Applied-Energistics-2-tiler.../src/main/java/appeng/client/render/model/pipeline/DoubleFacingQuadRotator.java
elix-x d7f32a985d Cables & parts and Baking pipeline
- Added cables & parts rendering.
- Facades got a completely new way of rendering. Anvil facades are
totally a thing.
- Added baking pipeline for simplified, highly configurable quad baking.

NOTE: Yes, there are a lot of improvements to do, bugs to fix, stuff to
add. I'm just pushing it prior to code structure change, so it does not
get lost in stashes. But it actually works!
2016-08-19 22:46:13 +02:00

108 lines
2.9 KiB
Java

package appeng.client.render.model.pipeline;
import java.util.ArrayList;
import java.util.List;
import javax.vecmath.Vector3f;
import javax.vecmath.Vector4f;
import net.minecraft.block.state.IBlockState;
import net.minecraft.client.renderer.block.model.IBakedModel;
import net.minecraft.client.renderer.vertex.VertexFormatElement;
import net.minecraft.util.EnumFacing;
import appeng.api.client.BakingPipelineElement;
import appeng.block.AEBaseTileBlock;
import appeng.client.render.FacingToRotation;
public class DoubleFacingQuadRotator implements BakingPipelineElement<QuadVertexData, QuadVertexData>
{
@Override
public List<QuadVertexData> pipe( List<QuadVertexData> elements, IBakedModel parent, IBlockState state, EnumFacing side, long rand )
{
if( state != null )
{
final EnumFacing forward = state.getValue( AEBaseTileBlock.AE_BLOCK_FORWARD );
final EnumFacing up = state.getValue( AEBaseTileBlock.AE_BLOCK_UP );
final FacingToRotation f2r = FacingToRotation.get( forward, up );
List<QuadVertexData> rotated = new ArrayList();
for( QuadVertexData data : elements )
{
data.setFace( f2r.rotate( data.getFace() ) );
float[][][] qd = data.getData();
for( int v = 0; v < 4; v++ )
{
for( int e = 0; e < data.getFormat().getElementCount(); e++ )
{
VertexFormatElement element = data.getFormat().getElement( e );
if( element.getUsage() == VertexFormatElement.EnumUsage.POSITION )
{
qd[v][e] = transform( f2r, qd[v][e] );
}
else if( element.getUsage() == VertexFormatElement.EnumUsage.NORMAL )
{
qd[v][e] = transformNormal( f2r, qd[v][e] );
}
}
}
rotated.add( new QuadVertexData( data.getFormat(), qd, data.getTintIndex(), data.getFace(), data.getSprite(), data.shouldApplyDiffuseLighting() ) );
}
return rotated;
}
return elements;
}
private float[] transform( FacingToRotation f2r, float[] fs )
{
switch( fs.length )
{
case 3:
Vector3f vec = new Vector3f( fs[0], fs[1], fs[2] );
vec.x -= 0.5f;
vec.y -= 0.5f;
vec.z -= 0.5f;
f2r.getMat().transform( vec );
vec.x += 0.5f;
vec.y += 0.5f;
vec.z += 0.5f;
return new float[] { vec.x, vec.y, vec.z };
case 4:
Vector4f vecc = new Vector4f( fs[0], fs[1], fs[2], fs[3] );
vecc.x -= 0.5f;
vecc.y -= 0.5f;
vecc.z -= 0.5f;
f2r.getMat().transform( vecc );
vecc.x += 0.5f;
vecc.y += 0.5f;
vecc.z += 0.5f;
return new float[] { vecc.x, vecc.y, vecc.z, vecc.w };
default:
return fs;
}
}
private float[] transformNormal( FacingToRotation f2r, float[] fs )
{
switch( fs.length )
{
case 3:
Vector3f vec = new Vector3f( fs[0], fs[1], fs[2] );
f2r.getMat().transform( vec );
return new float[] { vec.x, vec.y, vec.z };
case 4:
Vector4f vecc = new Vector4f( fs[0], fs[1], fs[2], fs[3] );
f2r.getMat().transform( vecc );
return new float[] { vecc.x, vecc.y, vecc.z, vecc.w };
default:
return fs;
}
}
}