jocly/third-party/kalman.js
2017-05-17 09:43:27 +02:00

89 lines
1.8 KiB
JavaScript

/**
* KalmanFilter
* @class
* @author Wouter Bulten
* @see {@link http://github.com/wouterbulten/kalmanjs}
* @version Version: 1.0.0-beta
* @copyright Copyright 2015 Wouter Bulten
* @license GNU LESSER GENERAL PUBLIC LICENSE v3
* @preserve
*/
class KalmanFilter {
/**
* Create 1-dimensional kalman filter
* @param {Number} options.R Process noise
* @param {Number} options.Q Measurement noise
* @param {Number} options.A State vector
* @param {Number} options.B Control vector
* @param {Number} options.C Measurement vector
* @return {KalmanFilter}
*/
constructor({R = 1, Q = 1, A = 1, B = 0, C = 1} = {}) {
this.R = R; // noise power desirable
this.Q = Q; // noise power estimated
this.A = A;
this.C = C;
this.B = B;
this.cov = NaN;
this.x = NaN; // estimated signal without noise
}
/**
* Filter a new value
* @param {Number} z Measurement
* @param {Number} u Control
* @return {Number}
*/
filter(z, u = 0) {
if (isNaN(this.x)) {
this.x = (1 / this.C) * z;
this.cov = (1 / this.C) * this.Q * (1 / this.C);
}
else {
// Compute prediction
const predX = (this.A * this.x) + (this.B * u);
const predCov = ((this.A * this.cov) * this.A) + this.R;
// Kalman gain
const K = predCov * this.C * (1 / ((this.C * predCov * this.C) + this.Q));
// Correction
this.x = predX + K * (z - (this.C * predX));
this.cov = predCov - (K * this.C * predCov);
}
return this.x;
}
/**
* Return the last filtered measurement
* @return {Number}
*/
lastMeasurement() {
return this.x;
}
/**
* Set measurement noise Q
* @param {Number} noise
*/
setMeasurementNoise(noise) {
this.Q = noise;
}
/**
* Set the process noise R
* @param {Number} noise
*/
setProcessNoise(noise) {
this.R = noise;
}
}