0
0
Fork 0
mirror of https://github.com/matrix-construct/construct synced 2024-12-25 15:04:10 +01:00

ircd::gpt: Various refactoring.

This commit is contained in:
Jason Volk 2022-06-19 18:59:29 -07:00
parent 31e078506a
commit 78848925ee
28 changed files with 5362 additions and 2644 deletions

View file

@ -11,89 +11,71 @@
#pragma once
#define HAVE_IRCD_GPT_CTRL_H
/// Epoch Precision Interrupt Controller
///
struct ircd_gpt_ctrl_epic
{
/// Accumulates the number of task cycles. The cycle counter is incremented
/// by device software after each repetition of the kernel pipeline to
/// produce one additional token.
ulong cycle;
/// Accumulates the epoch count for the task. The counter is incremented
/// by one in device software before control returns back to the host.
/// Several cycles may occur during each epoch.
ulong epoch;
/// Accumulates the training epoch count for the task. The counter is
/// incremented by one in device software for each backward propagation.
ulong step;
/// Updated by the host with the value of the timestamp register as sampled
/// immediately before each transfer of control to the device.
ulong host_tsc;
/// Accumulates time in microseconds elapsed for the task.
ulong elapsed;
};
/// Token Context Buffer (Control Block)
///
struct ircd_gpt_ctrl_tokens
{
/// Token ring head. Tokens in the ring extend behind the head for
/// `tokens`. The `head` value is automatically modulated by device
/// software to wrap around the ring.
uint head;
/// Token counter. The counter indicates the number of valid tokens in
/// the context buffer. This value must not exceed the buffer size.
uint count;
/// Accumulates the number of tokens produced by the task. Several tokens
/// may be produced each epoch, but currently only one token is produced
/// each cycle.
ulong produced;
/// Accumulates the number tokens witnessed by the task. The number of
/// tokens in the context for each cycle is counted as witnessed.
ulong witnessed;
};
/// Target label register (abridged)
///
/// Result logit control block.
struct ircd_gpt_ctrl_logit
{
/// Vocabulary token.
ushort token;
/// Padding #0.
ushort _pad0;
ushort flag;
/// Result logit softmax probability.
float samax;
};
/// Target label register (full)
///
/// Target label control block. Results for each target are registered
/// and state is updated each cycle.
struct ircd_gpt_ctrl_label
{
/// Vocabulary token.
ushort token;
/// Padding #0.
ushort _pad0;
/// Result logit softmax probability.
float samax;
/// Logit descriptor
struct ircd_gpt_ctrl_logit logit;
/// Loss state
struct ircd_math_mean loss;
/// Perplexity state
struct ircd_math_mean perp;
}
__attribute__((aligned(64)));
struct ircd_math_mean ppl;
};
/// Master clock
struct ircd_gpt_ctrl_clk
{
/// Master clock. The cycle count is incremented by one in device software
/// after each repetition of the kernels producing one additional token.
/// The cycle count resets to zero before the beginning of each sample.
uint cycle;
/// Master clock. Sample consists of one or more cycles; sample count is
/// incremented by one in device software after every accept condition,
/// growing monotonically for the `step`; resets to zero each `step`.
uint samp;
/// Master clock. Step (or timestep) consists of one or more samples. Step
/// count is incremented by one in device software after each backward
/// propagation. Step grows monotonically even across epochs.
uint step;
/// Master clock. Epoch consists of one or more steps; epoch count is
/// incremented by one after every backward propagation.
uint epoch;
};
/// Profiling block
struct ircd_gpt_ctrl_prof
{
/// Host timestamp sampled at last control page transfer to the device.
ulong released;
/// Host timestamp sampled when this control page accquired by the host.
ulong acquired;
/// Device timestamp at beginning of cycle.
ulong entered;
/// Device timestamp at end of cycle.
ulong finished;
};
/// Task Control Page
///
@ -104,50 +86,94 @@ __attribute__((aligned(64)));
///
struct ircd_gpt_ctrl
{
/// Epoch counting & interrupt control block.
struct ircd_gpt_ctrl_epic epic;
/// Accept register. If >= 0 the cycle produced a token which satisfies the
/// indicated accept condition.
int accept;
/// Token context control block. Contains state for the token context
/// buffer; the buffer with the tokens themselves is elsewhere.
struct ircd_gpt_ctrl_tokens tokens;
/// Dispatch register. Device software wishes additional cycles to be
/// commanded by the host. Effectively minimum distance until next accept.
uint dispatch;
/// Top result summary from the softed result logit softmax vector. This
/// is updated each cycle by device software with extended statistics on
/// the top N results.
struct ircd_gpt_ctrl_logit top[16];
/// Token counter. The counter indicates the number of valid tokens in
/// the context buffer. This value must not exceed the opts.buffer_size.
/// This value should not exceed the opts.context_size at least for now.
uint count;
/// Target label control block. Results for each target are registered
/// and state is updated each cycle.
struct ircd_gpt_ctrl_label label[4];
/// Token counter. The counter indicates the number of valid tokens in
/// the context buffer. This value must not exceed the opts.buffer_size.
/// This value should not exceed the opts.context_size at least for now.
uint tokens;
/// Result logit vector softmax internal state.
struct ircd_math_samax samax;
/// Master clock.
struct ircd_gpt_ctrl_clk clk;
/// Profiling related.
struct ircd_gpt_ctrl_prof prof;
/// PRNG xoshiro256 internal state (note: see opts.h to seed the prng).
ulong rand[4];
/// Perform backprop TODO: XXX
bool prop;
/// Top result summary from the softed result logit softmax vector. This
/// is updated each cycle by device software with extended statistics on
/// the top N results.
struct ircd_gpt_ctrl_logit top[16] __attribute__((aligned(8)));
/// Header magic 0xC7012C70
uint magic;
/// User label control block. Results for each target are registered
/// and state is updated each cycle; averaged for each step.
struct ircd_gpt_ctrl_label label[14] __attribute__((aligned(64)));
/// The token buffer starts at offset 2048 and continues to the end of
/// the page; options specify the size of the tokens buffer in tokens.
/// Additional pages must be attached for larger buffer sizes.
ushort token[] __attribute__((aligned(2048)));
/// Target result label; traces training token.
struct ircd_gpt_ctrl_label target __attribute__((aligned(64)));
/// Selected result token label.
struct ircd_gpt_ctrl_label select __attribute__((aligned(64)));
/// Incremented when the target is the selected token.
uint hit, miss;
/// Attention summary; [layer][head] => [token]. Each value points to a
/// position in the token buffer. The top-scoring softmax result for each
/// head in each layer is attending to the token.at(value) for this cycle.
/// These values are completely updated every cycle.
ushort attn[12][12];
/// Header magic: host sets 0xDEADBEEF before release to device; device
/// sets 0xC7012C7012 before release to host.
ulong magic;
/// Token buffer
ushort token[1024] __attribute__((aligned(2048)));
}
__attribute__((aligned(4096)));
#ifdef __cplusplus
#if defined(__cplusplus)
namespace ircd::gpt
{
using ctrl = struct ircd_gpt_ctrl;
using ctrl_clk = struct ircd_gpt_ctrl_clk;
using ctrl_prof = struct ircd_gpt_ctrl_prof;
using ctrl_logit = struct ircd_gpt_ctrl_logit;
using ctrl_label = struct ircd_gpt_ctrl_label;
string_view debug_token_at(const mutable_buffer &, const opts &, const ctrl &, const uint, const uint fmt = -1U);
string_view debug_token(const mutable_buffer &, const opts &, const ctrl &, const uint fmt = -1U);
string_view debug_head(const mutable_buffer &, const opts &, const ctrl_clk &);
string_view debug_head(const mutable_buffer &, const opts &, const ctrl &);
string_view debug(const mutable_buffer &, const opts &, const ctrl_logit &, const uint fmt = 0);
string_view debug(const mutable_buffer &, const opts &, const ctrl_label &, const uint fmt = 0);
string_view debug(const mutable_buffer &, const opts &, const ctrl &);
string_view debug_attn(const mutable_buffer &, const opts &, const ctrl &, const uint);
string_view debug_label(const mutable_buffer &, const opts &, const ctrl &, const uint, const uint fmt = 0);
string_view debug_top(const mutable_buffer &, const opts &, const ctrl &, const uint);
}
#endif
#ifdef __cplusplus
static_assert(sizeof(struct ircd_gpt_ctrl) == 4096);
#if defined(__cplusplus)
static_assert(sizeof(struct ircd_gpt_ctrl) % 4096 == 0);
#endif
#if defined(__cplusplus) && defined(__GLIBCXX__)
static_assert(offsetof(struct ircd_gpt_ctrl, token) == 2048);
static_assert(std::is_standard_layout<struct ircd_gpt_ctrl>::value);
#endif

38
include/ircd/gpt/epoch.h Normal file
View file

@ -0,0 +1,38 @@
// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2022 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma once
#define HAVE_IRCD_GPT_EPOCH_H
/// Perform one task epoch on the device.
///
struct ircd::gpt::epoch
{
gpt::task &task;
pipe::desc &desc;
const gpt::opts &opts;
gpt::ctrl &ctrl;
const uint id;
const size_t start, stop;
f32 *moment[2];
pipe::prof profile;
void profile_accumulate(const pipe::prof &);
public:
bool done() const noexcept;
bool operator()();
epoch(gpt::task &);
~epoch() noexcept;
};

View file

@ -17,16 +17,36 @@ namespace ircd::gpt
{
IRCD_EXCEPTION(ircd::error, error)
struct samp;
struct step;
struct epoch;
struct task;
extern log::log log;
}
#include "vocab.h"
#include "model.h"
#include "token.h"
#include "vector.h"
#include "model.h"
#include "opts.h"
#include "ctrl.h"
#include "task.h"
#include "pipe/pipe.h"
#include "samp.h"
#include "step.h"
#include "epoch.h"
#include "task.h"
#include "generate.h"
namespace ircd::gpt
{
void backprop(const opts &, const u32, const f32, model::decoder &, f32 *const __restrict__ [2]) noexcept;
void log_debug(const opts &, const ctrl &);
void log_debug_token(const opts &, const ctrl &, const uint);
void log_debug_attns(const opts &, const ctrl &);
void log_debug_attns_top(const opts &, const ctrl &);
void log_debug_labels(const opts &, const ctrl &);
void log_debug_topn(const opts &, const ctrl &);
void log_debug_prof(const opts &, const ctrl &, const pipe::prof &);
}

290
include/ircd/gpt/gpu.h Normal file
View file

@ -0,0 +1,290 @@
// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2022 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
typedef union ircd_gpt_vector_f32x4 ircd_gpt_vectorv __attribute__((aligned(4096)));
typedef struct ircd_gpt_attn_qkv_f32x4 ircd_gpt_attn_qkvv __attribute__((aligned(4096)));
typedef union ircd_gpt_attn_aperature_f32x4 ircd_gpt_attn_aperaturev __attribute__((aligned(4096)));
typedef union ircd_gpt_ffnn_aperature_f32x4 ircd_gpt_ffnn_aperaturev __attribute__((aligned(4096)));
//
// Frontside
//
void
__attribute__((internal_linkage))
ircd_gpt_norm_fmad(__local ircd_gpt_vectorv *out,
__local const ircd_gpt_vectorv *in,
__global const ircd_gpt_vectorv *bias,
__global const ircd_gpt_vectorv *weight,
const uint li);
void
__attribute__((internal_linkage))
ircd_gpt_norm(__local ircd_gpt_vectorv *out,
__local const ircd_gpt_vectorv *in,
__local ircd_gpt_vectorv *tmp,
__global const ircd_gpt_vectorv *bias,
__global const ircd_gpt_vectorv *weight,
const uint ln,
const uint li);
void
__attribute__((internal_linkage))
ircd_gpt_ffnn_gelu(__local ircd_gpt_ffnn_aperaturev *out,
__local const ircd_gpt_ffnn_aperaturev *in,
const uint i);
void
__attribute__((internal_linkage))
ircd_gpt_ffnn_fcon_tmul(__constant const struct ircd_gpt_opts *opts,
__local ircd_gpt_ffnn_aperaturev *out,
__local const ircd_gpt_vectorv *in,
__global const ircd_gpt_ffnn_aperaturev *bias,
__global const ircd_gpt_ffnn_aperaturev *weight,
const uint li);
void
__attribute__((internal_linkage))
ircd_gpt_ffnn_fcon(__global const struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
__local ircd_gpt_ffnn_aperaturev *out,
__local const ircd_gpt_vectorv *in,
__global const ircd_gpt_ffnn_aperaturev *bias,
__global const ircd_gpt_ffnn_aperaturev *weight,
const uint ln,
const uint li);
void
__attribute__((internal_linkage))
ircd_gpt_ffnn_proj_tmul(__constant const struct ircd_gpt_opts *opts,
__local ircd_gpt_vectorv *out,
__local const ircd_gpt_ffnn_aperaturev *in,
__global const ircd_gpt_vectorv *bias,
__global const ircd_gpt_vectorv *weight,
const uint li);
void
__attribute__((internal_linkage))
ircd_gpt_ffnn(__global const struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
__local ircd_gpt_vectorv *vector,
__local ircd_gpt_ffnn_aperaturev *buf,
__local ircd_gpt_vectorv *tmp,
__global const ircd_gpt_vectorv *norm_bias,
__global const ircd_gpt_vectorv *norm_weight,
__global const ircd_gpt_ffnn_aperaturev *fcon_bias,
__global const ircd_gpt_ffnn_aperaturev *fcon_weight,
__global const ircd_gpt_vectorv *proj_bias,
__global const ircd_gpt_vectorv *proj_weight,
const uint ln,
const uint li);
void
__attribute__((internal_linkage))
ircd_gpt_attn_fcon_tmul(__constant const struct ircd_gpt_opts *opts,
__local ircd_gpt_attn_aperaturev *out,
__local const ircd_gpt_vectorv *in,
__global const ircd_gpt_attn_aperaturev *bias,
__global const ircd_gpt_attn_aperaturev *weight,
const uint ln,
const uint li);
__kernel void
__attribute__((visibility("protected")))
ircd_gpt_attn_fcon(__global const struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
__private const uint layer,
__global ircd_gpt_attn_aperaturev *state,
__global const ircd_gpt_vectorv *accum,
__global const ircd_gpt_vectorv *norm_bias,
__global const ircd_gpt_vectorv *norm_weight,
__global const ircd_gpt_attn_aperaturev *fcon_bias,
__global const ircd_gpt_attn_aperaturev *fcon_weight);
//
// head
//
void
__attribute__((internal_linkage))
_ircd_gpt_lm_embed(__global const struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
__global ircd_gpt_vectorv *accum,
__global const ircd_gpt_vectorv *pos,
__global const ircd_gpt_vectorv *vocab,
const ushort out_idx,
const ushort tok_idx,
const ushort word_idx);
__kernel void
__attribute__((visibility("protected")))
ircd_gpt_lm_embed(__global const struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
__global ircd_gpt_vectorv *accum,
__global const ircd_gpt_vectorv *pos,
__global const ircd_gpt_vectorv *vocab);
__kernel void
__attribute__((visibility("protected")))
ircd_gpt_lm_norm(__global const struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
__global ircd_gpt_vectorv *accum,
__global const ircd_gpt_vectorv *norm_bias,
__global const ircd_gpt_vectorv *norm_weight);
__kernel void
__attribute__((visibility("protected")))
ircd_gpt_lm_logit(__global const struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
__global float *logit,
__global const ircd_gpt_vectorv *accum,
__global const ircd_gpt_vectorv *pos,
__global const ircd_gpt_vectorv *vocab);
__kernel void
__attribute__((visibility("protected")))
ircd_gpt_lm_logsm(__global struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
__global float logit[65536]);
void
__attribute__((internal_linkage))
ircd_gpt_lm_result_top(__local struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
__local const ushort *idx,
__global const float *logsm,
const uint i);
void
__attribute__((internal_linkage))
ircd_gpt_lm_result_label_mean(__local struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
__local struct ircd_math_mean *mean,
const float last);
void
__attribute__((internal_linkage))
ircd_gpt_lm_result_label(__local struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
__local struct ircd_gpt_ctrl_label *label,
__global const float *logsm);
ushort
__attribute__((internal_linkage))
ircd_gpt_lm_result_select(__local struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
__local const ushort *idx,
__global const float *logsm);
uint
__attribute__((internal_linkage))
ircd_gpt_accept_len(__local struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
const uint i);
uint
__attribute__((internal_linkage))
ircd_gpt_accept_match(__local struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
const uint i);
int
__attribute__((internal_linkage))
ircd_gpt_accept_check(__local struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts);
void
__attribute__((internal_linkage))
ircd_gpt_accept(__local struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts);
//
// backside
//
void
__attribute__((internal_linkage))
ircd_gpt_prop_elem(__global const struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
__global float4 *param_,
__global float4 *exp_avg_,
__global float4 *exp_avg_sqr_);
//
// backpropagations
//
__kernel void
__attribute__((visibility("protected")))
ircd_gpt_norm_prop(__global const struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
__global ircd_gpt_vectorv *bias,
__global ircd_gpt_vectorv *bias_m0,
__global ircd_gpt_vectorv *bias_m1,
__global ircd_gpt_vectorv *weight,
__global ircd_gpt_vectorv *weight_m0,
__global ircd_gpt_vectorv *weight_m1);
__kernel void
__attribute__((visibility("protected")))
ircd_gpt_coil_prop_attn(__global const struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
__global ircd_gpt_vectorv *norm_bias,
__global ircd_gpt_vectorv *norm_bias_m0,
__global ircd_gpt_vectorv *norm_bias_m1,
__global ircd_gpt_vectorv *norm_weight,
__global ircd_gpt_vectorv *norm_weight_m0,
__global ircd_gpt_vectorv *norm_weight_m1,
__global ircd_gpt_attn_aperaturev *fcon_bias,
__global ircd_gpt_attn_aperaturev *fcon_bias_m0,
__global ircd_gpt_attn_aperaturev *fcon_bias_m1,
__global ircd_gpt_attn_aperaturev *fcon_weight,
__global ircd_gpt_attn_aperaturev *fcon_weight_m0,
__global ircd_gpt_attn_aperaturev *fcon_weight_m1,
__global ircd_gpt_vectorv *proj_bias,
__global ircd_gpt_vectorv *proj_bias_m0,
__global ircd_gpt_vectorv *proj_bias_m1,
__global ircd_gpt_vectorv *proj_weight,
__global ircd_gpt_vectorv *proj_weight_m0,
__global ircd_gpt_vectorv *proj_weight_m1);
__kernel void
__attribute__((visibility("protected")))
ircd_gpt_coil_prop_ffnn(__global const struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
__global ircd_gpt_vectorv *norm_bias,
__global ircd_gpt_vectorv *norm_bias_m0,
__global ircd_gpt_vectorv *norm_bias_m1,
__global ircd_gpt_vectorv *norm_weight,
__global ircd_gpt_vectorv *norm_weight_m0,
__global ircd_gpt_vectorv *norm_weight_m1,
__global ircd_gpt_ffnn_aperaturev *fcon_bias,
__global ircd_gpt_ffnn_aperaturev *fcon_bias_m0,
__global ircd_gpt_ffnn_aperaturev *fcon_bias_m1,
__global ircd_gpt_ffnn_aperaturev *fcon_weight,
__global ircd_gpt_ffnn_aperaturev *fcon_weight_m0,
__global ircd_gpt_ffnn_aperaturev *fcon_weight_m1,
__global ircd_gpt_vectorv *proj_bias,
__global ircd_gpt_vectorv *proj_bias_m0,
__global ircd_gpt_vectorv *proj_bias_m1,
__global ircd_gpt_vectorv *proj_weight,
__global ircd_gpt_vectorv *proj_weight_m0,
__global ircd_gpt_vectorv *proj_weight_m1);
__kernel void
__attribute__((visibility("protected")))
ircd_gpt_lm_embed_prop(__global const struct ircd_gpt_ctrl *ctrl,
__constant const struct ircd_gpt_opts *opts,
__global ircd_gpt_vectorv *pos,
__global ircd_gpt_vectorv *pos_m0,
__global ircd_gpt_vectorv *pos_m1,
__global ircd_gpt_vectorv *token,
__global ircd_gpt_vectorv *token_m0,
__global ircd_gpt_vectorv *token_m1);

View file

@ -20,66 +20,105 @@ namespace ircd::gpt::model
struct embed;
struct decoder;
constexpr auto align {64};
struct prop;
struct text;
extern decoder *default_model;
extern float *default_moment[2];
extern float *default_checkpoint[3];
extern string_view default_dataset;
extern std::vector<json::object> default_data;
constexpr auto alignment {4096};
}
/// Layer normalization
struct ircd::gpt::model::norm
{
union ircd_gpt_vector
bias alignas(alignment),
weight alignas(alignment);
};
/// Attention aperature
struct ircd::gpt::model::attn
{
float
attn_bias alignas(align) [2304],
attn_weight alignas(align) [768][2304];
model::norm
norm;
float
proj_bias alignas(align) [768],
proj_weight alignas(align) [768][768];
union ircd_gpt_attn_aperature
fcon_bias alignas(alignment),
fcon_weight alignas(alignment) [768];
union ircd_gpt_vector
proj_bias alignas(alignment),
proj_weight alignas(alignment) [768];
};
/// Feed-forward neural network
struct ircd::gpt::model::ffnn
{
float
fc_bias alignas(align) [3072],
fc_weight alignas(align) [768][3072];
model::norm
norm;
float
proj_bias alignas(align) [768],
proj_weight alignas(align) [3072][768];
};
union ircd_gpt_ffnn_aperature
fcon_bias alignas(alignment),
fcon_weight alignas(alignment) [768];
/// Layer normalization
struct ircd::gpt::model::norm
{
float
bias alignas(align) [768],
weight alignas(align) [768];
union ircd_gpt_vector
proj_bias alignas(alignment),
proj_weight alignas(alignment) [3072];
};
/// Transformer block
struct ircd::gpt::model::block
{
norm ln1;
model::attn attn;
model::attn
attn;
norm ln2;
model::ffnn ffnn;
model::ffnn
ffnn;
};
/// Vocabulary embeddings
struct ircd::gpt::model::embed
{
float
pos alignas(align) [1024][768],
token alignas(align) [65536][768];
model::norm
norm;
union ircd_gpt_vector
pos alignas(alignment) [1024],
token alignas(alignment) [65536];
};
struct ircd::gpt::model::decoder
/// Transformer decoder
struct alignas(ircd::gpt::model::alignment)
ircd::gpt::model::decoder
{
block layer[12];
model::block
layer[12];
norm f;
embed word;
model::embed
embed;
};
struct ircd::gpt::model::prop
{
static constexpr const char
*const ended {"ended"},
*const id {"id"},
*const length {"length"},
*const text {"text"};
};
struct ircd::gpt::model::text
:json::tuple
<
json::property<prop::ended, bool>,
json::property<prop::id, uint>,
json::property<prop::length, uint>,
json::property<prop::text, json::string>
>
{
using super_type::tuple;
};

View file

@ -11,6 +11,13 @@
#pragma once
#define HAVE_IRCD_GPT_OPTS_H
#if defined(__cplusplus)
namespace ircd::gpt::model
{
struct decoder;
}
#endif
/// Task Options Page
///
/// The option block is directly shared with task software as constant data.
@ -20,30 +27,23 @@
///
struct ircd_gpt_opts
{
#ifdef __cplusplus
ircd_gpt_opts(const ircd::gpt::model::decoder * = nullptr) noexcept;
#if defined(__cplusplus)
ircd_gpt_opts() noexcept;
#endif
/// Reference to the model (currently not available in device software).
#ifndef __cplusplus
const void *model;
#else
const ircd::gpt::model::decoder *model;
#endif
//
// Frontside
//
/// Seed for the task's PRNG.
ulong seed;
/// Limit number of output tokens. Default of -1 is unlimited; the number
/// of tokens generated will be limited by other factors.
uint limit;
/// Flip random coins over the top k logits each round. Setting to 1
/// deterministically selects the top logit.
uint top_k;
/// Flip a random coin between 0 and top_p ( = 90 = 0.9) for logit select.
uint top_p;
float top_p;
/// Registers the top n result logits in the ctrl block each cycle.
uint top_n;
@ -51,59 +51,25 @@ struct ircd_gpt_opts
/// Number of target labels to register results for in the ctrl block.
uint labels;
/// Bitbar toggling various debug modes
/// Number of pages available after the control block for the frame log.
uint frames;
/// Limit number of output tokens. Default of -1; other halting conditions
/// will be used.
uint limit;
/// Bitbar toggling various debug modes.
uint debug;
/// Specifies the token context size in tokens.
uint context_tokens;
/// Accepting condition codes.
ushort accept[4][8] __attribute__((aligned(4)));
/// Specifies the token buffer size in tokens.
uint buffer_tokens;
//
// Backside
//
/// Decoding layers.
uint layers;
/// SIMD lane count.
uint lanes;
/// Embedding vector elements
uint embed_elems;
/// Cross-attention dimension
uint attn_rank;
/// Attention unit fcon width multiple
uint attn_mult;
/// (computed) MLP unit fcon width multiple
uint ffnn_mult;
/// (computed) attention unit width multiple
uint attn_elems;
/// FFNN unit width multiple
uint ffnn_elems;
/// SIMD lane count
uint lanes;
/// (computed) `embed_elems` / `lanes`
uint embed_width;
/// (computed) Attention unit X dimension
uint attn_width;
/// (computed) Attention unit Y dimension
uint attn_height;
/// (computed) MLP backend X dimension
uint ffnn_width;
/// (computed) MLP backend Y dimension
uint ffnn_height;
/// Number of possible target n-grams.
uint logits;
/// Samples per step.
uint batch_size;
/// Training steps
uint training_steps;
@ -122,15 +88,90 @@ struct ircd_gpt_opts
/// Denorm smoothing
float epsilon;
/// Tuning convergence rate
float lambda;
//
// Model dimensions
//
/// Number of possible target n-grams.
uint logits;
/// Specifies the token buffer size in tokens.
uint buffer_tokens;
/// Specifies the token context size in tokens.
uint context_tokens;
/// Decoding layers.
uint layers;
/// SIMD lane count.
uint lanes;
/// Embedding vector elements
uint embed_elems;
/// (computed) `embed_elems` / `lanes`
uint embed_width;
/// Cross-attention dimension
uint attn_rank;
/// Attention unit fcon width multiple
uint attn_mult;
/// (computed) attention unit width multiple
uint attn_elems;
/// (computed) Attention unit X dimension
uint attn_fcon_width;
/// (computed) Attention unit Y dimension
uint attn_fcon_height;
/// (computed) Attention unit X dimension
uint attn_proj_width;
/// (computed) Attention unit Y dimension
uint attn_proj_height;
/// (computed) Packed attention array total element count
uint attn_self_elems;
/// MLP unit fcon width multiple
uint ffnn_mult;
/// (computed) FFNN unit width multiple
uint ffnn_elems;
/// (computed) MLP backend X dimension
uint ffnn_fcon_width;
/// (computed) MLP backend Y dimension
uint ffnn_fcon_height;
/// (computed) MLP backend X dimension
uint ffnn_proj_width;
/// (computed) MLP backend Y dimension
uint ffnn_proj_height;
}
__attribute__((aligned(4096)));
#ifdef __cplusplus
#if defined(__cplusplus)
namespace ircd::gpt
{
using opts = ::ircd_gpt_opts;
}
#endif
#if defined(__cplusplus)
static_assert(sizeof(struct ircd_gpt_opts) == 4096);
#endif
#if defined(__cplusplus) && defined(__GLIBCXX__)
static_assert(std::is_standard_layout<struct ircd_gpt_opts>::value);
#endif

View file

@ -16,12 +16,15 @@ struct ircd::gpt::pipe::code
:cl::code
{
static conf::item<std::string> default_path;
static conf::item<std::string> default_opts;
static conf::item<std::string> default_compile_opts;
static conf::item<std::string> default_link_opts;
static conf::item<std::string> cache_path;
static string_view make_cache_path(const mutable_buffer &);
static cl::code from_cache(const string_view &opts, const string_view &path);
static cl::code from_source(const string_view &opts);
static cl::code from_cache();
static cl::code from_source(const string_view &comp_opts = {}, const string_view &link_opts = {});
static cl::code from_bitcode(const string_view &link_opts = {});
void set_cache(const string_view &path);
bool put_cache();

View file

@ -0,0 +1,48 @@
// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2022 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma once
#define HAVE_IRCD_GPT_PIPE_CYCLE_H
namespace ircd::gpt::pipe
{
const gpt::ctrl &acquire(cycle &);
}
/// Perform one task cycle on the device. The cycle is an atomic unit of
/// generation producing one token.
///
/// Constructions of this object enqueue device commands to complete an
/// additional cycle of the task as provided by `ctrl` and `opts`.
///
/// Destructions of this object yield the ircd::ctx until those commands
/// are complete.
///
struct ircd::gpt::pipe::cycle
{
struct profile;
static constexpr size_t stages
{
4 + 3 + (12 * 2) + 4 + 2 + (12 * 2) + 1
};
pipe::desc &desc;
uint tick;
uint count;
uint tokens;
uint cached;
uint frame;
pipe::range range;
std::array<cl::exec, stages> stage;
cycle(gpt::samp &);
~cycle() noexcept;
};

View file

@ -16,43 +16,62 @@ struct ircd::gpt::pipe::desc
{
struct layer;
// Model descriptor
pipe::model *model;
// Code descriptor
pipe::code *code;
// Memories
cl::data
state, // [root] projection (layers * tokens * embed * 3 * float)
opts, // [root] options page
ctrl, // [root] control page
master, // [root] single allocation for additional buffers:
state, // [-sub] projection (layers * tokens * embed * 3 * float)
accum, // [-sub] accumulator (tokens * embed * float)
logit, // [-sub] result logit vector (50257 * float)
logsm, // [-sub] outputs distribution (50257 * float)
ctrl, // [root] control page
opts; // [root] options page
attns, // [-sub] result attention softmax
frame[8]; // [root] result stream
// Programs
cl::kern
alloc,
enter,
lm_embed,
lm_norm,
lm_logit,
lm_logsm,
lm_select,
lm_norm_backprop,
lm_embed_backprop;
lm_prop_embed,
lm_prop_norm,
leave[8];
std::unique_ptr<struct desc::layer>
layer[12];
/// Coil pack
std::unique_ptr<struct desc::layer> layer[12];
desc(pipe::code &, pipe::model &);
/// Attention projection for first N tokens already contained in `state`.
uint cached {0};
desc(const gpt::opts *const &,
gpt::ctrl *const &,
pipe::model &model,
pipe::code &code);
};
/// Pipe descriptor: coil layer
struct ircd::gpt::pipe::desc::layer
{
cl::data
state; // [-sub] qry/key/val projection (tokens * embed * 3 * float)
state, // [-sub] qry/key/val projection (tokens * embed * 3 * float)
attns; // [-sub] attn softmax result (((tokens * tokens) / 2) * 12 * float)
cl::kern
negative,
positive,
backattn,
backffnn;
attn,
ffnn,
prop_attn,
prop_ffnn;
layer(pipe::desc &, const int);
layer(pipe::desc &,
const gpt::opts *const &,
const uint laynum);
};

View file

@ -1,65 +0,0 @@
// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2021 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma once
#define HAVE_IRCD_GPT_PIPE_EXEC_H
/// Perform one task cycle on the device.
///
/// Constructions of this object enqueue device commands to complete an
/// additional epoch of the task as provided by `ctrl` and `opts`.
///
/// Destructions of this object yield the ircd::ctx until those commands
/// are complete.
///
/// Consecutive cycles on the device without stopping (a.k.a. pipelining) is
/// achieved by constructing several objects before following with destructions
/// i.e in a std::deque.
///
struct ircd::gpt::pipe::exec
{
pipe::desc *desc;
const_buffer
send_opts, // Set when sending the options page.
send_ctrl, // Set when sending the control page.
send_coil, // Set when sending the updated model.
send_head; // Set when sending the updated model.
mutable_buffer
recv_ctrl; // Set when receiving the control page.
cl::kern::range
range_full,
range_last,
range_lm_embed, // Dimension range of the lm_embed kernel.
range_negative, // Dimension range of a layer kernel.
range_positive, // Dimension range of a layer kernel.
range_lm_norm, // Dimension range of the final norm kernel.
range_lm_logit, // Dimension range of the language logit kernel.
range_lm_logsm, // Dimension range of the language statistic kernel.
range_lm_select; // Dimension range of the language token kernel.
cl::exec
release_opts, // Release the options page.
release_ctrl, // Release the control page.
release_coil, // Release updates to the model.
release_head, // Release updates to the model.
lm_embed, // Compute token and positional embeddings.
coil[12 * 2], // Pass over all layers.
lm_norm, // Final normalization.
lm_logit, // Compute language logits.
lm_logsm, // Statistics on the logits.
lm_select, // Select next token.
acquire_ctrl; // Acquire the control page.
exec(task &, const size_t tokens, const bool rel, const bool acq);
~exec() noexcept;
};

View file

@ -21,15 +21,15 @@ struct ircd::gpt::pipe::model
struct attn;
struct ffnn;
struct block;
struct embed;
struct decoder;
struct language;
const gpt::model::decoder *decode_const {nullptr};
gpt::model::decoder *decode_mutable {nullptr};
std::unique_ptr<model::decoder> decode;
std::unique_ptr<model::language> embed;
bool invalid {false};
model(const gpt::model::decoder &, const gpt::model::embed &);
model(gpt::model::decoder &, gpt::model::embed &);
model(const gpt::model::decoder &);
model(gpt::model::decoder &);
~model() noexcept;
};
@ -49,8 +49,8 @@ struct ircd::gpt::pipe::model::tensor
bias,
weight;
tensor(cl::data *, const off_t, const const_buffer &bias, const const_buffer &weight);
tensor(cl::data *, const off_t, const mutable_buffer &bias, const mutable_buffer &weight);
tensor(cl::data *, const off_t, const const_buffer &bias, const off_t, const const_buffer &weight);
tensor(cl::data *, const off_t, const mutable_buffer &bias, const off_t, const mutable_buffer &weight);
};
struct ircd::gpt::pipe::model::attn
@ -60,8 +60,8 @@ struct ircd::gpt::pipe::model::attn
fcon,
proj;
attn(cl::data *, const off_t, const gpt::model::norm &, const gpt::model::attn &);
attn(cl::data *, const off_t, gpt::model::norm &, gpt::model::attn &);
attn(cl::data *, const off_t, const gpt::model::attn &);
attn(cl::data *, const off_t, gpt::model::attn &);
};
struct ircd::gpt::pipe::model::ffnn
@ -71,40 +71,33 @@ struct ircd::gpt::pipe::model::ffnn
fcon,
proj;
ffnn(cl::data *, const off_t, const gpt::model::norm &, const gpt::model::ffnn &);
ffnn(cl::data *, const off_t, gpt::model::norm &, gpt::model::ffnn &);
ffnn(cl::data *, const off_t, const gpt::model::ffnn &);
ffnn(cl::data *, const off_t, gpt::model::ffnn &);
};
struct ircd::gpt::pipe::model::block
{
// Single layer memory roots
cl::data
master[3];
model::attn
attn;
// Layer units
model::attn attn;
model::ffnn ffnn;
model::ffnn
ffnn;
block(cl::data *, const off_t, const gpt::model::block &, const size_t);
block(cl::data *, const off_t, gpt::model::block &, const size_t);
block(const gpt::model::block &, const size_t);
block(gpt::model::block &, const size_t);
};
struct ircd::gpt::pipe::model::language
struct ircd::gpt::pipe::model::embed
{
cl::data
master[3];
tensor
norm;
matrix
pos,
token;
language(cl::data *, const off_t, const gpt::model::embed &);
language(cl::data *, const off_t, gpt::model::embed &);
language(const gpt::model::embed &);
language( gpt::model::embed &);
~language() noexcept;
embed(cl::data *, const off_t, const gpt::model::embed &);
embed(cl::data *, const off_t, gpt::model::embed &);
};
struct ircd::gpt::pipe::model::decoder
@ -115,10 +108,11 @@ struct ircd::gpt::pipe::model::decoder
// Layer blocks
model::block
block[12];
layer[12];
// Final norm
tensor norm;
// Language model head
model::embed
embed;
decoder(const gpt::model::decoder &);
decoder(gpt::model::decoder &);

View file

@ -13,21 +13,21 @@
namespace ircd::gpt::pipe
{
struct model;
struct code;
struct model;
struct desc;
struct exec;
struct range;
struct cycle;
struct prof;
extern model *default_model;
extern code *default_code;
extern desc *default_desc;
void generate(task &);
extern conf::item<size_t> queue_cycles;
void init(), fini() noexcept;
};
#include "model.h"
#include "code.h"
#include "model.h"
#include "desc.h"
#include "exec.h"
#include "range.h"
#include "cycle.h"
#include "prof.h"

View file

@ -0,0 +1,56 @@
// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2022 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma once
#define HAVE_IRCD_GPT_PIPE_PROF_H
namespace ircd::gpt::pipe
{
string_view debug(const mutable_buffer &, const prof &, const size_t &pos);
string_view debug(const mutable_buffer &, const prof &);
}
/// Extract profiling information for a cycle. This object contains timing
/// state integers for each corresponding stage of the cycle.
///
/// Default constructions initialize to zero and the state can also be used
/// as an accumulator.
struct ircd::gpt::pipe::prof
{
static constexpr size_t stages
{
cycle::stages
};
static constexpr size_t phases
{
num_of<cl::work::prof::phase>()
};
using phase = cl::work::prof::phase;
using phase_array = cl::work::prof;
using stage_array = std::array<phase_array, stages>;
using info_type = std::tuple<string_view, int>;
using info_array = std::array<info_type, stages>;
using info_name_array = std::array<char[64], stages>;
static info_name_array name;
static info_array info;
private:
static bool init;
static void init_info(const pipe::cycle &);
public:
stage_array ts;
prof(const pipe::cycle &);
prof() noexcept;
};

View file

@ -0,0 +1,39 @@
// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2022 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma once
#define HAVE_IRCD_GPT_PIPE_RANGE_H
struct ircd::gpt::pipe::range
{
cl::kern::range
_full,
_last,
alloc,
embed,
attn,
ffnn,
fffnn,
fnorm,
logit,
logsm,
select,
prop_embed,
prop_norm,
prop_attn,
prop_ffnn;
range(const uint tick,
const uint count,
const uint tokens,
const uint cached,
const bool fwd,
const bool rev) noexcept;
};

49
include/ircd/gpt/samp.h Normal file
View file

@ -0,0 +1,49 @@
// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2022 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma once
#define HAVE_IRCD_GPT_SAMP_H
/// Perform one task step on the device. The step is a sequence of cycles
/// which generate tokens until satisfying a halting condition. The number of
/// cycles for the step is limited by the size of the context buffer.
///
struct ircd::gpt::samp
{
gpt::step &step;
pipe::desc &desc;
const gpt::opts &opts;
gpt::ctrl &ctrl;
const uint id;
int accept;
uint dispatch;
uint cycle;
uint tokens;
uint count;
pipe::prof profile;
std::deque<pipe::cycle> queue;
public:
void profile_accumulate(const pipe::prof &);
bool retire(pipe::cycle &, const gpt::ctrl &);
bool evaluate(pipe::cycle &);
uint tokenize();
public:
bool done() const noexcept;
bool operator()();
samp(gpt::step &);
~samp() noexcept;
};

40
include/ircd/gpt/step.h Normal file
View file

@ -0,0 +1,40 @@
// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2022 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma once
#define HAVE_IRCD_GPT_STEP_H
/// Perform one task step on the device. The step is a sequence of cycles
/// which generate tokens until satisfying a halting condition. The number of
/// cycles for the step is limited by the size of the context buffer.
///
struct ircd::gpt::step
{
gpt::epoch &epoch;
pipe::desc &desc;
const gpt::opts &opts;
gpt::ctrl &ctrl;
const uint id;
const uint start;
pipe::prof profile;
void profile_accumulate(const pipe::prof &);
bool backpropagate();
public:
bool done() const noexcept;
bool operator()();
step(gpt::epoch &);
~step() noexcept;
};

View file

@ -12,6 +12,14 @@
#define HAVE_IRCD_GPT_TASK_H
#ifdef __cplusplus
namespace ircd::gpt
{
void seed(task &, const uint64_t &) noexcept;
void seed(task &) noexcept;
void clear(task &) noexcept;
void reset(task &) noexcept;
}
/// Task Context
///
/// State for a task.
@ -22,27 +30,25 @@ struct ircd::gpt::task
/// Reference to the attached options.
const gpt::opts *opts {nullptr};
/// Reference to control pages.
/// Reference to user's control block.
gpt::ctrl *ctrl {nullptr};
/// Current task status.
enum status status {'\0'};
/// Pipe code
std::unique_ptr<pipe::code> code;
/// Pipe model
std::unique_ptr<pipe::model> model;
/// Pipe state
pipe::desc desc;
public:
bool done() const noexcept;
bool operator()();
task(const gpt::opts * = nullptr,
gpt::ctrl * = nullptr);
task(const gpt::opts * = nullptr, gpt::ctrl * = nullptr);
~task() noexcept;
};
/// The current status of a task is indicated with intelligible characters
enum ircd::gpt::task::status
:char
{
QUEUED = 'Q', ///< Queued for execution.
RUNNING = 'R', ///< Currently being executed.
ACCEPT = 'A', ///< Execution completed successfully.
ERROR = 'E', ///< Execution did not complete successfully.
};
static_assert(sizeof(struct ircd_gpt_ctrl) == 4096);
static_assert(offsetof(struct ircd_gpt_ctrl, token) == 2048);
static_assert(std::is_standard_layout<struct ircd_gpt_ctrl>::value);
#endif

View file

@ -11,127 +11,67 @@
#pragma once
#define HAVE_IRCD_GPT_TOKEN_H
union ircd_gpt_token
namespace ircd::gpt
{
float
word[768],
attn[12][64];
struct token;
}
/// Token is just a 16-bit index into the vocabulary. This lightweight wrapper
/// convenience constructs from a string lookup or from a u16 directly.
class ircd::gpt::token
{
uint16_t val;
public:
operator const uint16_t &() const;
operator uint16_t &();
operator string_view() const;
token(const_buffer &buf) noexcept;
token(const string_view &);
token(const uint16_t &) noexcept;
};
#ifdef __OPENCL_C_VERSION__
union ircd_gpt_tokenv
static_assert(sizeof(ircd::gpt::token) == sizeof(uint16_t));
static_assert(std::is_standard_layout<ircd::gpt::token>::value);
/// Direct construction; no lookup
inline
ircd::gpt::token::token(const uint16_t &val)
noexcept
:val{val}
{}
/// Must resolve to one token or error thrown.
inline
ircd::gpt::token::token(const string_view &str)
:val{vocab::tokenize(str)}
{}
/// Consumes input for one token off front of buf
inline
ircd::gpt::token::token(const_buffer &buf)
noexcept
:val{vocab::tokenize(buf)}
{}
inline ircd::gpt::token::operator
string_view()
const
{
float4
word[768/4],
attn[12][64/4];
return vocab::token[val];
}
union ircd_gpt_token
token;
};
#endif
struct ircd_gpt_attn_qkv
inline ircd::gpt::token::operator
uint16_t &()
{
union ircd_gpt_token
qry,
key,
val;
};
return val;
}
#ifdef __OPENCL_C_VERSION__
struct ircd_gpt_attn_qkvv
inline ircd::gpt::token::operator
const uint16_t &()
const
{
union ircd_gpt_tokenv
qry,
key,
val;
};
#endif
union ircd_gpt_attn_aperature
{
float
fcon[2304],
proj[3][768],
qkv[3][12][64];
union ircd_gpt_token
token[3];
};
#ifdef __OPENCL_C_VERSION__
union ircd_gpt_attn_aperaturev
{
float4
fcon[2304/4],
proj[3][768/4],
qkv[3][12][64/4];
union ircd_gpt_token_f32x4
token[3];
};
union ircd_gpt_attn_aperature_f32x8
{
float8
fcon[2304/8],
proj[3][768/8],
qkv[3][12][64/8];
union ircd_gpt_token_f32x8
token[3];
};
union ircd_gpt_attn_aperature_f32x16
{
float16
fcon[2304/16],
proj[3][768/16],
qkv[3][12][64/16];
union ircd_gpt_token_f32x16
token[3];
};
#endif
union ircd_gpt_ffnn_aperature
{
float
fcon[3072],
proj[4][768];
union ircd_gpt_token
token[4];
};
#ifdef __OPENCL_C_VERSION__
union ircd_gpt_ffnn_aperaturev
{
float4
fcon[3072/4],
proj[4][768/4];
union ircd_gpt_token_f32x4
token[4];
};
union ircd_gpt_ffnn_aperature_f32x8
{
float8
fcon[3072/8],
proj[4][768/8];
union ircd_gpt_token_f32x4
token[4];
};
union ircd_gpt_ffnn_aperature_f32x16
{
float16
fcon[3072/16],
proj[4][768/16];
union ircd_gpt_token_f32x4
token[4];
};
#endif
return val;
}

147
include/ircd/gpt/vector.h Normal file
View file

@ -0,0 +1,147 @@
// Matrix Construct
//
// Copyright (C) Matrix Construct Developers, Authors & Contributors
// Copyright (C) 2016-2022 Jason Volk <jason@zemos.net>
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma once
#define HAVE_IRCD_GPT_VECTOR_H
#if !defined(__SIZEOF_FLOAT4__) && defined(__OPENCL_VERSION__)
#define __SIZEOF_FLOAT4__ 16
#endif
#if !defined(__SIZEOF_FLOAT8__) && defined(__OPENCL_VERSION__)
#define __SIZEOF_FLOAT8__ 32
#endif
#if !defined(__SIZEOF_FLOAT16__) && defined(__OPENCL_VERSION__)
#define __SIZEOF_FLOAT16__ 64
#endif
#ifndef __OPENCL_VERSION__
#define __constant
#endif
static __constant const uint
ircd_gpt_context_tokens = 512, // 1024,
ircd_gpt_vector_elems = 768,
ircd_gpt_attn_rank = 12,
ircd_gpt_attn_segs = 3,
ircd_gpt_ffnn_segs = 4;
static __constant const uint
ircd_gpt_vector_attn_elems = ircd_gpt_vector_elems / ircd_gpt_attn_rank,
ircd_gpt_attn_fcon_elems = ircd_gpt_vector_elems * ircd_gpt_attn_segs,
ircd_gpt_ffnn_fcon_elems = ircd_gpt_vector_elems * ircd_gpt_ffnn_segs;
//
// embed vector
//
#if defined(__SIZEOF_FLOAT__)
union ircd_gpt_vector
{
float
elem[ircd_gpt_vector_elems],
attn[ircd_gpt_attn_rank][ircd_gpt_vector_attn_elems];
};
#endif
#if defined(__SIZEOF_FLOAT4__)
union ircd_gpt_vector_f32x4
{
float4
elem[ircd_gpt_vector_elems / 4],
attn[ircd_gpt_attn_rank][ircd_gpt_vector_attn_elems / 4];
union ircd_gpt_vector
vector;
};
#endif
//
// attn qkv
//
#if defined(__SIZEOF_FLOAT__)
struct ircd_gpt_attn_qkv
{
union ircd_gpt_vector
qry,
key,
val;
};
#endif
#if defined(__SIZEOF_FLOAT4__)
struct ircd_gpt_attn_qkv_f32x4
{
union ircd_gpt_vector_f32x4
qry,
key,
val;
};
#endif
//
// attn aperature
//
#if defined(__SIZEOF_FLOAT__)
union ircd_gpt_attn_aperature
{
float
fcon[ircd_gpt_attn_fcon_elems],
proj[ircd_gpt_attn_segs][ircd_gpt_vector_elems],
qkv[ircd_gpt_attn_segs][ircd_gpt_attn_rank][ircd_gpt_vector_attn_elems];
union ircd_gpt_vector
vector[ircd_gpt_attn_segs];
};
#endif
#if defined(__SIZEOF_FLOAT4__)
union ircd_gpt_attn_aperature_f32x4
{
float4
fcon[ircd_gpt_attn_fcon_elems / 4],
proj[ircd_gpt_attn_segs][ircd_gpt_vector_elems / 4],
qkv[ircd_gpt_attn_segs][ircd_gpt_attn_rank][ircd_gpt_vector_attn_elems / 4];
union ircd_gpt_vector_f32x4
vector[ircd_gpt_attn_segs];
};
#endif
//
// ffnn aperature
//
#if defined(__SIZEOF_FLOAT__)
union ircd_gpt_ffnn_aperature
{
float
fcon[ircd_gpt_ffnn_fcon_elems],
proj[ircd_gpt_ffnn_segs][ircd_gpt_vector_elems];
union ircd_gpt_vector
vector[ircd_gpt_ffnn_segs];
};
#endif
#if defined(__SIZEOF_FLOAT4__)
union ircd_gpt_ffnn_aperature_f32x4
{
float4
fcon[ircd_gpt_ffnn_fcon_elems / 4],
proj[ircd_gpt_ffnn_segs][ircd_gpt_vector_elems / 4];
union ircd_gpt_vector_f32x4
vector[ircd_gpt_ffnn_segs];
};
#endif

View file

@ -34,11 +34,17 @@ namespace ircd::gpt::vocab
merges_path;
// Tokenize UTF-8 input string of any length into proper token values,
vector_view<u16> tokenize(const vector_view<u16> &out, const string_view &in);
vector_view<u16> tokenize(const vector_view<u16> &out, const string_view &in) noexcept;
// Tokenize one token. The buffer is advanced consuming one token per call.
u16 tokenize(const_buffer &) noexcept;
// Tokenize one token. Error thrown if input is not exactly one token.
u16 tokenize(const string_view &in);
// Decode token values to build output text string.
string_view detokenize(const mutable_buffer &out, const vector_view<const u16> &in);
string_view detokenize(const mutable_buffer &out, const vector_view<const u16> &in) noexcept;
// Other tools
string_view debug(const mutable_buffer &buf, const u16 token);
string_view debug(const mutable_buffer &buf, const u16 token, const uint fmt_msk = -1U);
}

View file

@ -53,6 +53,7 @@ if LTO
if CLANG
AM_CXXFLAGS += -fstrict-vtable-pointers
AM_CXXFLAGS += -fwhole-program-vtables
#AM_LDFLAGS += -Wl,-plugin-opt,-pass-remarks='.*'
endif
endif
@ -87,22 +88,6 @@ AM_LDFLAGS += -Wl,--enable-runtime-pseudo-reloc
AM_LDFLAGS += -export-symbols-regex '*'
endif
ROCKSDB_SRC_CPPFLAGS =#
ROCKSDB_SRC_CPPFLAGS += -isystem $(top_srcdir)/deps/rocksdb/include
ROCKSDB_SRC_CPPFLAGS += -isystem $(top_srcdir)/deps/rocksdb
GPT_FP_CXXFLAGS =#
GPT_FP_CXXFLAGS += -fno-math-errno
GPT_FP_CXXFLAGS += -fno-trapping-math
GPT_FP_CXXFLAGS += -ffinite-math-only
GPT_FP_CXXFLAGS += -fno-signed-zeros
GPT_FP_CXXFLAGS += -fassociative-math
GPT_FP_CXXFLAGS += -ffp-contract=fast
GPT_FP_CXXFLAGS += -freciprocal-math
if CLANG
GPT_FP_CXXFLAGS += -fdenormal-fp-math=positive-zero
endif
libircddir = @libdir@
libircd_LTLIBRARIES = libircd.la
@ -241,16 +226,12 @@ libircd_la_SOURCES += png.cc
if OPENCL
libircd_la_SOURCES += cl.cc
endif
libircd_la_SOURCES += gpt.cc
libircd_la_SOURCES += gpt_pipe.cc
libircd_la_SOURCES += gpt_model.cc
libircd_la_SOURCES += gpt_vocab.cc
libircd_la_SOURCES += gpt_model.cc
libircd_la_SOURCES += gpt_pipe_code.cc
libircd_la_SOURCES += gpt_pipe.cc
libircd_la_SOURCES += gpt_cpu.cc
if OPENCL
if CLANG
BUILT_SOURCES += gpt_gpu.o
endif
endif
libircd_la_SOURCES += gpt.cc
libircd_la_SOURCES += openssl.cc
libircd_la_SOURCES += rfc1459.cc
libircd_la_SOURCES += rfc3986.cc
@ -283,6 +264,23 @@ libircd_la_SOURCES += ircd.cc
# Specific unit option composition
#
ROCKSDB_SRC_CPPFLAGS =#
ROCKSDB_SRC_CPPFLAGS += -isystem $(top_srcdir)/deps/rocksdb/include
ROCKSDB_SRC_CPPFLAGS += -isystem $(top_srcdir)/deps/rocksdb
GPT_FP_CXXFLAGS =#
GPT_FP_CXXFLAGS += -fno-math-errno
GPT_FP_CXXFLAGS += -fno-trapping-math
GPT_FP_CXXFLAGS += -ffinite-math-only
GPT_FP_CXXFLAGS += -fno-signed-zeros
GPT_FP_CXXFLAGS += -fassociative-math
GPT_FP_CXXFLAGS += -freciprocal-math
GPT_FP_CXXFLAGS += -ffp-contract=fast
if CLANG
GPT_FP_CXXFLAGS += -fdenormal-fp-math=positive-zero
GPT_FP_CXXFLAGS += -ffp-model=fast
endif
client.lo: AM_CPPFLAGS := ${ASIO_UNIT_CPPFLAGS} ${AM_CPPFLAGS}
ctx_x86_64.lo: AM_CPPFLAGS := -I$(top_srcdir)/include
ctx.lo: AM_CPPFLAGS := ${ASIO_UNIT_CPPFLAGS} ${AM_CPPFLAGS}
@ -307,7 +305,7 @@ endif
if IOU
fs_iou.lo: AM_CPPFLAGS := ${ASIO_UNIT_CPPFLAGS} ${AM_CPPFLAGS}
endif
gpt.lo: AM_CXXFLAGS := ${AM_CXXFLAGS} ${GPT_FP_CXXFLAGS}
gpt_cpu.lo: AM_CXXFLAGS := ${AM_CXXFLAGS} ${GPT_FP_CXXFLAGS}
http.lo: AM_CPPFLAGS := ${SPIRIT_UNIT_CPPFLAGS} ${AM_CPPFLAGS}
http.lo: AM_CXXFLAGS := ${SPIRIT_UNIT_CXXFLAGS} ${AM_CXXFLAGS}
ios.lo: AM_CPPFLAGS := ${ASIO_UNIT_CPPFLAGS} ${AM_CPPFLAGS}
@ -364,12 +362,118 @@ default.profdata:
-$(LLVM_PROFDATA) merge -output=default.profdata default.proftext
endif
###############################################################################
#
# Hardware Acceleration / sub-targets
#
if CLANG
if OPENCL
gpt_gpu.ll: gpt_gpu.cl
$(CC) -S -emit-llvm -std=CL1.1 $(AM_CPPFLAGS) $(CPPFLAGS) $(DEFS) -Xclang -finclude-default-header -include "ircd/config.h" -o $@ -c $^
gpt_gpu.o: gpt_gpu.ll
$(CC) -std=CL1.1 -o $@ -c $^
endif
endif
GPU_CPPFLAGS =#
GPU_CPPFLAGS += -D__OPENCL_VERSION__=110
GPU_CPPFLAGS += -Dcl_clang_storage_class_specifiers
GPU_CPPFLAGS += -DNOFP64
GPU_CPPFLAGS += $(AM_CPPFLAGS)
GPU_CPPFLAGS += $(CPPFLAGS)
GPU_CPPFLAGS += $(DEFS)
GPU_CFLAGS =#
GPU_CFLAGS += -std=cl1.1
GPU_CFLAGS += -fident
GPU_CFLAGS += -fno-builtin
GPU_CFLAGS += -fverbose-asm
GPU_CFLAGS += -fno-discard-value-names
GPU_CFLAGS += -mllvm -propagate-attrs=true
GPU_CFLAGS += -O3
GPU_CFLAGS += -fno-trapping-math
GPU_CFLAGS += -ffinite-math-only
GPU_CFLAGS += -fno-signed-zeros
GPU_CFLAGS += -ffp-contract=fast
#GPU_CFLAGS += -include "ircd/config.h"
#GPU_CFLAGS += -include "clc/clc.h"
#GPU_CFLAGS += -Wassume
#GPU_CFLAGS += -Rpass-analysis=".*"
#GPU_CFLAGS += -Rpass-missed=".*"
GPU_LINKFLAGS =#
GPU_LINKFLAGS +=#
GPU_OPTFLAGS =#
GPU_OPTFLAGS += -propagate-attrs=true
GPU_OPTFLAGS += -O3
#GPU_OPTFLAGS += -opt-bisect-limit=-1
#GPU_OPTFLAGS += -debug-pass=Arguments
#GPU_OPTFLAGS += -pass-remarks='.*'
GPU_ASFLAGS =#
GPU_ASFLAGS += -fident
GPU_ASFLAGS += -fno-builtin
GPU_ASFLAGS += -mllvm -propagate-attrs=true
GPU_ASFLAGS += -mllvm -verify-machineinstrs
GPU_ASFLAGS += -O3
GPU_ASFLAGS += -Rpass-analysis=asm-printer
#GPU_ASFLAGS += -Rpass-analysis=".*"
#GPU_ASFLAGS += -mllvm -debug-pass=Arguments
#GPU_ASFLAGS += -mllvm -pass-remarks='.*'
#
# SPV
#
BUILT_SOURCES += gpt_gpu.spv.bc
gpt_gpu.spv.bc: gpt_gpu.cl
clang-13 -target spir-- $(GPU_CPPFLAGS) -O0 -emit-llvm -o $@ -x cl -c $^
BUILT_SOURCES += gpt_gpu.spv
gpt_gpu.spv: gpt_gpu.spv.bc
llvm-spirv -o $@ $^
CLEANFILES += gpt_gpu.spv.cc
libircd_la_SOURCES += gpt_gpu.spv.cc
gpt_gpu.spv.cc: gpt_gpu.spv
xxd -i $^ $@
#
# R600
#
R600_TARGET = r600--
#
# R600 Saint Barthélemy
#
R600_BARTS_CFLAGS = $(GPU_CFLAGS)
R600_BARTS_CFLAGS += -target $(R600_TARGET)
R600_BARTS_CFLAGS += -mcpu=barts
R600_BARTS_CFLAGS += -Xclang -mlink-bitcode-file -Xclang /usr/lib/clc/barts-r600--.bc
BUILT_SOURCES += gpt_gpu.r600_barts.bc
gpt_gpu.r600_barts.bc: gpt_gpu.cl
$(CC) $(R600_BARTS_CFLAGS) $(GPU_CPPFLAGS) -emit-llvm -o $@ -x cl -c $^
#BUILT_SOURCES += gpt_gpu.r600_barts.link.bc
gpt_gpu.r600_barts.link.bc: gpt_gpu.r600_barts.bc
llvm-link-14 $(GPU_LINKFLAGS) -o $@ $^ /usr/lib/clc/barts-r600--.bc
opt-14 $(GPU_OPTFLAGS) -o $@ $@
#BUILT_SOURCES += gpt_gpu.r600_barts.s
gpt_gpu.r600_barts.s: gpt_gpu.r600_barts.link.bc
$(CC) -cc1 $(GPU_ASFLAGS) -triple $(R600_TARGET) -emit-obj -S -o $@ -x ir $^
#BUILT_SOURCES += gpt_gpu.r600_barts.o
gpt_gpu.r600_barts.o: gpt_gpu.r600_barts.link.bc
$(CC) -cc1 $(GPU_ASFLAGS) -triple $(R600_TARGET) -emit-obj -o $@ -x ir $^
CLEANFILES += gpt_gpu.r600_barts.bc.cc
libircd_la_SOURCES += gpt_gpu.r600_barts.bc.cc
gpt_gpu.r600_barts.bc.cc: gpt_gpu.r600_barts.bc
xxd -i $^ $@
#
#
#
endif # OPENCL
endif # CLANG

File diff suppressed because it is too large Load diff

View file

@ -8,17 +8,21 @@
// copyright notice and this permission notice is present in all copies. The
// full license for this software is available in the LICENSE file.
#pragma clang fp exceptions(ignore)
#pragma clang fp reassociate(on)
#pragma clang fp contract(fast)
namespace ircd::gpt
{
static size_t adamw(f32x4 &, f32x4 &, f32x4 &, const f32, const f32, const f32, const f32, const u32, size_t);
static size_t adamw(task &, const f32, f32 *, const size_t, f32 *const (&)[2], const size_t);
static void adamw(const opts &, const u32, const f32, const uint, f32 *, f32 *, f32 *);
static size_t backprop(task &, const f32, model::norm &, f32 *const (&)[2], size_t);
static size_t backprop(task &, const f32, model::attn &, f32 *const (&)[2], size_t);
static size_t backprop(task &, const f32, model::ffnn &, f32 *const (&)[2], size_t);
static size_t backprop(task &, const f32, model::block &, f32 *const (&)[2], size_t);
static size_t backprop(task &, const f32, model::embed &, f32 *const (&)[2], size_t);
extern size_t backprop(task &, const f32, model::decoder &, f32 *const (&)[2], size_t = 0);
static void backprop(const opts &, const u32, const f32, model::norm &, model::norm &, model::norm &);
static void backprop(const opts &, const u32, const f32, model::attn &, model::attn &, model::attn &);
static void backprop(const opts &, const u32, const f32, model::ffnn &, model::ffnn &, model::ffnn &);
static void backprop(const opts &, const u32, const f32, model::block &, model::block &, model::block &);
static void backprop(const opts &, const u32, const f32, model::embed &, model::embed &, model::embed &);
static void backprop(const opts &, const u32, const f32, model::decoder &, model::decoder &, model::decoder &);
extern void backprop(const opts &, const u32, const f32, model::decoder &, f32 *const __restrict__ [2]) noexcept;
template<class T>
static void fmma(T *out, const T *in, const T *bias, const T *weight, const math::fmma_opts &);
@ -37,7 +41,7 @@ namespace ircd::gpt
static void logits(float *, const float *, const model::decoder &);
static void tail(float *, const float *, const model::decoder &);
static u16 argmax(const float *, const opts &);
static void embed(float *, const u16 token, const u16 position, const opts &);
static void embed(float *, const u16 token, const u16 position, const model::decoder &);
static f32
logit alignas(64) [65536],
@ -49,21 +53,20 @@ void
ircd::gpt::embed(float *const out,
const u16 token,
const u16 position,
const opts &opts)
const model::decoder &model)
{
assert(opts.model);
const auto &wpe
{
opts.model->word.pos[position]
model.embed.pos[position]
};
const auto &wte
{
opts.model->word.token[token]
model.embed.token[token]
};
for(uint j(0); j < 768; ++j)
out[j] = wte[j] + wpe[j];
out[j] = wte.elem[j] + wpe.elem[j];
}
uint16_t
@ -117,7 +120,7 @@ ircd::gpt::tail(float *const __restrict__ logit,
for(uint i(0); i < 768; ++i)
buf[0][i] = state[i];
norm((f32x4 *)buf[0], (const f32x4 *)state, (const f32x4 *)d.f.bias, (const f32x4 *)d.f.weight, lnf_epsilon);
norm((f32x4 *)buf[0], (const f32x4 *)state, (const f32x4 *)d.embed.norm.bias.elem, (const f32x4 *)d.embed.norm.weight.elem, lnf_epsilon);
logits(logit, buf[0], d);
//logitsmax(logit, logit, vocab::tokens);
}
@ -132,7 +135,7 @@ ircd::gpt::logits(float *const __restrict__ out,
for(uint j(0); j < vocab::tokens; ++j)
for(uint k(0); k < 768; ++k)
out[j] += in[k] * d.word.token[j][k];
out[j] += in[k] * d.embed.token[j].elem[k];
}
[[gnu::noinline]]
@ -192,7 +195,7 @@ ircd::gpt::coil(float *__restrict__ accum,
};
for(uint j(0); j < tokens; ++j)
fmma((f32x4 *)(accum + j * 768), (const f32x4 *)(a[j]), (const f32x4 *)layer.attn.proj_bias, (const f32x4 *)layer.attn.proj_weight, fmma_opts);
fmma((f32x4 *)(accum + j * 768), (const f32x4 *)(a[j]), (const f32x4 *)layer.attn.proj_bias.elem, (const f32x4 *)layer.attn.proj_weight, fmma_opts);
for(uint j(0); j < tokens; ++j)
ffnn(accum + j * 768, accum + j * 768, decoder, i);
@ -227,7 +230,7 @@ ircd::gpt::attn(float (&__restrict__ out)[3][1024][12][64],
buf alignas(64) [768],
proj alignas(64) [2304];
norm((f32x4 *)buf, (const f32x4 *)(in + i * 768), (const f32x4 *)layer.ln1.bias, (const f32x4 *)layer.ln1.weight, ln1_epsilon);
norm((f32x4 *)buf, (const f32x4 *)(in + i * 768), (const f32x4 *)layer.attn.norm.bias.elem, (const f32x4 *)layer.attn.norm.weight.elem, ln1_epsilon);
static const math::fmma_opts fmma_opts
{
@ -235,7 +238,7 @@ ircd::gpt::attn(float (&__restrict__ out)[3][1024][12][64],
};
memset(proj, 0x0, sizeof(proj));
fmma((f32x4 *)proj, (const f32x4 *)buf, (const f32x4 *)layer.attn.attn_bias, (const f32x4 *)layer.attn.attn_weight, fmma_opts);
fmma((f32x4 *)proj, (const f32x4 *)buf, (const f32x4 *)layer.attn.fcon_bias.fcon, (const f32x4 *)layer.attn.fcon_weight, fmma_opts);
#pragma clang loop unroll (disable)
for(uint j(0); j < 12; ++j)
@ -372,10 +375,10 @@ ircd::gpt::ffnn(float *const out,
buf2 alignas(64) [3072];
memset(buf2, 0x0, sizeof(buf2));
norm((f32x4 *)buf, (const f32x4 *)in, (const f32x4 *)layer.ln2.bias, (const f32x4 *)layer.ln2.weight, ln2_epsilon);
fmma((f32x4 *)buf2, (const f32x4 *)buf, (const f32x4 *)layer.ffnn.fc_bias, (const f32x4 *)layer.ffnn.fc_weight, fmma3_opts);
norm((f32x4 *)buf, (const f32x4 *)in, (const f32x4 *)layer.ffnn.norm.bias.elem, (const f32x4 *)layer.ffnn.norm.weight.elem, ln2_epsilon);
fmma((f32x4 *)buf2, (const f32x4 *)buf, (const f32x4 *)layer.ffnn.fcon_bias.fcon, (const f32x4 *)layer.ffnn.fcon_weight, fmma3_opts);
gelu((f32x4 *)buf2, (const f32x4 *)buf2);
fmma((f32x4 *)out, (const f32x4 *)buf2, (const f32x4 *)layer.ffnn.proj_bias, (const f32x4 *)layer.ffnn.proj_weight, fmma4_opts);
fmma((f32x4 *)out, (const f32x4 *)buf2, (const f32x4 *)layer.ffnn.proj_bias.elem, (const f32x4 *)layer.ffnn.proj_weight, fmma4_opts);
}
void
@ -431,213 +434,219 @@ ircd::gpt::gelu(f32x4 &out,
//
[[gnu::noinline]]
size_t
ircd::gpt::backprop(task &task,
void
ircd::gpt::backprop(const opts &opts,
const u32 step,
const f32 grad,
model::decoder &param,
f32 *const (&moment)[2],
size_t off)
model::decoder &__restrict__ param,
f32 *const __restrict__ buf[2])
noexcept
{
for(uint i(0); i < 12; ++i)
off = backprop(task, grad, param.layer[i], moment, off);
off = backprop(task, grad, param.f, moment, off);
off = backprop(task, grad, param.word, moment, off);
return off;
}
size_t
ircd::gpt::backprop(task &task,
const f32 grad,
model::embed &param,
f32 *const (&moment)[2],
size_t off)
{
assert(task.opts);
const auto &opts
model::decoder *const __restrict__ moment[2]
{
*task.opts
reinterpret_cast<model::decoder *>(buf[0]),
reinterpret_cast<model::decoder *>(buf[1]),
};
backprop(opts, step, grad, param, *moment[0], *moment[1]);
}
void
ircd::gpt::backprop(const opts &opts,
const u32 step,
const f32 grad,
model::decoder &__restrict__ param,
model::decoder &__restrict__ moment0,
model::decoder &__restrict__ moment1)
{
fpe::errors_handle eh;
assume(opts.attn_rank > 0);
assume(opts.layers > 0);
const auto eln
{
opts.layers - 1 // step % opts.layers
};
for(int i(opts.layers - 1); i >= int(opts.layers - eln - 1); --i)
{
assert(i >= 0 && i < int(opts.layers));
backprop(opts, step, grad, param.layer[i], moment0.layer[i], moment1.layer[i]);
}
backprop(opts, step, grad, param.embed, moment0.embed, moment1.embed);
auto pending(eh.pending());
eh.clear_pending();
pending &= ~pending & FE_INEXACT;
if(unlikely(pending))
fpe::throw_errors(pending);
}
void
ircd::gpt::backprop(const opts &opts,
const u32 step,
const f32 grad,
model::embed &__restrict__ param,
model::embed &__restrict__ moment0,
model::embed &__restrict__ moment1)
{
backprop(opts, step, grad, param.norm, moment0.norm, moment1.norm);
assume(opts.context_tokens > 0);
for(uint i(0); i < opts.context_tokens; ++i)
off = adamw(task, grad, param.pos[i], 768, moment, off);
adamw(opts, step, grad, 768, param.pos[i].elem, moment0.pos[i].elem, moment1.pos[i].elem);
assume(opts.logits > 0);
for(uint i(0); i < opts.logits; ++i)
off = adamw(task, grad, param.token[i], 768, moment, off);
return off;
adamw(opts, step, grad, 768, param.token[i].elem, moment0.token[i].elem, moment1.token[i].elem);
}
size_t
ircd::gpt::backprop(task &task,
void
ircd::gpt::backprop(const opts &opts,
const u32 step,
const f32 grad,
model::block &param,
f32 *const (&moment)[2],
size_t off)
model::block &__restrict__ param,
model::block &__restrict__ moment0,
model::block &__restrict__ moment1)
{
off = backprop(task, grad, param.ln1, moment, off);
off = backprop(task, grad, param.attn, moment, off);
off = backprop(task, grad, param.ln2, moment, off);
off = backprop(task, grad, param.ffnn, moment, off);
return off;
backprop(opts, step, grad, param.attn.norm, moment0.attn.norm, moment1.attn.norm);
backprop(opts, step, grad, param.attn, moment0.attn, moment1.attn);
backprop(opts, step, grad, param.ffnn.norm, moment0.ffnn.norm, moment1.ffnn.norm);
backprop(opts, step, grad, param.ffnn, moment0.ffnn, moment1.ffnn);
}
size_t
ircd::gpt::backprop(task &task,
void
ircd::gpt::backprop(const opts &opts,
const u32 step,
const f32 grad,
model::attn &param,
f32 *const (&moment)[2],
size_t off)
model::attn &__restrict__ param,
model::attn &__restrict__ moment0,
model::attn &__restrict__ moment1)
{
off = adamw(task, grad, param.attn_bias, 2304, moment, off);
adamw(opts, step, grad, 2304, param.fcon_bias.fcon, moment0.fcon_bias.fcon, moment1.fcon_bias.fcon);
for(uint i(0); i < 768; ++i)
off = adamw(task, grad, param.attn_weight[i], 2304, moment, off);
adamw(opts, step, grad, 2304, param.fcon_weight[i].fcon, moment0.fcon_weight[i].fcon, moment1.fcon_weight[i].fcon);
off = adamw(task, grad, param.proj_bias, 768, moment, off);
adamw(opts, step, grad, 768, param.proj_bias.elem, moment0.proj_bias.elem, moment1.proj_bias.elem);
for(uint i(0); i < 768; ++i)
off = adamw(task, grad, param.proj_weight[i], 768, moment, off);
return off;
adamw(opts, step, grad, 768, param.proj_weight[i].elem, moment0.proj_weight[i].elem, moment1.proj_weight[i].elem);
}
size_t
ircd::gpt::backprop(task &task,
void
ircd::gpt::backprop(const opts &opts,
const u32 step,
const f32 grad,
model::ffnn &param,
f32 *const (&moment)[2],
size_t off)
model::ffnn &__restrict__ param,
model::ffnn &__restrict__ moment0,
model::ffnn &__restrict__ moment1)
{
off = adamw(task, grad, param.fc_bias, 3072, moment, off);
adamw(opts, step, grad, 3072, param.fcon_bias.fcon, moment0.fcon_bias.fcon, moment1.fcon_bias.fcon);
for(uint i(0); i < 768; ++i)
off = adamw(task, grad, param.fc_weight[i], 3072, moment, off);
adamw(opts, step, grad, 3072, param.fcon_weight[i].fcon, moment0.fcon_weight[i].fcon, moment1.fcon_weight[i].fcon);
off = adamw(task, grad, param.proj_bias, 768, moment, off);
adamw(opts, step, grad, 768, param.proj_bias.elem, moment0.proj_bias.elem, moment1.proj_bias.elem);
for(uint i(0); i < 3072; ++i)
off = adamw(task, grad, param.proj_weight[i], 768, moment, off);
return off;
adamw(opts, step, grad, 768, param.proj_weight[i].elem, moment0.proj_weight[i].elem, moment1.proj_weight[i].elem);
}
size_t
ircd::gpt::backprop(task &task,
void
ircd::gpt::backprop(const opts &opts,
const u32 step,
const f32 grad,
model::norm &param,
f32 *const (&moment)[2],
size_t off)
model::norm &__restrict__ param,
model::norm &__restrict__ moment0,
model::norm &__restrict__ moment1)
{
off = adamw(task, grad, param.bias, 768, moment, off);
off = adamw(task, grad, param.weight, 768, moment, off);
return off;
adamw(opts, step, grad, 768, param.bias.elem, moment0.bias.elem, moment1.bias.elem);
adamw(opts, step, grad, 768, param.weight.elem, moment0.weight.elem, moment1.weight.elem);
}
[[gnu::noinline]]
size_t
ircd::gpt::adamw(task &task,
const f32 grad,
f32 *const p_,
const size_t num,
f32 *const (&__restrict__ m_)[2],
size_t off)
namespace ircd::gpt
{
assert(task.opts);
const auto &opts
static f32x4 adamw_moment(const f32x4, const f32, const f32);
static f32x4 adamw_numer(const f32x4, const f32, const u32);
static f32x4 adamw_denom(const f32x4, const f32, const u32);
static f32x4 adamw_delta(const f32x4, const f32x4, const f32, const f32, const f32, const u32);
static void adamw(f32x4 &, f32x4 &, f32x4 &, const f32, const f32, const f32, const f32, const u32);
static void adamw(const opts &, const u32, const f32, const u32, f32 *, f32 *, f32 *);
}
void
ircd::gpt::adamw(const opts &opts,
const u32 step,
const f32 grad,
const u32 num,
f32 *const __restrict__ param,
f32 *const __restrict__ moment0,
f32 *const __restrict__ moment1)
{
f32x4 *const __restrict__ val[3]
{
*task.opts
reinterpret_cast<f32x4 *>(param),
reinterpret_cast<f32x4 *>(moment0),
reinterpret_cast<f32x4 *>(moment1),
};
assert(task.ctrl);
auto &ctrl
const auto n
{
*task.ctrl
num / 4
};
f32x4 *const p[3]
{
reinterpret_cast<f32x4 *>(p_),
reinterpret_cast<f32x4 *>(m_[0]) + off,
reinterpret_cast<f32x4 *>(m_[1]) + off,
};
assert(num >= 4);
const uint n
{
uint(num) / 4
};
// Assume loop body always taken w/o soundness; otherwise extra branch.
assert(n > 0);
uint i(0); do
{
off = adamw
assume(0 < n);
for(uint i(0); i < n; ++i)
adamw
(
p[0][i],
p[1][i],
p[2][i],
val[0][i],
val[1][i],
val[2][i],
grad,
opts.alpha,
opts.beta[0],
opts.beta[1],
ctrl.epic.step,
off
step + 1
);
}
while(++i < n);
return off;
}
size_t
void
ircd::gpt::adamw(f32x4 &__restrict__ param,
f32x4 &__restrict__ moment0,
f32x4 &__restrict__ moment1,
const f32 grad,
const f32 alpha,
const f32 grad_,
const f32 alpha_,
const f32 beta0,
const f32 beta1,
const u32 step,
const size_t off)
const u32 step)
{
const f32x4 one
const f32 alpha
{
1.0f, 1.0f, 1.0f, 1.0f,
grad_ < 0? -alpha_ : alpha_
};
const f32x4 a[2]
const f32 grad
{
{ one - beta0 },
{ one - beta1 },
grad_ < 0? -grad_ : grad_
};
const f32x4 avg_mul[2]
const f32 grad_grad
{
{ moment0 * beta0 },
{ moment1 * beta1 },
grad * grad
};
const f32x4 avg_dot[2]
const f32x4 moment[]
{
{ avg_mul[0] + a[0] * grad },
{ avg_mul[1] + a[1] * grad * grad },
};
const f32x4 bias[2]
{
{ avg_dot[0] / (one - powf(beta0, step + 1)) },
{ avg_dot[1] / (one - powf(beta1, step + 1)) },
};
const f32x4 denom
{
sqrtf(bias[1]) + 0.000001f // epsilon
adamw_moment(moment0, grad, beta0),
adamw_moment(moment1, grad_grad, beta1)
};
const f32x4 delta
{
alpha * (bias[0] / denom)
adamw_delta(moment[0], moment[1], alpha, beta0, beta1, step)
};
const f32x4 update
@ -645,8 +654,168 @@ ircd::gpt::adamw(f32x4 &__restrict__ param,
param - delta
};
moment0 = avg_dot[0];
moment1 = avg_dot[1];
if((false))
for(uint i(0); i < 4; ++i)
printf("%-15p p[%11.8lf] m[%11.8lf][%11.8lf] g[%11.8lf] d[%11.8lf] p[%11.8lf] m[%11.8lf][%11.8lf]\n",
((f32 *)&param) + i,
param[i],
moment0[i],
moment1[i],
grad,
delta[i],
update[i],
moment[0][i],
moment[1][i]);
assert(std::isnormal(update[0]));
assert(std::isnormal(update[1]));
assert(std::isnormal(update[2]));
assert(std::isnormal(update[3]));
assert(std::isnormal(moment[0][0]));
assert(std::isnormal(moment[0][1]));
assert(std::isnormal(moment[0][2]));
assert(std::isnormal(moment[0][3]));
assert(std::isnormal(moment[1][0]));
assert(std::isnormal(moment[1][1]));
assert(std::isnormal(moment[1][2]));
assert(std::isnormal(moment[1][3]));
param = update;
return off + 1;
//__builtin_nontemporal_store(update, &param);
moment0 = moment[0];
moment1 = moment[1];
//__builtin_nontemporal_store(moment[0], &moment0);
//__builtin_nontemporal_store(moment[1], &moment1);
}
ircd::f32x4
ircd::gpt::adamw_delta(const f32x4 moment0,
const f32x4 moment1,
const f32 alpha,
const f32 beta0,
const f32 beta1,
const u32 step)
{
static const f32 epsilon
{
FLT_EPSILON
};
const f32x4 denom
{
adamw_denom(moment1, beta1, step) + epsilon
};
const f32x4 decay
{
adamw_numer(moment0, beta0, step)
};
const f32x4 smooth
{
alpha * decay
};
assert(std::isnormal(denom[0]));
assert(std::isnormal(denom[1]));
assert(std::isnormal(denom[2]));
assert(std::isnormal(denom[3]));
const f32x4 delta
{
smooth / denom
};
return delta;
}
ircd::f32x4
ircd::gpt::adamw_denom(const f32x4 moment,
const f32 beta,
const u32 step)
{
static const f32x4 one
{
1.0f, 1.0f, 1.0f, 1.0f,
};
assert(step > 0);
const f32x4 decay
{
one - powf(beta, step)
};
assert(std::isnormal(decay[0]));
assert(std::isnormal(decay[1]));
assert(std::isnormal(decay[2]));
assert(std::isnormal(decay[3]));
const f32x4 bias
{
moment / decay
};
const f32x4 denom
{
sqrtf(bias)
};
return denom;
}
ircd::f32x4
ircd::gpt::adamw_numer(const f32x4 moment,
const f32 beta,
const u32 step)
{
static const f32x4 one
{
1.0f, 1.0f, 1.0f, 1.0f,
};
assert(step > 0);
const f32x4 decay
{
one - powf(beta, step)
};
assert(std::isnormal(decay[0]));
assert(std::isnormal(decay[1]));
assert(std::isnormal(decay[2]));
assert(std::isnormal(decay[3]));
const f32x4 bias
{
moment / decay
};
return bias;
}
ircd::f32x4
ircd::gpt::adamw_moment(const f32x4 moment,
const f32 grad,
const f32 beta)
{
static const f32x4 one
{
1.0f, 1.0f, 1.0f, 1.0f,
};
const f32x4 rate
{
one - beta
};
const f32x4 avg
{
moment * beta
};
const f32x4 dot
{
rate * grad + avg
};
return dot;
}

File diff suppressed because it is too large Load diff

View file

@ -54,10 +54,14 @@ namespace ircd::gpt::model
static fs::map
default_model_shm,
default_dataset_shm;
static std::unique_ptr<decoder> default_model_res;
}
constexpr const char
*const ircd::gpt::model::prop::ended,
*const ircd::gpt::model::prop::id,
*const ircd::gpt::model::prop::length,
*const ircd::gpt::model::prop::text;
decltype(ircd::gpt::model::manifest_h)
ircd::gpt::model::manifest_h
{
@ -102,7 +106,7 @@ decltype(ircd::gpt::model::cache_hugepage)
ircd::gpt::model::cache_hugepage
{
{ "name", "ircd.gpt.model.cache.hugepage" },
{ "default", true },
{ "default", false },
};
decltype(ircd::gpt::model::cache_path)
@ -132,6 +136,12 @@ ircd::gpt::model::path
decltype(ircd::gpt::model::default_model)
ircd::gpt::model::default_model;
decltype(ircd::gpt::model::default_moment)
ircd::gpt::model::default_moment;
decltype(ircd::gpt::model::default_checkpoint)
ircd::gpt::model::default_checkpoint;
decltype(ircd::gpt::model::default_dataset)
ircd::gpt::model::default_dataset;
@ -144,17 +154,31 @@ ircd::gpt::model::init()
if(!model::path)
return;
if(!init_from_cache(model::cache_path))
init_from_json(model::cache_path, model::path);
if(model::dataset_path)
init_dataset(model::dataset_path);
if(likely(init_from_cache(model::cache_path)))
return;
init_from_json(model::cache_path, model::path);
if(unlikely(!init_from_cache(model::cache_path)))
throw error
{
"Failed to find and/or initialize model."
};
}
void
ircd::gpt::model::fini()
noexcept
{
default_checkpoint[2] = nullptr;
default_checkpoint[1] = nullptr;
default_checkpoint[0] = nullptr;
default_moment[1] = nullptr;
default_moment[0] = nullptr;
default_model = nullptr;
default_model_shm = {};
@ -169,18 +193,33 @@ ircd::gpt::model::init_from_cache(const string_view &cache_path)
if(!fs::is_reg(cache_path))
return false;
const auto size
const auto file_size
{
fs::size(cache_path)
};
if(unlikely(size != sizeof(model::decoder)))
const auto decoder_size
{
sizeof(model::decoder)
};
const bool has_params
{
file_size >= decoder_size
};
const bool has_moments
{
file_size >= decoder_size * 6
};
if(unlikely(!has_params))
throw error
{
"Cached model `%s' size %zu differs from %zu.",
"Cached model `%s' size %zu insufficient for decoder size %zu.",
cache_path,
size,
sizeof(model::decoder),
file_size,
decoder_size,
};
const auto mode
@ -192,20 +231,41 @@ ircd::gpt::model::init_from_cache(const string_view &cache_path)
const fs::fd fd
{
cache_path, mode
cache_path, fs::fd::opts
{
.mode = mode,
},
};
fs::map::opts map_opts
const bool map_moments
{
mode
has_moments || cache_shared
};
if(!has_moments && map_moments)
{
fs::truncate(fd, decoder_size * 6);
fs::allocate(fd, decoder_size * 5, decoder_size);
}
const auto map_size
{
map_moments?
decoder_size * 6:
decoder_size
};
const fs::map::opts map_opts
{
.alignment = alignof(model::decoder),
.shared = bool(cache_shared),
.locked = bool(cache_locked),
.huge2mb = bool(cache_hugepage),
};
map_opts.locked = bool(cache_locked);
map_opts.shared = bool(cache_shared);
map_opts.huge2mb = bool(cache_hugepage);
default_model_shm = fs::map
{
fd, map_opts, sizeof(decoder)
fd, map_opts, map_size
};
default_model = reinterpret_cast<decoder *>
@ -213,13 +273,28 @@ ircd::gpt::model::init_from_cache(const string_view &cache_path)
data(default_model_shm)
);
if(map_moments)
{
default_moment[0] = reinterpret_cast<float *>(default_model + 1);
default_moment[1] = reinterpret_cast<float *>(default_model + 2);
default_checkpoint[0] = reinterpret_cast<float *>(default_model + 3);
default_checkpoint[1] = reinterpret_cast<float *>(default_model + 4);
default_checkpoint[2] = reinterpret_cast<float *>(default_model + 5);
}
allocator::lock({(const char *)default_model, sizeof(decoder)});
fs::prefetch(default_model_shm, sizeof(decoder));
char pbuf[48];
log::info
{
log, "model(%p) mapped cached model `%s' %s",
log, "model(%p) mapped cached model `%s' params:%b moments:%b align:%u %s",
data(default_model_shm),
cache_path,
pretty(pbuf, iec(size)),
has_params,
has_moments,
map_opts.alignment,
pretty(pbuf, iec(map_size)),
};
return true;
@ -264,9 +339,6 @@ ircd::gpt::model::init_from_json(const string_view &cache_path,
cache_path,
stopwatch.pretty(pbuf[1]),
};
default_model_res = std::move(decoder);
default_model = default_model_res.get();
}
void
@ -363,6 +435,7 @@ ircd::gpt::model::init_dataset(const string_view &path)
size_t checkpoint(0);
default_data.resize(260000); //TODO: XXX
fs::prefetch(default_dataset_shm, size);
ircd::tokens(default_dataset, '\n', [&checkpoint]
(const string_view &line)
{
@ -379,6 +452,7 @@ ircd::gpt::model::init_dataset(const string_view &path)
checkpoint,
};
fs::evict(default_dataset_shm, size);
return true;
}
@ -393,9 +467,9 @@ ircd::gpt::model::init_wpe_weight(decoder &d,
{
size_t j(0);
for(const auto &elem : vec)
d.word.pos[i][j++] = lex_cast<float>(elem);
d.embed.pos[i].elem[j++] = lex_cast<float>(elem);
always_assert(j == sizeof(d.word.pos[i]) / sizeof(float));
always_assert(j == sizeof(d.embed.pos[i]) / sizeof(float));
++i;
}
}
@ -411,9 +485,9 @@ ircd::gpt::model::init_wte_weight(decoder &d,
{
size_t j(0);
for(const auto &elem : vec)
d.word.token[i][j++] = lex_cast<float>(elem);
d.embed.token[i].elem[j++] = lex_cast<float>(elem);
always_assert(j == sizeof(d.word.token[i]) / sizeof(float));
always_assert(j == sizeof(d.embed.token[i]) / sizeof(float));
++i;
}
}
@ -426,9 +500,9 @@ ircd::gpt::model::init_f_weight(decoder &d,
{
size_t i(0);
for(const auto &elem : vec)
d.f.weight[i++] = lex_cast<float>(elem);
d.embed.norm.weight.elem[i++] = lex_cast<float>(elem);
always_assert(i == sizeof(d.f.weight) / sizeof(float));
always_assert(i == sizeof(d.embed.norm.weight) / sizeof(float));
}
void
@ -439,9 +513,9 @@ ircd::gpt::model::init_f_bias(decoder &d,
{
size_t i(0);
for(const auto &elem : vec)
d.f.bias[i++] = lex_cast<float>(elem);
d.embed.norm.bias.elem[i++] = lex_cast<float>(elem);
always_assert(i == sizeof(d.f.bias) / sizeof(float));
always_assert(i == sizeof(d.embed.norm.bias) / sizeof(float));
}
void
@ -455,16 +529,16 @@ ircd::gpt::model::init_h_ffnn_fc_weight(decoder &d,
{
size_t j(0);
for(const auto &elem : vec)
d.layer[layer].ffnn.fc_weight[i][j++] = lex_cast<float>(elem);
d.layer[layer].ffnn.fcon_weight[i].fcon[j++] = lex_cast<float>(elem);
always_assert(j == sizeof(d.layer[layer].ffnn.fc_weight[i]) / sizeof(float));
always_assert(j == sizeof(d.layer[layer].ffnn.fcon_weight[i]) / sizeof(float));
++i;
}
always_assert
(
i == sizeof(d.layer[layer].ffnn.fc_weight)
/ sizeof(d.layer[layer].ffnn.fc_weight[0])
i == sizeof(d.layer[layer].ffnn.fcon_weight)
/ sizeof(d.layer[layer].ffnn.fcon_weight[0])
);
}
@ -476,9 +550,9 @@ ircd::gpt::model::init_h_ffnn_fc_bias(decoder &d,
{
size_t i(0);
for(const auto &elem : vec)
d.layer[layer].ffnn.fc_bias[i++] = lex_cast<float>(elem);
d.layer[layer].ffnn.fcon_bias.fcon[i++] = lex_cast<float>(elem);
always_assert(i == sizeof(d.layer[layer].ffnn.fc_bias) / sizeof(float));
always_assert(i == sizeof(d.layer[layer].ffnn.fcon_bias) / sizeof(float));
}
void
@ -492,7 +566,7 @@ ircd::gpt::model::init_h_ffnn_proj_weight(decoder &d,
{
size_t j(0);
for(const auto &elem : vec)
d.layer[layer].ffnn.proj_weight[i][j++] = lex_cast<float>(elem);
d.layer[layer].ffnn.proj_weight[i].elem[j++] = lex_cast<float>(elem);
always_assert(j == sizeof(d.layer[layer].ffnn.proj_weight[i]) / sizeof(float));
++i;
@ -513,7 +587,7 @@ ircd::gpt::model::init_h_ffnn_proj_bias(decoder &d,
{
size_t i(0);
for(const auto &elem : vec)
d.layer[layer].ffnn.proj_bias[i++] = lex_cast<float>(elem);
d.layer[layer].ffnn.proj_bias.elem[i++] = lex_cast<float>(elem);
always_assert(i == sizeof(d.layer[layer].ffnn.proj_bias) / sizeof(float));
}
@ -526,9 +600,9 @@ ircd::gpt::model::init_h_ln_1_weight(decoder &d,
{
size_t i(0);
for(const auto &elem : vec)
d.layer[layer].ln1.weight[i++] = lex_cast<float>(elem);
d.layer[layer].attn.norm.weight.elem[i++] = lex_cast<float>(elem);
always_assert(i == sizeof(d.layer[layer].ln1.weight) / sizeof(float));
always_assert(i == sizeof(d.layer[layer].attn.norm.weight) / sizeof(float));
}
void
@ -539,9 +613,9 @@ ircd::gpt::model::init_h_ln_1_bias(decoder &d,
{
size_t i(0);
for(const auto &elem : vec)
d.layer[layer].ln1.bias[i++] = lex_cast<float>(elem);
d.layer[layer].attn.norm.bias.elem[i++] = lex_cast<float>(elem);
always_assert(i == sizeof(d.layer[layer].ln1.bias) / sizeof(float));
always_assert(i == sizeof(d.layer[layer].attn.norm.bias) / sizeof(float));
}
void
@ -552,9 +626,9 @@ ircd::gpt::model::init_h_ln_2_weight(decoder &d,
{
size_t i(0);
for(const auto &elem : vec)
d.layer[layer].ln2.weight[i++] = lex_cast<float>(elem);
d.layer[layer].ffnn.norm.weight.elem[i++] = lex_cast<float>(elem);
always_assert(i == sizeof(d.layer[layer].ln2.weight) / sizeof(float));
always_assert(i == sizeof(d.layer[layer].ffnn.norm.weight) / sizeof(float));
}
void
@ -565,9 +639,9 @@ ircd::gpt::model::init_h_ln_2_bias(decoder &d,
{
size_t i(0);
for(const auto &elem : vec)
d.layer[layer].ln2.bias[i++] = lex_cast<float>(elem);
d.layer[layer].ffnn.norm.bias.elem[i++] = lex_cast<float>(elem);
always_assert(i == sizeof(d.layer[layer].ln2.bias) / sizeof(float));
always_assert(i == sizeof(d.layer[layer].ffnn.norm.bias) / sizeof(float));
}
void
@ -581,16 +655,16 @@ ircd::gpt::model::init_h_attn_attn_weight(decoder &d,
{
size_t j(0);
for(const auto &elem : vec)
d.layer[layer].attn.attn_weight[i][j++] = lex_cast<float>(elem);
d.layer[layer].attn.fcon_weight[i].fcon[j++] = lex_cast<float>(elem);
always_assert(j == sizeof(d.layer[layer].attn.attn_weight[i]) / sizeof(float));
always_assert(j == sizeof(d.layer[layer].attn.fcon_weight[i]) / sizeof(float));
++i;
}
always_assert
(
i == sizeof(d.layer[layer].attn.attn_weight)
/ sizeof(d.layer[layer].attn.attn_weight[0])
i == sizeof(d.layer[layer].attn.fcon_weight)
/ sizeof(d.layer[layer].attn.fcon_weight[0])
);
}
@ -602,9 +676,9 @@ ircd::gpt::model::init_h_attn_attn_bias(decoder &d,
{
size_t i(0);
for(const auto &elem : vec)
d.layer[layer].attn.attn_bias[i++] = lex_cast<float>(elem);
d.layer[layer].attn.fcon_bias.fcon[i++] = lex_cast<float>(elem);
always_assert(i == sizeof(d.layer[layer].attn.attn_bias) / sizeof(float));
always_assert(i == sizeof(d.layer[layer].attn.fcon_bias) / sizeof(float));
}
void
@ -618,7 +692,7 @@ ircd::gpt::model::init_h_attn_proj_weight(decoder &d,
{
size_t j(0);
for(const auto &elem : vec)
d.layer[layer].attn.proj_weight[i][j++] = lex_cast<float>(elem);
d.layer[layer].attn.proj_weight[i].elem[j++] = lex_cast<float>(elem);
always_assert(j == sizeof(d.layer[layer].attn.proj_weight[i]) / sizeof(float));
++i;
@ -639,7 +713,7 @@ ircd::gpt::model::init_h_attn_proj_bias(decoder &d,
{
size_t i(0);
for(const auto &elem : vec)
d.layer[layer].attn.proj_bias[i++] = lex_cast<float>(elem);
d.layer[layer].attn.proj_bias.elem[i++] = lex_cast<float>(elem);
always_assert(i == sizeof(d.layer[layer].attn.proj_bias) / sizeof(float));
}

File diff suppressed because it is too large Load diff

View file

@ -152,10 +152,12 @@ ircd::gpt::pipe::code::set_cache(const string_view &path)
}
extern const uint8_t
gpt_gpu_r600_barts_bc[];
gpt_gpu_r600_barts_bc[],
gpt_gpu_spv[];
extern const uint
gpt_gpu_r600_barts_bc_len;
gpt_gpu_r600_barts_bc_len,
gpt_gpu_spv_len;
ircd::cl::code
ircd::gpt::pipe::code::from_bitcode(const string_view &link_opts)
@ -164,6 +166,9 @@ ircd::gpt::pipe::code::from_bitcode(const string_view &link_opts)
{
reinterpret_cast<const char *>(gpt_gpu_r600_barts_bc),
gpt_gpu_r600_barts_bc_len
//reinterpret_cast<const char *>(gpt_gpu_spv),
//gpt_gpu_spv_len
};
char pbuf[1][48];

View file

@ -10,6 +10,7 @@
namespace ircd::gpt::vocab
{
static u8x16 get_token(const u16);
static u16 find_token(const u8x16);
static u16 find_merge(const u8x16, const u8x16);
static u16 bpe_score(u16 (&)[16], const u8x16 (&)[16][2], const uint);
@ -23,11 +24,11 @@ namespace ircd::gpt::vocab
static u64x2 tokenize_block(u16x16 &, const u8x16, const i8x16) noexcept;
static void init_tokens(), init_merges();
[[gnu::visibility("internal")]]
extern const char32_t charset[256];
}
/// Remapping of single byte characters (Control (C0) and Basic Latin (ASCII)).
[[gnu::visibility("internal")]]
decltype(ircd::gpt::vocab::charset)
ircd::gpt::vocab::charset
alignas(64)
@ -169,7 +170,8 @@ ircd::gpt::vocab::init_merges()
ircd::string_view
ircd::gpt::vocab::debug(const mutable_buffer &out,
const u16 idx)
const u16 idx,
const uint mask)
{
const auto *const token
{
@ -177,13 +179,21 @@ ircd::gpt::vocab::debug(const mutable_buffer &out,
};
thread_local char strbuf[2][512];
return string_view{fmt::sprintf
return fmt::sprintf
{
out, "%5u [%32s] %s",
out, "%5u %s%32s%s%s%s",
idx,
simd::print_chr(strbuf[0], token[idx]),
simd::print_mem(strbuf[1], token[idx]),
}};
mask & 0x1?
"[ "_sv: string_view{},
mask & 0x1?
simd::print_chr(strbuf[0], token[idx]): string_view{},
mask & 0x1?
" ]"_sv: string_view{},
mask & 0x2?
" "_sv: string_view{},
mask & 0x2?
simd::print_mem(strbuf[1], token[idx]): string_view{},
};
}
//
@ -193,6 +203,7 @@ ircd::gpt::vocab::debug(const mutable_buffer &out,
ircd::string_view
ircd::gpt::vocab::detokenize(const mutable_buffer &out,
const vector_view<const u16> &in)
noexcept
{
size_t off(0);
for(const u16 &id : in)
@ -228,9 +239,65 @@ ircd::gpt::vocab::detokenize(const mutable_buffer &out,
// tokenize
//
uint16_t
ircd::gpt::vocab::tokenize(const string_view &in)
{
char str_buf[16];
const string_view str
{
str_buf, copy(str_buf, in)
};
u16 buf[16];
const auto out
{
tokenize(buf, str)
};
if(unlikely(out.size() != 1))
throw error
{
"Input tokenizes to %zu tokens.",
out.size()
};
return buf[0];
}
uint16_t
ircd::gpt::vocab::tokenize(const_buffer &in)
noexcept
{
char str_buf[16];
const string_view str
{
str_buf, copy(str_buf, in)
};
u16 buf[16];
const auto out
{
tokenize(buf, str)
};
const auto &tok
{
get_token(buf[0])
};
const auto consumed
{
simd::strlen(tok)
};
consume(in, consumed);
return buf[0];
}
ircd::vector_view<ircd::u16>
ircd::gpt::vocab::tokenize(const vector_view<u16> &out,
const string_view &in)
noexcept
{
using input_t = u8x16;
using block_t = u16x16;
@ -801,13 +868,8 @@ ircd::gpt::vocab::bpe_score(u16 (&score)[16],
ircd::u16
ircd::gpt::vocab::find_token(const u8x16 string)
{
const auto *const __restrict__ token
{
reinterpret_cast<const u8x16 *>(vocab::token)
};
for(uint i(0); i < tokens; ++i)
if(simd::streq(string, token[i]))
if(simd::streq(string, get_token(i)))
return i;
return u16(-1U);
@ -835,3 +897,14 @@ ircd::gpt::vocab::find_merge(const u8x16 a,
return u16(-1U);
}
ircd::u8x16
ircd::gpt::vocab::get_token(const u16 idx)
{
const auto *const __restrict__ token
{
reinterpret_cast<const u8x16 *>(vocab::token)
};
return token[idx];
}