terminal/src/host/srvinit.cpp
Michael Niksa 906edf7002
Implement Default Terminal (#7489)
- Implements the default application behavior and handoff mechanisms
  between console and terminal. The inbox portion is done already. This
  adds the ability for our OpenConsole.exe to accept the incoming server
  connection from the Windows OS, stand up a PTY session, start the
  Windows Terminal as a listener for an incoming connection, and then
  send it the incoming PTY connection for it to launch a tab.
- The tab is launched with default settings at the moment.
- You must configure the default application using the `conhost.exe`
  propsheet or with the registry keys. Finishing the setting inside
  Windows Terminal will be a todo after this is complete. The OS
  Settings panel work to surface this setting is a dependency delivered
  by another team and you will not see it here.

## Validation Steps Performed
- [x] Manual adjust of registry keys to the delegation conhost/terminal
  behavior
- [x] Adjustment of the delegation options with the propsheet
- [x] Launching things from the run box manually and watching them show
  in Terminal
- [x] Launching things from shortcuts and watching them show in the
  Terminal   

Documentation on how it works will be a TODO post completion in #9462

References #7414 - Default Terminal spec

Closes #492
2021-03-26 17:09:49 -05:00

864 lines
36 KiB
C++

// Copyright (c) Microsoft Corporation.
// Licensed under the MIT license.
#include "precomp.h"
#include "srvinit.h"
#include "dbcs.h"
#include "handle.h"
#include "registry.hpp"
#include "renderFontDefaults.hpp"
#include "ApiRoutines.h"
#include "../types/inc/GlyphWidth.hpp"
#include "../server/Entrypoints.h"
#include "../server/IoSorter.h"
#include "../interactivity/inc/ServiceLocator.hpp"
#include "../interactivity/base/ApiDetector.hpp"
#include "renderData.hpp"
#include "../renderer/base/renderer.hpp"
#include "ITerminalHandoff.h"
#include "../inc/conint.h"
#include "../propslib/DelegationConfig.hpp"
#pragma hdrstop
using namespace Microsoft::Console::Interactivity;
using namespace Microsoft::Console::Render;
const UINT CONSOLE_EVENT_FAILURE_ID = 21790;
const UINT CONSOLE_LPC_PORT_FAILURE_ID = 21791;
[[nodiscard]] HRESULT ConsoleServerInitialization(_In_ HANDLE Server, const ConsoleArguments* const args)
try
{
Globals& Globals = ServiceLocator::LocateGlobals();
Globals.pDeviceComm = new ConDrvDeviceComm(Server);
Globals.launchArgs = *args;
Globals.uiOEMCP = GetOEMCP();
Globals.uiWindowsCP = GetACP();
Globals.pFontDefaultList = new RenderFontDefaults();
FontInfoBase::s_SetFontDefaultList(Globals.pFontDefaultList);
// Check if this conhost is allowed to delegate its activities to another.
// If so, look up the registered default console handler.
bool isEnabled = false;
if (SUCCEEDED(Microsoft::Console::Internal::DefaultApp::CheckDefaultAppPolicy(isEnabled)) && isEnabled)
{
IID delegationClsid;
if (SUCCEEDED(DelegationConfig::s_GetDefaultConsoleId(delegationClsid)))
{
Globals.handoffConsoleClsid = delegationClsid;
}
if (SUCCEEDED(DelegationConfig::s_GetDefaultTerminalId(delegationClsid)))
{
Globals.handoffTerminalClsid = delegationClsid;
}
}
// Removed allocation of scroll buffer here.
return S_OK;
}
CATCH_RETURN()
static bool s_IsOnDesktop()
{
// Persist this across calls so we don't dig it out a whole bunch of times. Once is good enough for the system.
static bool fAlreadyQueried = false;
static bool fIsDesktop = false;
if (!fAlreadyQueried)
{
Microsoft::Console::Interactivity::ApiLevel level;
const NTSTATUS status = Microsoft::Console::Interactivity::ApiDetector::DetectNtUserWindow(&level);
LOG_IF_NTSTATUS_FAILED(status);
if (NT_SUCCESS(status))
{
switch (level)
{
case Microsoft::Console::Interactivity::ApiLevel::OneCore:
fIsDesktop = false;
break;
case Microsoft::Console::Interactivity::ApiLevel::Win32:
fIsDesktop = true;
break;
}
}
fAlreadyQueried = true;
}
return fIsDesktop;
}
[[nodiscard]] NTSTATUS SetUpConsole(_Inout_ Settings* pStartupSettings,
_In_ DWORD TitleLength,
_In_reads_bytes_(TitleLength) LPWSTR Title,
_In_ LPCWSTR CurDir,
_In_ LPCWSTR AppName)
{
// We will find and locate all relevant preference settings and then create the console here.
// The precedence order for settings is:
// 0. Launch arguments passed on the commandline.
// 1. STARTUPINFO settings
// 2a. Shortcut/Link settings
// 2b. Registry specific settings
// 3. Registry default settings
// 4. Hardcoded default settings
// To establish this hierarchy, we will need to load the settings and apply them in reverse order.
// 4. Initializing Settings will establish hardcoded defaults.
// Set to reference of global console information since that's the only place we need to hold the settings.
CONSOLE_INFORMATION& settings = ServiceLocator::LocateGlobals().getConsoleInformation();
const auto& launchArgs = ServiceLocator::LocateGlobals().launchArgs;
// 4b. On Desktop editions, we need to apply a series of Desktop-specific defaults that are better than the
// ones from the constructor (which are great for OneCore systems.)
if (s_IsOnDesktop())
{
settings.ApplyDesktopSpecificDefaults();
}
// Use the launch arguments to check if we're going to be started in pseudoconsole mode.
// If we are, we don't want to load any user settings, because that could
// result in some strange rendering results in the end terminal.
// Use the launch args because the VtIo hasn't been initialized yet.
if (!launchArgs.InConptyMode())
{
// 3. Read the default registry values.
Registry reg(&settings);
reg.LoadGlobalsFromRegistry();
reg.LoadDefaultFromRegistry();
// 2. Read specific settings
// Link is expecting the flags from the process to be in already, so apply that first
settings.SetStartupFlags(pStartupSettings->GetStartupFlags());
// We need to see if we were spawned from a link. If we were, we need to
// call back into the shell to try to get all the console information from the link.
ServiceLocator::LocateSystemConfigurationProvider()->GetSettingsFromLink(&settings, Title, &TitleLength, CurDir, AppName);
// If we weren't started from a link, this will already be set.
// If LoadLinkInfo couldn't find anything, it will remove the flag so we can dig in the registry.
if (!(settings.IsStartupTitleIsLinkNameSet()))
{
reg.LoadFromRegistry(Title);
}
}
else
{
// microsoft/terminal#1965 - Let's just always enable VT processing by
// default for conpty clients. This prevents peculiar differences in
// behavior between conhost and terminal applications when the user has
// VirtualTerminalLevel=1 in their registry.
// We want everyone to be using VT by default anyways, so this is a
// strong nudge in that direction. If an application _doesn't_ want VT
// processing, it's free to disable this setting, even in conpty mode.
settings.SetVirtTermLevel(1);
}
// 1. The settings we were passed contains STARTUPINFO structure settings to be applied last.
settings.ApplyStartupInfo(pStartupSettings);
// 0. The settings passed in via commandline arguments. These should override anything else.
settings.ApplyCommandlineArguments(launchArgs);
// Validate all applied settings for correctness against final rules.
settings.Validate();
// As of the graphics refactoring to library based, all fonts are now DPI aware. Scaling is
// performed at the Blt time for raster fonts.
// Note that we can only declare our DPI awareness once per process launch.
// Set the process's default dpi awareness context to PMv2 so that new top level windows
// inherit their WM_DPICHANGED* broadcast mode (and more, like dialog scaling) from the thread.
IHighDpiApi* pHighDpiApi = ServiceLocator::LocateHighDpiApi();
if (pHighDpiApi)
{
// N.B.: There is no high DPI support on OneCore (non-UAP) systems.
// Instead of implementing a no-op interface, just skip all high
// DPI configuration if it is not supported. All callers into the
// high DPI API are in the Win32-specific interactivity DLL.
if (!pHighDpiApi->SetProcessDpiAwarenessContext())
{
// Fallback to per-monitor aware V1 if the API isn't available.
LOG_IF_FAILED(pHighDpiApi->SetProcessPerMonitorDpiAwareness());
}
}
//Save initial font name for comparison on exit. We want telemetry when the font has changed
if (settings.IsFaceNameSet())
{
settings.SetLaunchFaceName(settings.GetFaceName());
}
// Allocate console will read the global ServiceLocator::LocateGlobals().getConsoleInformation
// for the settings we just set.
NTSTATUS Status = CONSOLE_INFORMATION::AllocateConsole({ Title, TitleLength / sizeof(wchar_t) });
if (!NT_SUCCESS(Status))
{
return Status;
}
return STATUS_SUCCESS;
}
[[nodiscard]] NTSTATUS RemoveConsole(_In_ ConsoleProcessHandle* ProcessData)
{
CONSOLE_INFORMATION& gci = ServiceLocator::LocateGlobals().getConsoleInformation();
LockConsole();
NTSTATUS Status = STATUS_SUCCESS;
CommandHistory::s_Free((HANDLE)ProcessData);
bool const fRecomputeOwner = ProcessData->fRootProcess;
gci.ProcessHandleList.FreeProcessData(ProcessData);
if (fRecomputeOwner)
{
Microsoft::Console::Types::IConsoleWindow* pWindow = ServiceLocator::LocateConsoleWindow();
if (pWindow != nullptr)
{
pWindow->SetOwner();
}
}
UnlockConsole();
return Status;
}
DWORD WINAPI ConsoleIoThread(LPVOID lpParameter);
void ConsoleCheckDebug()
{
#ifdef DBG
wil::unique_hkey hCurrentUser;
wil::unique_hkey hConsole;
NTSTATUS status = RegistrySerialization::s_OpenConsoleKey(&hCurrentUser, &hConsole);
if (NT_SUCCESS(status))
{
DWORD dwData = 0;
status = RegistrySerialization::s_QueryValue(hConsole.get(),
L"DebugLaunch",
sizeof(dwData),
REG_DWORD,
(BYTE*)&dwData,
nullptr);
if (NT_SUCCESS(status))
{
if (dwData != 0)
{
DebugBreak();
}
}
}
#endif
}
// Routine Description:
// - Sets up the main driver message packet (I/O) processing
// thread that will handle all client requests from all
// attached command-line applications for the duration
// of this console server session.
// - The optional arguments are only used when receiving a handoff
// from another console server (typically in-box to the Windows OS image)
// that has already started processing the console session.
// They will be blank and generated internally by this method if this is the first
// console server starting in response to a client startup or ConPTY setup
// request.
// Arguments:
// - Server - Handle to the console driver that represents
// our server side of the connection.
// - args - Command-line arguments from starting this console host
// that may affect the way we host the session.
// - driverInputEvent - (Optional) Event registered with the console driver
// that we will use to wake up input read requests that
// are blocked because they came in when we had no input ready.
// - connectMessage - (Optional) A message received from a connecting client
// by another console server that is being passed off to us as a part of
// the handoff strategy.
HRESULT ConsoleCreateIoThread(_In_ HANDLE Server,
const ConsoleArguments* const args,
HANDLE driverInputEvent,
PCONSOLE_API_MSG connectMessage)
{
auto& g = ServiceLocator::LocateGlobals();
RETURN_IF_FAILED(ConsoleServerInitialization(Server, args));
RETURN_IF_FAILED(g.hConsoleInputInitEvent.create(wil::EventOptions::None));
if (driverInputEvent != INVALID_HANDLE_VALUE)
{
// Store the driver input event. It's already been told that it exists by whomever started us.
g.hInputEvent.reset(driverInputEvent);
}
else
{
// Set up and tell the driver about the input available event.
RETURN_IF_FAILED(g.hInputEvent.create(wil::EventOptions::ManualReset));
CD_IO_SERVER_INFORMATION ServerInformation;
ServerInformation.InputAvailableEvent = ServiceLocator::LocateGlobals().hInputEvent.get();
RETURN_IF_FAILED(g.pDeviceComm->SetServerInformation(&ServerInformation));
}
HANDLE const hThread = CreateThread(nullptr, 0, ConsoleIoThread, connectMessage, 0, nullptr);
RETURN_HR_IF(E_HANDLE, hThread == nullptr);
LOG_IF_WIN32_BOOL_FALSE(CloseHandle(hThread)); // The thread will run on its own and close itself. Free the associated handle.
// See MSFT:19918626
// Make sure to always set up the signal thread if we need to.
// Do this first, because breaking the signal pipe is used by the conpty API
// to indicate that we should close.
// The conpty i/o threads need an actual client to be connected before they
// can start, so they're started below, in ConsoleAllocateConsole
auto& gci = g.getConsoleInformation();
RETURN_IF_FAILED(gci.GetVtIo()->Initialize(args));
RETURN_IF_FAILED(gci.GetVtIo()->CreateAndStartSignalThread());
return S_OK;
}
// Routine Description:
// - Accepts a console server session from another console server
// most commonly from the operating system in-box console to
// a more-up-to-date and out-of-band delivered one.
// Arguments:
// - Server - Handle to the console driver that represents our server
// side of hosting the console session
// - driverInputEvent - Handle to an event already registered with the
// driver that clients will implicitly wait on when we don't have
// any input to return in the queue when a request is made and is
// signaled to unblock them when input finally arrives.
// - connectMessage - A console driver/server message as received
// by the previous console server for us to finish processing in
// order to complete the client's initial connection and store
// all necessary callback information for all subsequent API calls.
// Return Value:
// - COM errors, registry errors, pipe errors, handle manipulation errors,
// errors from the creating the thread for the
// standard IO thread loop for the server to process messages
// from the driver... or an S_OK success.
[[nodiscard]] HRESULT ConsoleEstablishHandoff(_In_ HANDLE Server,
HANDLE driverInputEvent,
PCONSOLE_API_MSG connectMessage)
try
{
auto& g = ServiceLocator::LocateGlobals();
g.handoffTarget = true;
IID delegationClsid;
if (SUCCEEDED(DelegationConfig::s_GetDefaultConsoleId(delegationClsid)))
{
g.handoffConsoleClsid = delegationClsid;
}
if (SUCCEEDED(DelegationConfig::s_GetDefaultTerminalId(delegationClsid)))
{
g.handoffTerminalClsid = delegationClsid;
}
if (!g.handoffTerminalClsid)
{
return E_NOT_SET;
}
wil::unique_handle signalPipeTheirSide;
wil::unique_handle signalPipeOurSide;
wil::unique_handle inPipeTheirSide;
wil::unique_handle inPipeOurSide;
wil::unique_handle outPipeTheirSide;
wil::unique_handle outPipeOurSide;
SECURITY_ATTRIBUTES sa;
sa.nLength = sizeof(sa);
// Mark inheritable for signal handle when creating. It'll have the same value on the other side.
sa.bInheritHandle = TRUE;
sa.lpSecurityDescriptor = nullptr;
RETURN_IF_WIN32_BOOL_FALSE(CreatePipe(signalPipeOurSide.addressof(), signalPipeTheirSide.addressof(), nullptr, 0));
RETURN_IF_WIN32_BOOL_FALSE(SetHandleInformation(signalPipeTheirSide.get(), HANDLE_FLAG_INHERIT, HANDLE_FLAG_INHERIT));
RETURN_IF_WIN32_BOOL_FALSE(CreatePipe(inPipeOurSide.addressof(), inPipeTheirSide.addressof(), nullptr, 0));
RETURN_IF_WIN32_BOOL_FALSE(SetHandleInformation(inPipeTheirSide.get(), HANDLE_FLAG_INHERIT, HANDLE_FLAG_INHERIT));
RETURN_IF_WIN32_BOOL_FALSE(CreatePipe(outPipeTheirSide.addressof(), outPipeOurSide.addressof(), nullptr, 0));
RETURN_IF_WIN32_BOOL_FALSE(SetHandleInformation(outPipeTheirSide.get(), HANDLE_FLAG_INHERIT, HANDLE_FLAG_INHERIT));
wil::unique_handle clientProcess{ OpenProcess(PROCESS_QUERY_INFORMATION | SYNCHRONIZE, TRUE, static_cast<DWORD>(connectMessage->Descriptor.Process)) };
RETURN_LAST_ERROR_IF_NULL(clientProcess.get());
::Microsoft::WRL::ComPtr<ITerminalHandoff> handoff;
RETURN_IF_FAILED(CoCreateInstance(g.handoffTerminalClsid.value(), nullptr, CLSCTX_LOCAL_SERVER, IID_PPV_ARGS(&handoff)));
RETURN_IF_FAILED(handoff->EstablishPtyHandoff(inPipeTheirSide.get(),
outPipeTheirSide.get(),
signalPipeTheirSide.get(),
clientProcess.get()));
inPipeTheirSide.release();
outPipeTheirSide.release();
signalPipeTheirSide.release();
const auto commandLine = fmt::format(FMT_COMPILE(L" --headless --signal {:#x}"), (int64_t)signalPipeOurSide.release());
ConsoleArguments consoleArgs(commandLine, inPipeOurSide.release(), outPipeOurSide.release());
RETURN_IF_FAILED(consoleArgs.ParseCommandline());
return ConsoleCreateIoThread(Server, &consoleArgs, driverInputEvent, connectMessage);
}
CATCH_RETURN()
// Routine Description:
// - Creates the I/O thread for handling and processing messages from the console driver
// as the server side of a console session.
// - This entrypoint is for all start scenarios that are not receiving a hand-off
// from another console server. For example, getting started by kernelbase.dll from
// the operating system as a client application realizes it needs a console server,
// getting started to be a ConPTY host inside the OS, or being double clicked either
// inside the OS as `conhost.exe` or outside as `OpenConsole.exe`.
// Arguments:
// - Server - The server side handle to the console driver to let us pick up messages to process for the clients.
// - args - A structure of arguments that may have been passed in on the command-line, typically only used to control the ConPTY configuration.
// Return Value:
// - S_OK if the thread starts up correctly or any number of thread, registry, windowing, or just about any other
// failure that could possibly occur during console server initialization.
[[nodiscard]] HRESULT ConsoleCreateIoThreadLegacy(_In_ HANDLE Server, const ConsoleArguments* const args)
{
return ConsoleCreateIoThread(Server, args, INVALID_HANDLE_VALUE, nullptr);
}
#define SYSTEM_ROOT (L"%SystemRoot%")
#define SYSTEM_ROOT_LENGTH (sizeof(SYSTEM_ROOT) - sizeof(WCHAR))
// Routine Description:
// - This routine translates path characters into '_' characters because the NT registry apis do not allow the creation of keys with
// names that contain path characters. It also converts absolute paths into %SystemRoot% relative ones. As an example, if both behaviors were
// specified it would convert a title like C:\WINNT\System32\cmd.exe to %SystemRoot%_System32_cmd.exe.
// Arguments:
// - ConsoleTitle - Pointer to string to translate.
// - Unexpand - Convert absolute path to %SystemRoot% relative one.
// - Substitute - Whether string-substitution ('_' for '\') should occur.
// Return Value:
// - Pointer to translated title or nullptr.
// Note:
// - This routine allocates a buffer that must be freed.
PWSTR TranslateConsoleTitle(_In_ PCWSTR pwszConsoleTitle, const BOOL fUnexpand, const BOOL fSubstitute)
{
LPWSTR Tmp = nullptr;
size_t cbConsoleTitle;
size_t cbSystemRoot;
LPWSTR pwszSysRoot = new (std::nothrow) wchar_t[MAX_PATH];
if (nullptr != pwszSysRoot)
{
if (0 != GetWindowsDirectoryW(pwszSysRoot, MAX_PATH))
{
if (SUCCEEDED(StringCbLengthW(pwszConsoleTitle, STRSAFE_MAX_CCH, &cbConsoleTitle)) &&
SUCCEEDED(StringCbLengthW(pwszSysRoot, MAX_PATH, &cbSystemRoot)))
{
int const cchSystemRoot = (int)(cbSystemRoot / sizeof(WCHAR));
int const cchConsoleTitle = (int)(cbConsoleTitle / sizeof(WCHAR));
cbConsoleTitle += sizeof(WCHAR); // account for nullptr terminator
if (fUnexpand &&
cchConsoleTitle >= cchSystemRoot &&
#pragma prefast(suppress : 26018, "We've guaranteed that cchSystemRoot is equal to or smaller than cchConsoleTitle in size.")
(CSTR_EQUAL == CompareStringOrdinal(pwszConsoleTitle, cchSystemRoot, pwszSysRoot, cchSystemRoot, TRUE)))
{
cbConsoleTitle -= cbSystemRoot;
pwszConsoleTitle += cchSystemRoot;
cbSystemRoot = SYSTEM_ROOT_LENGTH;
}
else
{
cbSystemRoot = 0;
}
LPWSTR pszTranslatedConsoleTitle;
const size_t cbTranslatedConsoleTitle = cbSystemRoot + cbConsoleTitle;
Tmp = pszTranslatedConsoleTitle = (PWSTR) new BYTE[cbTranslatedConsoleTitle];
if (pszTranslatedConsoleTitle == nullptr)
{
return nullptr;
}
// No need to check return here -- pszTranslatedConsoleTitle is guaranteed large enough for SYSTEM_ROOT
(void)StringCbCopy(pszTranslatedConsoleTitle, cbTranslatedConsoleTitle, SYSTEM_ROOT);
pszTranslatedConsoleTitle += (cbSystemRoot / sizeof(WCHAR)); // skip by characters -- not bytes
for (UINT i = 0; i < cbConsoleTitle; i += sizeof(WCHAR))
{
#pragma prefast(suppress : 26018, "We are reading the null portion of the buffer on purpose and will escape on reaching it below.")
if (fSubstitute && *pwszConsoleTitle == '\\')
{
#pragma prefast(suppress : 26019, "Console title must contain system root if this path was followed.")
*pszTranslatedConsoleTitle++ = (WCHAR)'_';
}
else
{
*pszTranslatedConsoleTitle++ = *pwszConsoleTitle;
if (*pwszConsoleTitle == L'\0')
{
break;
}
}
pwszConsoleTitle++;
}
}
}
delete[] pwszSysRoot;
}
return Tmp;
}
[[nodiscard]] NTSTATUS GetConsoleLangId(const UINT uiOutputCP, _Out_ LANGID* const pLangId)
{
NTSTATUS Status = STATUS_NOT_SUPPORTED;
// -- WARNING -- LOAD BEARING CODE --
// Only attempt to return the Lang ID if the Windows ACP on console launch was an East Asian Code Page.
// -
// As of right now, this is a load bearing check and causes a domino effect of errors during OEM preinstallation if removed
// resulting in a crash on launch of CMD.exe
// (and consequently any scripts OEMs use to customize an image during the auditUser preinstall step inside their unattend.xml files.)
// I have no reason to believe that removing this check causes any problems on any other SKU or scenario types.
// -
// Returning STATUS_NOT_SUPPORTED will skip a call to SetThreadLocale inside the Windows loader. This has the effect of not
// setting the appropriate locale on the client end of the pipe, but also avoids the error.
// Returning STATUS_SUCCESS will trigger the call to SetThreadLocale inside the loader.
// This method is called on process launch by the loader and on every SetConsoleOutputCP call made from the client application to
// maintain the synchrony of the client's Thread Locale state.
// -
// It is important to note that a comment exists inside the loader stating that DBCS code pages (CJK languages)
// must have the SetThreadLocale synchronized with the console in order for FormatMessage to output correctly.
// I'm not sure of the full validity of that comment at this point in time (Nov 2016), but the least risky thing is to trust it and revert
// the behavior to this function until it can be otherwise proven.
// -
// See MSFT: 9808579 for the complete story on what happened here and why this must stay until the other dominos are resolved.
// -
// I would also highly advise against expanding the LANGIDs returned here or modifying them in any way until the cascading impacts
// discovered in MSFT: 9808579 are vetted against any changes.
// -- END WARNING --
if (IsAvailableEastAsianCodePage(ServiceLocator::LocateGlobals().uiWindowsCP))
{
if (pLangId != nullptr)
{
switch (uiOutputCP)
{
case CP_JAPANESE:
*pLangId = MAKELANGID(LANG_JAPANESE, SUBLANG_DEFAULT);
break;
case CP_KOREAN:
*pLangId = MAKELANGID(LANG_KOREAN, SUBLANG_KOREAN);
break;
case CP_CHINESE_SIMPLIFIED:
*pLangId = MAKELANGID(LANG_CHINESE, SUBLANG_CHINESE_SIMPLIFIED);
break;
case CP_CHINESE_TRADITIONAL:
*pLangId = MAKELANGID(LANG_CHINESE, SUBLANG_CHINESE_TRADITIONAL);
break;
default:
*pLangId = MAKELANGID(LANG_ENGLISH, SUBLANG_ENGLISH_US);
break;
}
}
Status = STATUS_SUCCESS;
}
return Status;
}
[[nodiscard]] HRESULT ApiRoutines::GetConsoleLangIdImpl(LANGID& langId) noexcept
{
try
{
const CONSOLE_INFORMATION& gci = ServiceLocator::LocateGlobals().getConsoleInformation();
LockConsole();
auto Unlock = wil::scope_exit([&] { UnlockConsole(); });
// This fails a lot and it's totally expected. It only works for a few East Asian code pages.
// As such, just return it. Do NOT use a wil macro here. It is very noisy.
return HRESULT_FROM_NT(GetConsoleLangId(gci.OutputCP, &langId));
}
CATCH_RETURN();
}
// Routine Description:
// - This routine reads the connection information from a 'connect' IO, validates it and stores them in an internal format.
// - N.B. The internal connection contains information not sent by clients in their connect IOs and initialized by other routines.
// Arguments:
// - Server - Supplies a handle to the console server.
// - Message - Supplies the message representing the connect IO.
// - Cac - Receives the connection information.
// Return Value:
// - NTSTATUS indicating if the connection information was successfully initialized.
[[nodiscard]] NTSTATUS ConsoleInitializeConnectInfo(_In_ PCONSOLE_API_MSG Message, _Out_ PCONSOLE_API_CONNECTINFO Cac)
{
CONSOLE_SERVER_MSG Data = { 0 };
// Try to receive the data sent by the client.
NTSTATUS Status = NTSTATUS_FROM_HRESULT(Message->ReadMessageInput(0, &Data, sizeof(Data)));
if (!NT_SUCCESS(Status))
{
return Status;
}
// Validate that strings are within the buffers and null-terminated.
if ((Data.ApplicationNameLength > (sizeof(Data.ApplicationName) - sizeof(WCHAR))) ||
(Data.TitleLength > (sizeof(Data.Title) - sizeof(WCHAR))) ||
(Data.CurrentDirectoryLength > (sizeof(Data.CurrentDirectory) - sizeof(WCHAR))) ||
(Data.ApplicationName[Data.ApplicationNameLength / sizeof(WCHAR)] != UNICODE_NULL) ||
(Data.Title[Data.TitleLength / sizeof(WCHAR)] != UNICODE_NULL) || (Data.CurrentDirectory[Data.CurrentDirectoryLength / sizeof(WCHAR)] != UNICODE_NULL))
{
return STATUS_INVALID_BUFFER_SIZE;
}
// Initialize (partially) the connect info with the received data.
FAIL_FAST_IF(!(sizeof(Cac->AppName) == sizeof(Data.ApplicationName)));
FAIL_FAST_IF(!(sizeof(Cac->Title) == sizeof(Data.Title)));
FAIL_FAST_IF(!(sizeof(Cac->CurDir) == sizeof(Data.CurrentDirectory)));
// unused(Data.IconId)
Cac->ConsoleInfo.SetHotKey(Data.HotKey);
Cac->ConsoleInfo.SetStartupFlags(Data.StartupFlags);
Cac->ConsoleInfo.SetFillAttribute(Data.FillAttribute);
Cac->ConsoleInfo.SetShowWindow(Data.ShowWindow);
Cac->ConsoleInfo.SetScreenBufferSize(Data.ScreenBufferSize);
Cac->ConsoleInfo.SetWindowSize(Data.WindowSize);
Cac->ConsoleInfo.SetWindowOrigin(Data.WindowOrigin);
Cac->ProcessGroupId = Data.ProcessGroupId;
Cac->ConsoleApp = Data.ConsoleApp;
Cac->WindowVisible = Data.WindowVisible;
Cac->TitleLength = Data.TitleLength;
Cac->AppNameLength = Data.ApplicationNameLength;
Cac->CurDirLength = Data.CurrentDirectoryLength;
memmove(Cac->AppName, Data.ApplicationName, sizeof(Cac->AppName));
memmove(Cac->Title, Data.Title, sizeof(Cac->Title));
memmove(Cac->CurDir, Data.CurrentDirectory, sizeof(Cac->CurDir));
return STATUS_SUCCESS;
}
[[nodiscard]] bool ConsoleConnectionDeservesVisibleWindow(PCONSOLE_API_CONNECTINFO p)
{
Globals& g = ServiceLocator::LocateGlobals();
// processes that are created ...
// ... with CREATE_NO_WINDOW never get a window.
// ... on Desktop, with a visible window always get one (even a fake one)
// ... not on Desktop, with a visible window only get one if we are headful (not ConPTY).
// This prevents pseudoconsole-hosted applications from taking over the screen,
// even if they really beg us for a window.
return p->WindowVisible && (s_IsOnDesktop() || !g.IsHeadless());
}
[[nodiscard]] NTSTATUS ConsoleAllocateConsole(PCONSOLE_API_CONNECTINFO p)
{
// AllocConsole is outside our codebase, but we should be able to mostly track the call here.
Telemetry::Instance().LogApiCall(Telemetry::ApiCall::AllocConsole);
Globals& g = ServiceLocator::LocateGlobals();
CONSOLE_INFORMATION& gci = g.getConsoleInformation();
NTSTATUS Status = SetUpConsole(&p->ConsoleInfo, p->TitleLength, p->Title, p->CurDir, p->AppName);
if (!NT_SUCCESS(Status))
{
return Status;
}
// No matter what, create a renderer.
try
{
g.pRender = nullptr;
auto renderThread = std::make_unique<RenderThread>();
// stash a local pointer to the thread here -
// We're going to give ownership of the thread to the Renderer,
// but the thread also need to be told who its renderer is,
// and we can't do that until the renderer is constructed.
auto* const localPointerToThread = renderThread.get();
g.pRender = new Renderer(&gci.renderData, nullptr, 0, std::move(renderThread));
THROW_IF_FAILED(localPointerToThread->Initialize(g.pRender));
// Allow the renderer to paint.
g.pRender->EnablePainting();
// Set up the renderer to be used to calculate the width of a glyph,
// should we be unable to figure out its width another way.
auto pfn = std::bind(&Renderer::IsGlyphWideByFont, static_cast<Renderer*>(g.pRender), std::placeholders::_1);
SetGlyphWidthFallback(pfn);
}
catch (...)
{
Status = NTSTATUS_FROM_HRESULT(wil::ResultFromCaughtException());
}
if (NT_SUCCESS(Status) && ConsoleConnectionDeservesVisibleWindow(p))
{
HANDLE Thread = nullptr;
IConsoleInputThread* pNewThread = nullptr;
LOG_IF_FAILED(ServiceLocator::CreateConsoleInputThread(&pNewThread));
FAIL_FAST_IF_NULL(pNewThread);
Thread = pNewThread->Start();
if (Thread == nullptr)
{
Status = STATUS_NO_MEMORY;
}
else
{
ServiceLocator::LocateGlobals().dwInputThreadId = pNewThread->GetThreadId();
// The ConsoleInputThread needs to lock the console so we must first unlock it ourselves.
UnlockConsole();
g.hConsoleInputInitEvent.wait();
LockConsole();
// OK, we've been told that the input thread is done initializing under lock.
// Cleanup the handles and events we used to maintain our virtual lock passing dance.
CloseHandle(Thread); // This doesn't stop the thread from running.
if (!NT_SUCCESS(g.ntstatusConsoleInputInitStatus))
{
Status = g.ntstatusConsoleInputInitStatus;
}
else
{
Status = STATUS_SUCCESS;
}
// If we're not headless, we'll make a real window.
// Allow UI Access to the real window but not the little
// fake window we would make in headless mode.
if (!g.launchArgs.IsHeadless())
{
/*
* Tell driver to allow clients with UIAccess to connect
* to this server even if the security descriptor doesn't
* allow it.
*
* N.B. This allows applications like narrator.exe to have
* access to the console. This is ok because they already
* have access to the console window anyway - this function
* is only called when a window is created.
*/
LOG_IF_FAILED(g.pDeviceComm->AllowUIAccess());
}
}
}
// Potentially start the VT IO (if needed)
// Make sure to do this after the i/o buffers have been created.
// We'll need the size of the screen buffer in the vt i/o initialization
if (NT_SUCCESS(Status))
{
HRESULT hr = gci.GetVtIo()->CreateIoHandlers();
if (hr == S_FALSE)
{
// We're not in VT I/O mode, this is fine.
}
else if (SUCCEEDED(hr))
{
// Actually start the VT I/O threads
hr = gci.GetVtIo()->StartIfNeeded();
// Don't convert S_FALSE to an NTSTATUS - the equivalent NTSTATUS
// is treated as an error
if (hr != S_FALSE)
{
Status = NTSTATUS_FROM_HRESULT(hr);
}
else
{
Status = ERROR_SUCCESS;
}
}
else
{
Status = NTSTATUS_FROM_HRESULT(hr);
}
}
return Status;
}
// Routine Description:
// - This routine is the main one in the console server IO thread.
// - It reads IO requests submitted by clients through the driver, services and completes them in a loop.
// Arguments:
// - lpParameter - PCONSOLE_API_MSG being handed off to us from the previous I/O.
// Return Value:
// - This routine never returns. The process exits when no more references or clients exist.
DWORD WINAPI ConsoleIoThread(LPVOID lpParameter)
{
auto& globals = ServiceLocator::LocateGlobals();
CONSOLE_API_MSG ReceiveMsg;
ReceiveMsg._pApiRoutines = &globals.api;
ReceiveMsg._pDeviceComm = globals.pDeviceComm;
PCONSOLE_API_MSG ReplyMsg = nullptr;
// If we were given a message on startup, process that in our context and then continue with the IO loop normally.
if (lpParameter)
{
ReceiveMsg = *(PCONSOLE_API_MSG)lpParameter;
ReceiveMsg._pApiRoutines = &globals.api;
ReceiveMsg._pDeviceComm = globals.pDeviceComm;
IoSorter::ServiceIoOperation(&ReceiveMsg, &ReplyMsg);
}
bool fShouldExit = false;
while (!fShouldExit)
{
if (ReplyMsg != nullptr)
{
LOG_IF_FAILED(ReplyMsg->ReleaseMessageBuffers());
}
// TODO: 9115192 correct mixed NTSTATUS/HRESULT
HRESULT hr = ServiceLocator::LocateGlobals().pDeviceComm->ReadIo(ReplyMsg, &ReceiveMsg);
if (FAILED(hr))
{
if (hr == HRESULT_FROM_WIN32(ERROR_PIPE_NOT_CONNECTED))
{
fShouldExit = true;
// This will not return. Terminate immediately when disconnected.
ServiceLocator::RundownAndExit(STATUS_SUCCESS);
}
RIPMSG1(RIP_WARNING, "DeviceIoControl failed with Result 0x%x", hr);
ReplyMsg = nullptr;
continue;
}
IoSorter::ServiceIoOperation(&ReceiveMsg, &ReplyMsg);
}
return 0;
}