terminal/src/host/directio.cpp
Dustin L. Howett cb037f3953
Switch all DSR responses to appending instead of prepending (#7583)
This fixes an issue where two CPRs could end up corrupted in the input
buffer. An application that sent two CPRs back-to-back could
end up reading the first few characters of the first prepended CPR
before handing us another CPR. We would dutifully prepend it to the
buffer, causing them to overlap.

```
^[^[2;2R[1;1R
^^      ^^^^^ First CPR
  ^^^^^^ Second CPR
```

The end result of this corruption is that a requesting application
would receive an unbidden `R` on stdin; for vim, this would trigger
replace mode immediately on startup.

Response prepending was implemented in !997738 without much comment.
There's very little in the way of audit trail as to why we switched.
Michael believes that we wanted to make sure that applications got DSR
responses immediately. It had the unfortunate side effect of causing
subsequence CPRs across cursor moves to come out in the wrong order.

I discussed our options with him, and he suggested that we could
implement a priority queue in InputBuffer and make sure that "response"
input was dispatched to a client application before any application- or
user-generated input. This was deemed to be too much work.

We decided that DSR responses getting top billing was likely to be a
stronger guarantee than most terminals are capable of giving, and that
we should be fine if we just switch it back to append.

Thanks to @k-takata, @tekki and @brammool for the investigation on the
vim side.

Fixes #1637.
2020-09-09 23:55:22 +00:00

1218 lines
50 KiB
C++

// Copyright (c) Microsoft Corporation.
// Licensed under the MIT license.
#include "precomp.h"
#include "directio.h"
#include "_output.h"
#include "output.h"
#include "input.h"
#include "dbcs.h"
#include "handle.h"
#include "misc.h"
#include "readDataDirect.hpp"
#include "ApiRoutines.h"
#include "../types/inc/convert.hpp"
#include "../types/inc/GlyphWidth.hpp"
#include "../types/inc/viewport.hpp"
#include "..\interactivity\inc\ServiceLocator.hpp"
#pragma hdrstop
using namespace Microsoft::Console::Types;
using Microsoft::Console::Interactivity::ServiceLocator;
class CONSOLE_INFORMATION;
#define UNICODE_DBCS_PADDING 0xffff
// Routine Description:
// - converts non-unicode InputEvents to unicode InputEvents
// Arguments:
// inEvents - InputEvents to convert
// partialEvent - on output, will contain a partial dbcs byte char
// data if the last event in inEvents is a dbcs lead byte
// Return Value:
// - inEvents will contain unicode InputEvents
// - partialEvent may contain a partial dbcs KeyEvent
void EventsToUnicode(_Inout_ std::deque<std::unique_ptr<IInputEvent>>& inEvents,
_Out_ std::unique_ptr<IInputEvent>& partialEvent)
{
const CONSOLE_INFORMATION& gci = ServiceLocator::LocateGlobals().getConsoleInformation();
std::deque<std::unique_ptr<IInputEvent>> outEvents;
while (!inEvents.empty())
{
std::unique_ptr<IInputEvent> currentEvent = std::move(inEvents.front());
inEvents.pop_front();
if (currentEvent->EventType() != InputEventType::KeyEvent)
{
outEvents.push_back(std::move(currentEvent));
}
else
{
const KeyEvent* const keyEvent = static_cast<const KeyEvent* const>(currentEvent.get());
std::wstring outWChar;
HRESULT hr = S_OK;
// convert char data to unicode
if (IsDBCSLeadByteConsole(static_cast<char>(keyEvent->GetCharData()), &gci.CPInfo))
{
if (inEvents.empty())
{
// we ran out of data and have a partial byte leftover
partialEvent = std::move(currentEvent);
break;
}
// get the 2nd byte and convert to unicode
const KeyEvent* const keyEventEndByte = static_cast<const KeyEvent* const>(inEvents.front().get());
inEvents.pop_front();
char inBytes[] = {
static_cast<char>(keyEvent->GetCharData()),
static_cast<char>(keyEventEndByte->GetCharData())
};
try
{
outWChar = ConvertToW(gci.CP, { inBytes, ARRAYSIZE(inBytes) });
}
catch (...)
{
hr = wil::ResultFromCaughtException();
}
}
else
{
char inBytes[] = {
static_cast<char>(keyEvent->GetCharData())
};
try
{
outWChar = ConvertToW(gci.CP, { inBytes, ARRAYSIZE(inBytes) });
}
catch (...)
{
hr = wil::ResultFromCaughtException();
}
}
// push unicode key events back out
if (SUCCEEDED(hr) && outWChar.size() > 0)
{
KeyEvent unicodeKeyEvent = *keyEvent;
for (const auto wch : outWChar)
{
try
{
unicodeKeyEvent.SetCharData(wch);
outEvents.push_back(std::make_unique<KeyEvent>(unicodeKeyEvent));
}
catch (...)
{
LOG_HR(wil::ResultFromCaughtException());
}
}
}
}
}
inEvents.swap(outEvents);
return;
}
// Routine Description:
// - This routine reads or peeks input events. In both cases, the events
// are copied to the user's buffer. In the read case they are removed
// from the input buffer and in the peek case they are not.
// Arguments:
// - pInputBuffer - The input buffer to take records from to return to the client
// - outEvents - The storage location to fill with input events
// - eventReadCount - The number of events to read
// - pInputReadHandleData - A structure that will help us maintain
// some input context across various calls on the same input
// handle. Primarily used to restore the "other piece" of partially
// returned strings (because client buffer wasn't big enough) on the
// next call.
// - IsUnicode - Whether to operate on Unicode characters or convert
// on the current Input Codepage.
// - IsPeek - If this is a peek operation (a.k.a. do not remove
// characters from the input buffer while copying to client buffer.)
// - ppWaiter - If we have to wait (not enough data to fill client
// buffer), this contains context that will allow the server to
// restore this call later.
// Return Value:
// - STATUS_SUCCESS - If data was found and ready for return to the client.
// - CONSOLE_STATUS_WAIT - If we didn't have enough data or needed to
// block, this will be returned along with context in *ppWaiter.
// - Or an out of memory/math/string error message in NTSTATUS format.
[[nodiscard]] static NTSTATUS _DoGetConsoleInput(InputBuffer& inputBuffer,
std::deque<std::unique_ptr<IInputEvent>>& outEvents,
const size_t eventReadCount,
INPUT_READ_HANDLE_DATA& readHandleState,
const bool IsUnicode,
const bool IsPeek,
std::unique_ptr<IWaitRoutine>& waiter) noexcept
{
try
{
waiter.reset();
if (eventReadCount == 0)
{
return STATUS_SUCCESS;
}
LockConsole();
auto Unlock = wil::scope_exit([&] { UnlockConsole(); });
std::deque<std::unique_ptr<IInputEvent>> partialEvents;
if (!IsUnicode)
{
if (inputBuffer.IsReadPartialByteSequenceAvailable())
{
partialEvents.push_back(inputBuffer.FetchReadPartialByteSequence(IsPeek));
}
}
size_t amountToRead;
if (FAILED(SizeTSub(eventReadCount, partialEvents.size(), &amountToRead)))
{
return STATUS_INTEGER_OVERFLOW;
}
std::deque<std::unique_ptr<IInputEvent>> readEvents;
NTSTATUS Status = inputBuffer.Read(readEvents,
amountToRead,
IsPeek,
true,
IsUnicode,
false);
if (CONSOLE_STATUS_WAIT == Status)
{
FAIL_FAST_IF(!(readEvents.empty()));
// If we're told to wait until later, move all of our context
// to the read data object and send it back up to the server.
waiter = std::make_unique<DirectReadData>(&inputBuffer,
&readHandleState,
eventReadCount,
std::move(partialEvents));
}
else if (NT_SUCCESS(Status))
{
// split key events to oem chars if necessary
if (!IsUnicode)
{
try
{
SplitToOem(readEvents);
}
CATCH_LOG();
}
// combine partial and readEvents
while (!partialEvents.empty())
{
readEvents.push_front(std::move(partialEvents.back()));
partialEvents.pop_back();
}
// move events over
for (size_t i = 0; i < eventReadCount; ++i)
{
if (readEvents.empty())
{
break;
}
outEvents.push_back(std::move(readEvents.front()));
readEvents.pop_front();
}
// store partial event if necessary
if (!readEvents.empty())
{
inputBuffer.StoreReadPartialByteSequence(std::move(readEvents.front()));
readEvents.pop_front();
FAIL_FAST_IF(!(readEvents.empty()));
}
}
return Status;
}
catch (...)
{
return NTSTATUS_FROM_HRESULT(wil::ResultFromCaughtException());
}
}
// Routine Description:
// - Retrieves input records from the given input object and returns them to the client.
// - The peek version will NOT remove records when it copies them out.
// - The A version will convert to W using the console's current Input codepage (see SetConsoleCP)
// Arguments:
// - context - The input buffer to take records from to return to the client
// - outEvents - storage location for read events
// - eventsToRead - The number of input events to read
// - readHandleState - A structure that will help us maintain
// some input context across various calls on the same input
// handle. Primarily used to restore the "other piece" of partially
// returned strings (because client buffer wasn't big enough) on the
// next call.
// - waiter - If we have to wait (not enough data to fill client
// buffer), this contains context that will allow the server to
// restore this call later.
[[nodiscard]] HRESULT ApiRoutines::PeekConsoleInputAImpl(IConsoleInputObject& context,
std::deque<std::unique_ptr<IInputEvent>>& outEvents,
const size_t eventsToRead,
INPUT_READ_HANDLE_DATA& readHandleState,
std::unique_ptr<IWaitRoutine>& waiter) noexcept
{
try
{
NTSTATUS Status = _DoGetConsoleInput(context,
outEvents,
eventsToRead,
readHandleState,
false,
true,
waiter);
if (CONSOLE_STATUS_WAIT == Status)
{
return HRESULT_FROM_NT(Status);
}
RETURN_NTSTATUS(Status);
}
CATCH_RETURN();
}
// Routine Description:
// - Retrieves input records from the given input object and returns them to the client.
// - The peek version will NOT remove records when it copies them out.
// - The W version accepts UCS-2 formatted characters (wide characters)
// Arguments:
// - context - The input buffer to take records from to return to the client
// - outEvents - storage location for read events
// - eventsToRead - The number of input events to read
// - readHandleState - A structure that will help us maintain
// some input context across various calls on the same input
// handle. Primarily used to restore the "other piece" of partially
// returned strings (because client buffer wasn't big enough) on the
// next call.
// - waiter - If we have to wait (not enough data to fill client
// buffer), this contains context that will allow the server to
// restore this call later.
[[nodiscard]] HRESULT ApiRoutines::PeekConsoleInputWImpl(IConsoleInputObject& context,
std::deque<std::unique_ptr<IInputEvent>>& outEvents,
const size_t eventsToRead,
INPUT_READ_HANDLE_DATA& readHandleState,
std::unique_ptr<IWaitRoutine>& waiter) noexcept
{
try
{
NTSTATUS Status = _DoGetConsoleInput(context,
outEvents,
eventsToRead,
readHandleState,
true,
true,
waiter);
if (CONSOLE_STATUS_WAIT == Status)
{
return HRESULT_FROM_NT(Status);
}
RETURN_NTSTATUS(Status);
}
CATCH_RETURN();
}
// Routine Description:
// - Retrieves input records from the given input object and returns them to the client.
// - The read version WILL remove records when it copies them out.
// - The A version will convert to W using the console's current Input codepage (see SetConsoleCP)
// Arguments:
// - context - The input buffer to take records from to return to the client
// - outEvents - storage location for read events
// - eventsToRead - The number of input events to read
// - readHandleState - A structure that will help us maintain
// some input context across various calls on the same input
// handle. Primarily used to restore the "other piece" of partially
// returned strings (because client buffer wasn't big enough) on the
// next call.
// - waiter - If we have to wait (not enough data to fill client
// buffer), this contains context that will allow the server to
// restore this call later.
[[nodiscard]] HRESULT ApiRoutines::ReadConsoleInputAImpl(IConsoleInputObject& context,
std::deque<std::unique_ptr<IInputEvent>>& outEvents,
const size_t eventsToRead,
INPUT_READ_HANDLE_DATA& readHandleState,
std::unique_ptr<IWaitRoutine>& waiter) noexcept
{
try
{
NTSTATUS Status = _DoGetConsoleInput(context,
outEvents,
eventsToRead,
readHandleState,
false,
false,
waiter);
if (CONSOLE_STATUS_WAIT == Status)
{
return HRESULT_FROM_NT(Status);
}
RETURN_NTSTATUS(Status);
}
CATCH_RETURN();
}
// Routine Description:
// - Retrieves input records from the given input object and returns them to the client.
// - The read version WILL remove records when it copies them out.
// - The W version accepts UCS-2 formatted characters (wide characters)
// Arguments:
// - context - The input buffer to take records from to return to the client
// - outEvents - storage location for read events
// - eventsToRead - The number of input events to read
// - readHandleState - A structure that will help us maintain
// some input context across various calls on the same input
// handle. Primarily used to restore the "other piece" of partially
// returned strings (because client buffer wasn't big enough) on the
// next call.
// - waiter - If we have to wait (not enough data to fill client
// buffer), this contains context that will allow the server to
// restore this call later.
[[nodiscard]] HRESULT ApiRoutines::ReadConsoleInputWImpl(IConsoleInputObject& context,
std::deque<std::unique_ptr<IInputEvent>>& outEvents,
const size_t eventsToRead,
INPUT_READ_HANDLE_DATA& readHandleState,
std::unique_ptr<IWaitRoutine>& waiter) noexcept
{
try
{
NTSTATUS Status = _DoGetConsoleInput(context,
outEvents,
eventsToRead,
readHandleState,
true,
false,
waiter);
if (CONSOLE_STATUS_WAIT == Status)
{
return HRESULT_FROM_NT(Status);
}
RETURN_NTSTATUS(Status);
}
CATCH_RETURN();
}
// Routine Description:
// - Writes events to the input buffer
// Arguments:
// - context - the input buffer to write to
// - events - the events to written
// - written - on output, the number of events written
// - append - true if events should be written to the end of the input
// buffer, false if they should be written to the front
// Return Value:
// - HRESULT indicating success or failure
[[nodiscard]] static HRESULT _WriteConsoleInputWImplHelper(InputBuffer& context,
std::deque<std::unique_ptr<IInputEvent>>& events,
size_t& written,
const bool append) noexcept
{
try
{
written = 0;
// add to InputBuffer
if (append)
{
written = context.Write(events);
}
else
{
written = context.Prepend(events);
}
return S_OK;
}
CATCH_RETURN();
}
// Routine Description:
// - Writes events to the input buffer already formed into IInputEvents (private call)
// Arguments:
// - context - the input buffer to write to
// - events - the events to written
// - written - on output, the number of events written
// - append - true if events should be written to the end of the input
// buffer, false if they should be written to the front
// Return Value:
// - HRESULT indicating success or failure
[[nodiscard]] HRESULT DoSrvPrivateWriteConsoleInputW(_Inout_ InputBuffer* const pInputBuffer,
_Inout_ std::deque<std::unique_ptr<IInputEvent>>& events,
_Out_ size_t& eventsWritten,
const bool append) noexcept
{
return _WriteConsoleInputWImplHelper(*pInputBuffer, events, eventsWritten, append);
}
// Routine Description:
// - Writes events to the input buffer, translating from codepage to unicode first
// Arguments:
// - context - the input buffer to write to
// - buffer - the events to written
// - written - on output, the number of events written
// - append - true if events should be written to the end of the input
// buffer, false if they should be written to the front
// Return Value:
// - HRESULT indicating success or failure
[[nodiscard]] HRESULT ApiRoutines::WriteConsoleInputAImpl(InputBuffer& context,
const gsl::span<const INPUT_RECORD> buffer,
size_t& written,
const bool append) noexcept
{
written = 0;
LockConsole();
auto Unlock = wil::scope_exit([&] { UnlockConsole(); });
try
{
auto events = IInputEvent::Create(buffer);
// add partial byte event if necessary
if (context.IsWritePartialByteSequenceAvailable())
{
events.push_front(context.FetchWritePartialByteSequence(false));
}
// convert to unicode if necessary
std::unique_ptr<IInputEvent> partialEvent;
EventsToUnicode(events, partialEvent);
if (partialEvent.get())
{
context.StoreWritePartialByteSequence(std::move(partialEvent));
}
return _WriteConsoleInputWImplHelper(context, events, written, append);
}
CATCH_RETURN();
}
// Routine Description:
// - Writes events to the input buffer
// Arguments:
// - context - the input buffer to write to
// - buffer - the events to written
// - written - on output, the number of events written
// - append - true if events should be written to the end of the input
// buffer, false if they should be written to the front
// Return Value:
// - HRESULT indicating success or failure
[[nodiscard]] HRESULT ApiRoutines::WriteConsoleInputWImpl(InputBuffer& context,
const gsl::span<const INPUT_RECORD> buffer,
size_t& written,
const bool append) noexcept
{
written = 0;
LockConsole();
auto Unlock = wil::scope_exit([&] { UnlockConsole(); });
try
{
auto events = IInputEvent::Create(buffer);
return _WriteConsoleInputWImplHelper(context, events, written, append);
}
CATCH_RETURN();
}
// Function Description:
// - Writes the input KeyEvent to the console as a console control event. This
// can be used for potentially generating Ctrl-C events, as
// HandleGenericKeyEvent will correctly generate the Ctrl-C response in
// the same way that it'd be handled from the window proc, with the proper
// processed vs raw input handling.
// If the input key is *not* a Ctrl-C key, then it will get written to the
// buffer just the same as any other KeyEvent.
// Arguments:
// - pInputBuffer - the input buffer to write to. Currently unused, as
// HandleGenericKeyEvent just gets the global input buffer, but all
// ConGetSet API's require an input or output object.
// - key - The keyevent to send to the console.
// Return Value:
// - HRESULT indicating success or failure
[[nodiscard]] HRESULT DoSrvPrivateWriteConsoleControlInput(_Inout_ InputBuffer* const /*pInputBuffer*/,
_In_ KeyEvent key)
{
LockConsole();
auto Unlock = wil::scope_exit([&] { UnlockConsole(); });
HandleGenericKeyEvent(key, false);
return S_OK;
}
// Routine Description:
// - This is used when the app is reading output as cells and needs them converted
// into a particular codepage on the way out.
// Arguments:
// - codepage - The relevant codepage for translation
// - buffer - This is the buffer containing all of the character data to be converted
// - rectangle - This is the rectangle describing the region that the buffer covers.
// Return Value:
// - Generally S_OK. Could be a memory or math error code.
[[nodiscard]] static HRESULT _ConvertCellsToAInplace(const UINT codepage,
const gsl::span<CHAR_INFO> buffer,
const Viewport rectangle) noexcept
{
try
{
std::vector<CHAR_INFO> tempBuffer(buffer.begin(), buffer.end());
const auto size = rectangle.Dimensions();
auto tempIter = tempBuffer.cbegin();
auto outIter = buffer.begin();
for (int i = 0; i < size.Y; i++)
{
for (int j = 0; j < size.X; j++)
{
// Any time we see the lead flag, we presume there will be a trailing one following it.
// Giving us two bytes of space (one per cell in the ascii part of the character union)
// to fill with whatever this Unicode character converts into.
if (WI_IsFlagSet(tempIter->Attributes, COMMON_LVB_LEADING_BYTE))
{
// As long as we're not looking at the exact last column of the buffer...
if (j < size.X - 1)
{
// Walk forward one because we're about to consume two cells.
j++;
// Try to convert the unicode character (2 bytes) in the leading cell to the codepage.
CHAR AsciiDbcs[2] = { 0 };
UINT NumBytes = gsl::narrow<UINT>(sizeof(AsciiDbcs));
NumBytes = ConvertToOem(codepage, &tempIter->Char.UnicodeChar, 1, &AsciiDbcs[0], NumBytes);
// Fill the 1 byte (AsciiChar) portion of the leading and trailing cells with each of the bytes returned.
outIter->Char.AsciiChar = AsciiDbcs[0];
outIter->Attributes = tempIter->Attributes;
outIter++;
tempIter++;
outIter->Char.AsciiChar = AsciiDbcs[1];
outIter->Attributes = tempIter->Attributes;
outIter++;
tempIter++;
}
else
{
// When we're in the last column with only a leading byte, we can't return that without a trailing.
// Instead, replace the output data with just a space and clear all flags.
outIter->Char.AsciiChar = UNICODE_SPACE;
outIter->Attributes = tempIter->Attributes;
WI_ClearAllFlags(outIter->Attributes, COMMON_LVB_SBCSDBCS);
outIter++;
tempIter++;
}
}
else if (WI_AreAllFlagsClear(tempIter->Attributes, COMMON_LVB_SBCSDBCS))
{
// If there are no leading/trailing pair flags, then we only have 1 ascii byte to try to fit the
// 2 byte UTF-16 character into. Give it a go.
ConvertToOem(codepage, &tempIter->Char.UnicodeChar, 1, &outIter->Char.AsciiChar, 1);
outIter->Attributes = tempIter->Attributes;
outIter++;
tempIter++;
}
}
}
return S_OK;
}
CATCH_RETURN();
}
// Routine Description:
// - This is used when the app writes oem to the output buffer we want
// UnicodeOem or Unicode in the buffer, depending on font
// Arguments:
// - codepage - The relevant codepage for translation
// - buffer - This is the buffer containing all of the character data to be converted
// - rectangle - This is the rectangle describing the region that the buffer covers.
// Return Value:
// - Generally S_OK. Could be a memory or math error code.
[[nodiscard]] static HRESULT _ConvertCellsToWInplace(const UINT codepage,
gsl::span<CHAR_INFO> buffer,
const Viewport& rectangle) noexcept
{
try
{
const auto& gci = ServiceLocator::LocateGlobals().getConsoleInformation();
const auto size = rectangle.Dimensions();
auto outIter = buffer.begin();
for (int i = 0; i < size.Y; i++)
{
for (int j = 0; j < size.X; j++)
{
// Clear lead/trailing flags. We'll determine it for ourselves versus the given codepage.
WI_ClearAllFlags(outIter->Attributes, COMMON_LVB_SBCSDBCS);
// If the 1 byte given is a lead in this codepage, we likely need two cells for the width.
if (IsDBCSLeadByteConsole(outIter->Char.AsciiChar, &gci.OutputCPInfo))
{
// If we're not on the last column, we have two cells to use.
if (j < size.X - 1)
{
// Mark we're consuming two cells.
j++;
// Grab the lead/trailing byte pair from this cell and the next one forward.
CHAR AsciiDbcs[2];
AsciiDbcs[0] = outIter->Char.AsciiChar;
AsciiDbcs[1] = (outIter + 1)->Char.AsciiChar;
// Convert it to UTF-16.
WCHAR UnicodeDbcs[2];
ConvertOutputToUnicode(codepage, &AsciiDbcs[0], 2, &UnicodeDbcs[0], 2);
// Store the actual character in the first available position.
outIter->Char.UnicodeChar = UnicodeDbcs[0];
WI_ClearAllFlags(outIter->Attributes, COMMON_LVB_SBCSDBCS);
WI_SetFlag(outIter->Attributes, COMMON_LVB_LEADING_BYTE);
outIter++;
// Put a padding character in the second position.
outIter->Char.UnicodeChar = UNICODE_DBCS_PADDING;
WI_ClearAllFlags(outIter->Attributes, COMMON_LVB_SBCSDBCS);
WI_SetFlag(outIter->Attributes, COMMON_LVB_TRAILING_BYTE);
outIter++;
}
else
{
// If we were on the last column, put in a space.
outIter->Char.UnicodeChar = UNICODE_SPACE;
WI_ClearAllFlags(outIter->Attributes, COMMON_LVB_SBCSDBCS);
outIter++;
}
}
else
{
// If it's not detected as a lead byte of a pair, then just convert it in place and move on.
CHAR c = outIter->Char.AsciiChar;
ConvertOutputToUnicode(codepage, &c, 1, &outIter->Char.UnicodeChar, 1);
outIter++;
}
}
}
return S_OK;
}
CATCH_RETURN();
}
[[nodiscard]] static std::vector<CHAR_INFO> _ConvertCellsToMungedW(gsl::span<CHAR_INFO> buffer, const Viewport& rectangle)
{
std::vector<CHAR_INFO> result;
result.reserve(buffer.size() * 2); // we estimate we'll need up to double the cells if they all expand.
const auto size = rectangle.Dimensions();
auto bufferIter = buffer.begin();
for (SHORT i = 0; i < size.Y; i++)
{
for (SHORT j = 0; j < size.X; j++)
{
// Prepare a candidate charinfo on the output side copying the colors but not the lead/trail information.
CHAR_INFO candidate;
candidate.Attributes = bufferIter->Attributes;
WI_ClearAllFlags(candidate.Attributes, COMMON_LVB_SBCSDBCS);
// If the glyph we're given is full width, it needs to take two cells.
if (IsGlyphFullWidth(bufferIter->Char.UnicodeChar))
{
// If we're not on the final cell of the row...
if (j < size.X - 1)
{
// Mark that we're consuming two cells.
j++;
// Fill one cell with a copy of the color and character marked leading
candidate.Char.UnicodeChar = bufferIter->Char.UnicodeChar;
WI_SetFlag(candidate.Attributes, COMMON_LVB_LEADING_BYTE);
result.push_back(candidate);
// Fill a second cell with a copy of the color marked trailing and a padding character.
candidate.Char.UnicodeChar = UNICODE_DBCS_PADDING;
candidate.Attributes = bufferIter->Attributes;
WI_ClearAllFlags(candidate.Attributes, COMMON_LVB_SBCSDBCS);
WI_SetFlag(candidate.Attributes, COMMON_LVB_TRAILING_BYTE);
}
else
{
// If we're on the final cell, this won't fit. Replace with a space.
candidate.Char.UnicodeChar = UNICODE_SPACE;
}
}
else
{
// If we're not full-width, we're half-width. Just copy the character over.
candidate.Char.UnicodeChar = bufferIter->Char.UnicodeChar;
}
// Push our candidate in.
result.push_back(candidate);
// Advance to read the next item.
bufferIter++;
}
}
return result;
}
[[nodiscard]] static HRESULT _ReadConsoleOutputWImplHelper(const SCREEN_INFORMATION& context,
gsl::span<CHAR_INFO> targetBuffer,
const Microsoft::Console::Types::Viewport& requestRectangle,
Microsoft::Console::Types::Viewport& readRectangle) noexcept
{
try
{
const auto& gci = ServiceLocator::LocateGlobals().getConsoleInformation();
const auto& storageBuffer = context.GetActiveBuffer();
const auto storageSize = storageBuffer.GetBufferSize().Dimensions();
const auto targetSize = requestRectangle.Dimensions();
// If either dimension of the request is too small, return an empty rectangle as read and exit early.
if (targetSize.X <= 0 || targetSize.Y <= 0)
{
readRectangle = Viewport::FromDimensions(requestRectangle.Origin(), { 0, 0 });
return S_OK;
}
// The buffer given should be big enough to hold the dimensions of the request.
size_t targetArea;
RETURN_IF_FAILED(SizeTMult(targetSize.X, targetSize.Y, &targetArea));
RETURN_HR_IF(E_INVALIDARG, targetArea < targetBuffer.size());
// Clip the request rectangle to the size of the storage buffer
SMALL_RECT clip = requestRectangle.ToExclusive();
clip.Right = std::min(clip.Right, storageSize.X);
clip.Bottom = std::min(clip.Bottom, storageSize.Y);
// Find the target point (where to write the user's buffer)
// It will either be 0,0 or offset into the buffer by the inverse of the negative values.
COORD targetPoint;
targetPoint.X = clip.Left < 0 ? -clip.Left : 0;
targetPoint.Y = clip.Top < 0 ? -clip.Top : 0;
// The clipped rect must be inside the buffer size, so it has a minimum value of 0. (max of itself and 0)
clip.Left = std::max(clip.Left, 0i16);
clip.Top = std::max(clip.Top, 0i16);
// The final "request rectangle" or the area inside the buffer we want to read, is the clipped dimensions.
const auto clippedRequestRectangle = Viewport::FromExclusive(clip);
// We will start reading the buffer at the point of the top left corner (origin) of the (potentially adjusted) request
const auto sourcePoint = clippedRequestRectangle.Origin();
// Get an iterator to the beginning of the return buffer
// We might have to seek this forward or skip around if we clipped the request.
auto targetIter = targetBuffer.begin();
COORD targetPos = { 0 };
const auto targetLimit = Viewport::FromDimensions(targetPoint, clippedRequestRectangle.Dimensions());
// Get an iterator to the beginning of the request inside the screen buffer
// This should walk exactly along every cell of the clipped request.
auto sourceIter = storageBuffer.GetCellDataAt(sourcePoint, clippedRequestRectangle);
// Walk through every cell of the target, advancing the buffer.
// Validate that we always still have a valid iterator to the backing store,
// that we always are writing inside the user's buffer (before the end)
// and we're always targeting the user's buffer inside its original bounds.
while (sourceIter && targetIter < targetBuffer.end())
{
// If the point we're trying to write is inside the limited buffer write zone...
if (targetLimit.IsInBounds(targetPos))
{
// Copy the data into position...
*targetIter = gci.AsCharInfo(*sourceIter);
// ... and advance the read iterator.
sourceIter++;
}
// Always advance the write iterator, we might have skipped it due to clipping.
targetIter++;
// Increment the target
targetPos.X++;
if (targetPos.X >= targetSize.X)
{
targetPos.X = 0;
targetPos.Y++;
}
}
// Reply with the region we read out of the backing buffer (potentially clipped)
readRectangle = clippedRequestRectangle;
return S_OK;
}
CATCH_RETURN();
}
[[nodiscard]] HRESULT ApiRoutines::ReadConsoleOutputAImpl(const SCREEN_INFORMATION& context,
gsl::span<CHAR_INFO> buffer,
const Microsoft::Console::Types::Viewport& sourceRectangle,
Microsoft::Console::Types::Viewport& readRectangle) noexcept
{
LockConsole();
auto Unlock = wil::scope_exit([&] { UnlockConsole(); });
try
{
const auto& gci = ServiceLocator::LocateGlobals().getConsoleInformation();
const auto codepage = gci.OutputCP;
RETURN_IF_FAILED(_ReadConsoleOutputWImplHelper(context, buffer, sourceRectangle, readRectangle));
LOG_IF_FAILED(_ConvertCellsToAInplace(codepage, buffer, readRectangle));
return S_OK;
}
CATCH_RETURN();
}
[[nodiscard]] HRESULT ApiRoutines::ReadConsoleOutputWImpl(const SCREEN_INFORMATION& context,
gsl::span<CHAR_INFO> buffer,
const Microsoft::Console::Types::Viewport& sourceRectangle,
Microsoft::Console::Types::Viewport& readRectangle) noexcept
{
LockConsole();
auto Unlock = wil::scope_exit([&] { UnlockConsole(); });
try
{
RETURN_IF_FAILED(_ReadConsoleOutputWImplHelper(context, buffer, sourceRectangle, readRectangle));
if (!context.GetActiveBuffer().GetCurrentFont().IsTrueTypeFont())
{
// For compatibility reasons, we must maintain the behavior that munges the data if we are writing while a raster font is enabled.
// This can be removed when raster font support is removed.
UnicodeRasterFontCellMungeOnRead(buffer);
}
return S_OK;
}
CATCH_RETURN();
}
[[nodiscard]] static HRESULT _WriteConsoleOutputWImplHelper(SCREEN_INFORMATION& context,
gsl::span<CHAR_INFO> buffer,
const Viewport& requestRectangle,
Viewport& writtenRectangle) noexcept
{
try
{
auto& storageBuffer = context.GetActiveBuffer();
const auto storageRectangle = storageBuffer.GetBufferSize();
const auto storageSize = storageRectangle.Dimensions();
const auto sourceSize = requestRectangle.Dimensions();
// If either dimension of the request is too small, return an empty rectangle as the read and exit early.
if (sourceSize.X <= 0 || sourceSize.Y <= 0)
{
writtenRectangle = Viewport::FromDimensions(requestRectangle.Origin(), { 0, 0 });
return S_OK;
}
// If the top and left of the destination we're trying to write it outside the buffer,
// give the original request rectangle back and exit early OK.
if (requestRectangle.Left() >= storageSize.X || requestRectangle.Top() >= storageSize.Y)
{
writtenRectangle = requestRectangle;
return S_OK;
}
// Do clipping according to the legacy patterns.
SMALL_RECT writeRegion = requestRectangle.ToInclusive();
SMALL_RECT sourceRect;
if (writeRegion.Right > storageSize.X - 1)
{
writeRegion.Right = storageSize.X - 1;
}
sourceRect.Right = writeRegion.Right - writeRegion.Left;
if (writeRegion.Bottom > storageSize.Y - 1)
{
writeRegion.Bottom = storageSize.Y - 1;
}
sourceRect.Bottom = writeRegion.Bottom - writeRegion.Top;
if (writeRegion.Left < 0)
{
sourceRect.Left = -writeRegion.Left;
writeRegion.Left = 0;
}
else
{
sourceRect.Left = 0;
}
if (writeRegion.Top < 0)
{
sourceRect.Top = -writeRegion.Top;
writeRegion.Top = 0;
}
else
{
sourceRect.Top = 0;
}
if (sourceRect.Left > sourceRect.Right || sourceRect.Top > sourceRect.Bottom)
{
return E_INVALIDARG;
}
const auto writeRectangle = Viewport::FromInclusive(writeRegion);
auto target = writeRectangle.Origin();
// For every row in the request, create a view into the clamped portion of just the one line to write.
// This allows us to restrict the width of the call without allocating/copying any memory by just making
// a smaller view over the existing big blob of data from the original call.
for (; target.Y < writeRectangle.BottomExclusive(); target.Y++)
{
// We find the offset into the original buffer by the dimensions of the original request rectangle.
ptrdiff_t rowOffset = 0;
RETURN_IF_FAILED(PtrdiffTSub(target.Y, requestRectangle.Top(), &rowOffset));
RETURN_IF_FAILED(PtrdiffTMult(rowOffset, requestRectangle.Width(), &rowOffset));
ptrdiff_t colOffset = 0;
RETURN_IF_FAILED(PtrdiffTSub(target.X, requestRectangle.Left(), &colOffset));
ptrdiff_t totalOffset = 0;
RETURN_IF_FAILED(PtrdiffTAdd(rowOffset, colOffset, &totalOffset));
// Now we make a subspan starting from that offset for as much of the original request as would fit
const auto subspan = buffer.subspan(totalOffset, writeRectangle.Width());
// Convert to a CHAR_INFO view to fit into the iterator
const auto charInfos = gsl::span<const CHAR_INFO>(subspan.data(), subspan.size());
// Make the iterator and write to the target position.
OutputCellIterator it(charInfos);
storageBuffer.Write(it, target);
}
// Since we've managed to write part of the request, return the clamped part that we actually used.
writtenRectangle = writeRectangle;
return S_OK;
}
CATCH_RETURN();
}
[[nodiscard]] HRESULT ApiRoutines::WriteConsoleOutputAImpl(SCREEN_INFORMATION& context,
gsl::span<CHAR_INFO> buffer,
const Viewport& requestRectangle,
Viewport& writtenRectangle) noexcept
{
LockConsole();
auto Unlock = wil::scope_exit([&] { UnlockConsole(); });
try
{
const CONSOLE_INFORMATION& gci = ServiceLocator::LocateGlobals().getConsoleInformation();
const auto codepage = gci.OutputCP;
LOG_IF_FAILED(_ConvertCellsToWInplace(codepage, buffer, requestRectangle));
RETURN_IF_FAILED(_WriteConsoleOutputWImplHelper(context, buffer, requestRectangle, writtenRectangle));
return S_OK;
}
CATCH_RETURN();
}
[[nodiscard]] HRESULT ApiRoutines::WriteConsoleOutputWImpl(SCREEN_INFORMATION& context,
gsl::span<CHAR_INFO> buffer,
const Viewport& requestRectangle,
Viewport& writtenRectangle) noexcept
{
LockConsole();
auto Unlock = wil::scope_exit([&] { UnlockConsole(); });
try
{
if (!context.GetActiveBuffer().GetCurrentFont().IsTrueTypeFont())
{
// For compatibility reasons, we must maintain the behavior that munges the data if we are writing while a raster font is enabled.
// This can be removed when raster font support is removed.
auto translated = _ConvertCellsToMungedW(buffer, requestRectangle);
RETURN_IF_FAILED(_WriteConsoleOutputWImplHelper(context, translated, requestRectangle, writtenRectangle));
}
else
{
RETURN_IF_FAILED(_WriteConsoleOutputWImplHelper(context, buffer, requestRectangle, writtenRectangle));
}
return S_OK;
}
CATCH_RETURN();
}
[[nodiscard]] HRESULT ApiRoutines::ReadConsoleOutputAttributeImpl(const SCREEN_INFORMATION& context,
const COORD origin,
gsl::span<WORD> buffer,
size_t& written) noexcept
{
written = 0;
LockConsole();
auto Unlock = wil::scope_exit([&] { UnlockConsole(); });
try
{
const auto attrs = ReadOutputAttributes(context.GetActiveBuffer(), origin, buffer.size());
std::copy(attrs.cbegin(), attrs.cend(), buffer.begin());
written = attrs.size();
return S_OK;
}
CATCH_RETURN();
}
[[nodiscard]] HRESULT ApiRoutines::ReadConsoleOutputCharacterAImpl(const SCREEN_INFORMATION& context,
const COORD origin,
gsl::span<char> buffer,
size_t& written) noexcept
{
written = 0;
LockConsole();
auto Unlock = wil::scope_exit([&] { UnlockConsole(); });
try
{
const auto chars = ReadOutputStringA(context.GetActiveBuffer(),
origin,
buffer.size());
// for compatibility reasons, if we receive more chars than can fit in the buffer
// then we don't send anything back.
if (chars.size() <= buffer.size())
{
std::copy(chars.cbegin(), chars.cend(), buffer.begin());
written = chars.size();
}
return S_OK;
}
CATCH_RETURN();
}
[[nodiscard]] HRESULT ApiRoutines::ReadConsoleOutputCharacterWImpl(const SCREEN_INFORMATION& context,
const COORD origin,
gsl::span<wchar_t> buffer,
size_t& written) noexcept
{
written = 0;
LockConsole();
auto Unlock = wil::scope_exit([&] { UnlockConsole(); });
try
{
const auto chars = ReadOutputStringW(context.GetActiveBuffer(),
origin,
buffer.size());
// Only copy if the whole result will fit.
if (chars.size() <= buffer.size())
{
std::copy(chars.cbegin(), chars.cend(), buffer.begin());
written = chars.size();
}
return S_OK;
}
CATCH_RETURN();
}
// There used to be a text mode and a graphics mode flag.
// Text mode was used for regular applications like CMD.exe.
// Graphics mode was used for bitmap VDM buffers and is no longer supported.
// OEM console font mode used to represent rewriting the entire buffer into codepage 437 so the renderer could handle it with raster fonts.
// But now the entire buffer is always kept in Unicode and the renderer asks for translation when/if necessary for raster fonts only.
// We keep these definitions here so the API can enforce that the only one we support any longer is the original text mode.
// See: https://msdn.microsoft.com/en-us/library/windows/desktop/ms682122(v=vs.85).aspx
#define CONSOLE_TEXTMODE_BUFFER 1
//#define CONSOLE_GRAPHICS_BUFFER 2
//#define CONSOLE_OEMFONT_DISPLAY 4
[[nodiscard]] NTSTATUS ConsoleCreateScreenBuffer(std::unique_ptr<ConsoleHandleData>& handle,
_In_ PCONSOLE_API_MSG /*Message*/,
_In_ PCD_CREATE_OBJECT_INFORMATION Information,
_In_ PCONSOLE_CREATESCREENBUFFER_MSG a)
{
Telemetry::Instance().LogApiCall(Telemetry::ApiCall::CreateConsoleScreenBuffer);
const CONSOLE_INFORMATION& gci = ServiceLocator::LocateGlobals().getConsoleInformation();
// If any buffer type except the one we support is set, it's invalid.
if (WI_IsAnyFlagSet(a->Flags, ~CONSOLE_TEXTMODE_BUFFER))
{
// We no longer support anything other than a textmode buffer
return STATUS_INVALID_PARAMETER;
}
ConsoleHandleData::HandleType const HandleType = ConsoleHandleData::HandleType::Output;
const SCREEN_INFORMATION& siExisting = gci.GetActiveOutputBuffer();
// Create new screen buffer.
COORD WindowSize = siExisting.GetViewport().Dimensions();
const FontInfo& existingFont = siExisting.GetCurrentFont();
SCREEN_INFORMATION* ScreenInfo = nullptr;
NTSTATUS Status = SCREEN_INFORMATION::CreateInstance(WindowSize,
existingFont,
WindowSize,
siExisting.GetAttributes(),
siExisting.GetAttributes(),
Cursor::CURSOR_SMALL_SIZE,
&ScreenInfo);
if (!NT_SUCCESS(Status))
{
goto Exit;
}
Status = NTSTATUS_FROM_HRESULT(ScreenInfo->AllocateIoHandle(HandleType,
Information->DesiredAccess,
Information->ShareMode,
handle));
if (!NT_SUCCESS(Status))
{
goto Exit;
}
SCREEN_INFORMATION::s_InsertScreenBuffer(ScreenInfo);
Exit:
if (!NT_SUCCESS(Status))
{
delete ScreenInfo;
}
return Status;
}