_back(sepChar);
if (isspace(sepChar) == 0)
{
joined.push_back(' ');
}
}
joined.append(convert_arg_for_ini(arg));
}
if (args.size() > 1 && arrayEnd != '\0')
{
joined.push_back(arrayEnd);
}
return joined;
}
inline std::vector<std::string> generate_parents(const std::string& section, std::string& name)
{
std::vector<std::string> parents;
if (detail::to_lower(section) != "default")
{
if (section.find('.') != std::string::npos)
{
parents = detail::split(section, '.');
}
else
{
parents = { section };
}
}
if (name.find('.') != std::string::npos)
{
std::vector<std::string> plist = detail::split(name, '.');
name = plist.back();
detail::remove_quotes(name);
plist.pop_back();
parents.insert(parents.end(), plist.begin(), plist.end());
}
// clean up quotes on the parents
for (auto& parent : parents)
{
detail::remove_quotes(parent);
}
return parents;
}
/// assuming non default segments do a check on the close and open of the segments in a configItem structure
inline void checkParentSegments(std::vector<ConfigItem>& output, const std::string& currentSection)
{
std::string estring;
auto parents = detail::generate_parents(currentSection, estring);
if (!output.empty() && output.back().name == "--")
{
std::size_t msize = (parents.size() > 1U) ? parents.size() : 2;
while (output.back().parents.size() >= msize)
{
output.push_back(output.back());
output.back().parents.pop_back();
}
if (parents.size() > 1)
{
std::size_t common = 0;
std::size_t mpair = (std::min)(output.back().parents.size(), parents.size() - 1);
for (std::size_t ii = 0; ii < mpair; ++ii)
{
if (output.back().parents[ii] != parents[ii])
{
break;
}
++common;
}
if (common == mpair)
{
output.pop_back();
}
else
{
while (output.back().parents.size() > common + 1)
{
output.push_back(output.back());
output.back().parents.pop_back();
}
}
for (std::size_t ii = common; ii < parents.size() - 1; ++ii)
{
output.emplace_back();
output.back().parents.assign(parents.begin(), parents.begin() + static_cast<std::ptrdiff_t>(ii) + 1);
output.back().name = "++";
}
}
}
else if (parents.size() > 1)
{
for (std::size_t ii = 0; ii < parents.size() - 1; ++ii)
{
output.emplace_back();
output.back().parents.assign(parents.begin(), parents.begin() + static_cast<std::ptrdiff_t>(ii) + 1);
output.back().name = "++";
}
}
// insert a section end which is just an empty items_buffer
output.emplace_back();
output.back().parents = std::move(parents);
output.back().name = "++";
}
} // namespace detail
inline std::vector<ConfigItem> ConfigBase::from_config(std::istream& input) const
{
std::string line;
std::string section = "default";
std::vector<ConfigItem> output;
bool defaultArray = (arrayStart == '\0' || arrayStart == ' ') && arrayStart == arrayEnd;
char aStart = (defaultArray) ? '[' : arrayStart;
char aEnd = (defaultArray) ? ']' : arrayEnd;
char aSep = (defaultArray && arraySeparator == ' ') ? ',' : arraySeparator;
while (getline(input, line))
{
std::vector<std::string> items_buffer;
std::string name;
detail::trim(line);
std::size_t len = line.length();
if (len > 1 && line.front() == '[' && line.back() == ']')
{
if (section != "default")
{
// insert a section end which is just an empty items_buffer
output.emplace_back();
output.back().parents = detail::generate_parents(section, name);
output.back().name = "--";
}
section = line.substr(1, len - 2);
// deal with double brackets for TOML
if (section.size() > 1 && section.front() == '[' && section.back() == ']')
{
section = section.substr(1, section.size() - 2);
}
if (detail::to_lower(section) == "default")
{
section = "default";
}
else
{
detail::checkParentSegments(output, section);
}
continue;
}
if (len == 0)
{
continue;
}
// comment lines
if (line.front() == ';' || line.front() == '#' || line.front() == commentChar)
{
continue;
}
// Find = in string, split and recombine
auto pos = line.find(valueDelimiter);
if (pos != std::string::npos)
{
name = detail::trim_copy(line.substr(0, pos));
std::string item = detail::trim_copy(line.substr(pos + 1));
if (item.size() > 1 && item.front() == aStart && item.back() == aEnd)
{
items_buffer = detail::split_up(item.substr(1, item.length() - 2), aSep);
}
else if (defaultArray && item.find_first_of(aSep) != std::string::npos)
{
items_buffer = detail::split_up(item, aSep);
}
else if (defaultArray && item.find_first_of(' ') != std::string::npos)
{
items_buffer = detail::split_up(item);
}
else
{
items_buffer = { item };
}
}
else
{
name = detail::trim_copy(line);
items_buffer = { "true" };
}
if (name.find('.') == std::string::npos)
{
detail::remove_quotes(name);
}
// clean up quotes on the items
for (auto& it : items_buffer)
{
detail::remove_quotes(it);
}
std::vector<std::string> parents = detail::generate_parents(section, name);
if (!output.empty() && name == output.back().name && parents == output.back().parents)
{
output.back().inputs.insert(output.back().inputs.end(), items_buffer.begin(), items_buffer.end());
}
else
{
output.emplace_back();
output.back().parents = std::move(parents);
output.back().name = std::move(name);
output.back().inputs = std::move(items_buffer);
}
}
if (section != "default")
{
// insert a section end which is just an empty items_buffer
std::string ename;
output.emplace_back();
output.back().parents = detail::generate_parents(section, ename);
output.back().name = "--";
while (output.back().parents.size() > 1)
{
output.push_back(output.back());
output.back().parents.pop_back();
}
}
return output;
}
inline std::string
ConfigBase::to_config(const App* app, bool default_also, bool write_description, std::string prefix) const
{
std::stringstream out;
std::string commentLead;
commentLead.push_back(commentChar);
commentLead.push_back(' ');
std::vector<std::string> groups = app->get_groups();
bool defaultUsed = false;
groups.insert(groups.begin(), std::string("Options"));
if (write_description)
{
out << commentLead << app->get_description() << '\n';
}
for (auto& group : groups)
{
if (group == "Options" || group.empty())
{
if (defaultUsed)
{
continue;
}
defaultUsed = true;
}
if (write_description && group != "Options" && !group.empty())
{
out << '\n'
<< commentLead << group << " Options\n";
}
for (const Option* opt : app->get_options({}))
{
// Only process option with a long-name and configurable
if (!opt->get_lnames().empty() && opt->get_configurable())
{
if (opt->get_group() != group)
{
if (!(group == "Options" && opt->get_group().empty()))
{
continue;
}
}
std::string name = prefix + opt->get_lnames()[0];
std::string value = detail::ini_join(opt->reduced_results(), arraySeparator, arrayStart, arrayEnd);
if (value.empty() && default_also)
{
if (!opt->get_default_str().empty())
{
value = detail::convert_arg_for_ini(opt->get_default_str());
}
else if (opt->get_expected_min() == 0)
{
value = "false";
}
}
if (!value.empty())
{
if (write_description && opt->has_description())
{
out << '\n';
out << commentLead << detail::fix_newlines(commentLead, opt->get_description()) << '\n';
}
out << name << valueDelimiter << value << '\n';
}
}
}
}
auto subcommands = app->get_subcommands({});
for (const App* subcom : subcommands)
{
if (subcom->get_name().empty())
{
if (write_description && !subcom->get_group().empty())
{
out << '\n'
<< commentLead << subcom->get_group() << " Options\n";
}
out << to_config(subcom, default_also, write_description, prefix);
}
}
for (const App* subcom : subcommands)
{
if (!subcom->get_name().empty())
{
if (subcom->get_configurable() && app->got_subcommand(subcom))
{
if (!prefix.empty() || app->get_parent() == nullptr)
{
out << '[' << prefix << subcom->get_name() << "]\n";
}
else
{
std::string subname = app->get_name() + "." + subcom->get_name();
auto p = app->get_parent();
while (p->get_parent() != nullptr)
{
subname = p->get_name() + "." + subname;
p = p->get_parent();
}
out << '[' << subname << "]\n";
}
out << to_config(subcom, default_also, write_description, "");
}
else
{
out << to_config(subcom, default_also, write_description, prefix + subcom->get_name() + ".");
}
}
}
return out.str();
}
} // namespace CLI
// From CLI/Formatter.hpp:
namespace CLI
{
inline std::string
Formatter::make_group(std::string group, bool is_positional, std::vector<const Option*> opts) const
{
std::stringstream out;
out << "\n"
<< group << ":\n";
for (const Option* opt : opts)
{
out << make_option(opt, is_positional);
}
return out.str();
}
inline std::string Formatter::make_positionals(const App* app) const
{
std::vector<const Option*> opts =
app->get_options([](const Option* opt) { return !opt->get_group().empty() && opt->get_positional(); });
if (opts.empty())
return std::string();
return make_group(get_label("Positionals"), true, opts);
}
inline std::string Formatter::make_groups(const App* app, AppFormatMode mode) const
{
std::stringstream out;
std::vector<std::string> groups = app->get_groups();
// Options
for (const std::string& group : groups)
{
std::vector<const Option*> opts = app->get_options([app, mode, &group](const Option* opt) {
return opt->get_group() == group // Must be in the right group
&& opt->nonpositional() // Must not be a positional
&& (mode != AppFormatMode::Sub // If mode is Sub, then
|| (app->get_help_ptr() != opt // Ignore help pointer
&& app->get_help_all_ptr() != opt)); // Ignore help all pointer
});
if (!group.empty() && !opts.empty())
{
out << make_group(group, false, opts);
if (group != groups.back())
out << "\n";
}
}
return out.str();
}
inline std::string Formatter::make_description(const App* app) const
{
std::string desc = app->get_description();
auto min_options = app->get_require_option_min();
auto max_options = app->get_require_option_max();
if (app->get_required())
{
desc += " REQUIRED ";
}
if ((max_options == min_options) && (min_options > 0))
{
if (min_options == 1)
{
desc += " \n[Exactly 1 of the following options is required]";
}
else
{
desc += " \n[Exactly " + std::to_string(min_options) + "options from the following list are required]";
}
}
else if (max_options > 0)
{
if (min_options > 0)
{
desc += " \n[Between " + std::to_string(min_options) + " and " + std::to_string(max_options) +
" of the follow options are required]";
}
else
{
desc += " \n[At most " + std::to_string(max_options) + " of the following options are allowed]";
}
}
else if (min_options > 0)
{
desc += " \n[At least " + std::to_string(min_options) + " of the following options are required]";
}
return (!desc.empty()) ? desc + "\n" : std::string{};
}
inline std::string Formatter::make_usage(const App* app, std::string name) const
{
std::stringstream out;
out << get_label("Usage") << ":" << (name.empty() ? "" : " ") << name;
std::vector<std::string> groups = app->get_groups();
// Print an Options badge if any options exist
std::vector<const Option*> non_pos_options =
app->get_options([](const Option* opt) { return opt->nonpositional(); });
if (!non_pos_options.empty())
out << " [" << get_label("OPTIONS") << "]";
// Positionals need to be listed here
std::vector<const Option*> positionals = app->get_options([](const Option* opt) { return opt->get_positional(); });
// Print out positionals if any are left
if (!positionals.empty())
{
// Convert to help names
std::vector<std::string> positional_names(positionals.size());
std::transform(positionals.begin(), positionals.end(), positional_names.begin(), [this](const Option* opt) {
return make_option_usage(opt);
});
out << " " << detail::join(positional_names, " ");
}
// Add a marker if subcommands are expected or optional
if (!app->get_subcommands(
[](const CLI::App* subc) { return ((!subc->get_disabled()) && (!subc->get_name().empty())); })
.empty())
{
out << " " << (app->get_require_subcommand_min() == 0 ? "[" : "")
<< get_label(app->get_require_subcommand_max() < 2 || app->get_require_subcommand_min() > 1 ? "SUBCOMMAND" : "SUBCOMMANDS")
<< (app->get_require_subcommand_min() == 0 ? "]" : "");
}
out << std::endl;
return out.str();
}
inline std::string Formatter::make_footer(const App* app) const
{
std::string footer = app->get_footer();
if (footer.empty())
{
return std::string{};
}
return footer + "\n";
}
inline std::string Formatter::make_help(const App* app, std::string name, AppFormatMode mode) const
{
// This immediately forwards to the make_expanded method. This is done this way so that subcommands can
// have overridden formatters
if (mode == AppFormatMode::Sub)
return make_expanded(app);
std::stringstream out;
if ((app->get_name().empty()) && (app->get_parent() != nullptr))
{
if (app->get_group() != "Subcommands")
{
out << app->get_group() << ':';
}
}
out << make_description(app);
out << make_usage(app, name);
out << make_positionals(app);
out << make_groups(app, mode);
out << make_subcommands(app, mode);
out << '\n'
<< make_footer(app);
return out.str();
}
inline std::string Formatter::make_subcommands(const App* app, AppFormatMode mode) const
{
std::stringstream out;
std::vector<const App*> subcommands = app->get_subcommands({});
// Make a list in definition order of the groups seen
std::vector<std::string> subcmd_groups_seen;
for (const App* com : subcommands)
{
if (com->get_name().empty())
{
if (!com->get_group().empty())
{
out << make_expanded(com);
}
continue;
}
std::string group_key = com->get_group();
if (!group_key.empty() &&
std::find_if(subcmd_groups_seen.begin(), subcmd_groups_seen.end(), [&group_key](std::string a) {
return detail::to_lower(a) == detail::to_lower(group_key);
}) == subcmd_groups_seen.end())
subcmd_groups_seen.push_back(group_key);
}
// For each group, filter out and print subcommands
for (const std::string& group : subcmd_groups_seen)
{
out << "\n"
<< group << ":\n";
std::vector<const App*> subcommands_group = app->get_subcommands(
[&group](const App* sub_app) { return detail::to_lower(sub_app->get_group()) == detail::to_lower(group); });
for (const App* new_com : subcommands_group)
{
if (new_com->get_name().empty())
continue;
if (mode != AppFormatMode::All)
{
out << make_subcommand(new_com);
}
else
{
out << new_com->help(new_com->get_name(), AppFormatMode::Sub);
out << "\n";
}
}
}
return out.str();
}
inline std::string Formatter::make_subcommand(const App* sub) const
{
std::stringstream out;
detail::format_help(out, sub->get_name(), sub->get_description(), column_width_);
return out.str();
}
inline std::string Formatter::make_expanded(const App* sub) const
{
std::stringstream out;
out << sub->get_display_name() << "\n";
out << make_description(sub);
out << make_positionals(sub);
out << make_groups(sub, AppFormatMode::Sub);
out << make_subcommands(sub, AppFormatMode::Sub);
// Drop blank spaces
std::string tmp = detail::find_and_replace(out.str(), "\n\n", "\n");
tmp = tmp.substr(0, tmp.size() - 1); // Remove the final '\n'
// Indent all but the first line (the name)
return detail::find_and_replace(tmp, "\n", "\n ") + "\n";
}
inline std::string Formatter::make_option_name(const Option* opt, bool is_positional) const
{
if (is_positional)
return opt->get_name(true, false);
return opt->get_name(false, true);
}
inline std::string Formatter::make_option_opts(const Option* opt) const
{
std::stringstream out;
if (opt->get_type_size() != 0)
{
if (!opt->get_type_name().empty())
out << " " << get_label(opt->get_type_name());
if (!opt->get_default_str().empty())
out << "=" << opt->get_default_str();
if (opt->get_expected_max() == detail::expected_max_vector_size)
out << " ...";
else if (opt->get_expected_min() > 1)
out << " x " << opt->get_expected();
if (opt->get_required())
out << " " << get_label("REQUIRED");
}
if (!opt->get_envname().empty())
out << " (" << get_label("Env") << ":" << opt->get_envname() << ")";
if (!opt->get_needs().empty())
{
out << " " << get_label("Needs") << ":";
for (const Option* op : opt->get_needs())
out << " " << op->get_name();
}
if (!opt->get_excludes().empty())
{
out << " " << get_label("Excludes") << ":";
for (const Option* op : opt->get_excludes())
out << " " << op->get_name();
}
return out.str();
}
inline std::string Formatter::make_option_desc(const Option* opt) const { return opt->get_description(); }
inline std::string Formatter::make_option_usage(const Option* opt) const
{
// Note that these are positionals usages
std::stringstream out;
out << make_option_name(opt, true);
if (opt->get_expected_max() >= detail::expected_max_vector_size)
out << "...";
else if (opt->get_expected_max() > 1)
out << "(" << opt->get_expected() << "x)";
return opt->get_required() ? out.str() : "[" + out.str() + "]";
}
} // namespace CLI