mirror of
https://github.com/matrix-construct/construct
synced 2025-01-22 12:30:00 +01:00
821 lines
21 KiB
C++
821 lines
21 KiB
C++
// Matrix Construct Is All You Need Is All You Need Is AllĊĊĊĊĊĊĊĊ
|
|
//
|
|
// Copyright (C) Matrix Construct Developers, Authors & Contributors
|
|
// Copyright (C) 2016-2021 Jason Volk <jason@zemos.net>
|
|
//
|
|
// Permission to use, copy, modify, and/or distribute this software for any
|
|
// purpose with or without fee is hereby granted, provided that the above
|
|
// copyright notice and this permission notice is present in all copies. The
|
|
// full license for this software is available in the LICENSE file.
|
|
|
|
#pragma clang fp exceptions(ignore)
|
|
#pragma clang fp reassociate(on)
|
|
#pragma clang fp contract(fast)
|
|
|
|
namespace ircd::gpt
|
|
{
|
|
static void adamw(const opts &, const u32, const f32, const uint, f32 *, f32 *, f32 *);
|
|
|
|
static void backprop(const opts &, const u32, const f32, model::norm &, model::norm &, model::norm &);
|
|
static void backprop(const opts &, const u32, const f32, model::attn &, model::attn &, model::attn &);
|
|
static void backprop(const opts &, const u32, const f32, model::ffnn &, model::ffnn &, model::ffnn &);
|
|
static void backprop(const opts &, const u32, const f32, model::block &, model::block &, model::block &);
|
|
static void backprop(const opts &, const u32, const f32, model::embed &, model::embed &, model::embed &);
|
|
static void backprop(const opts &, const u32, const f32, model::decoder &, model::decoder &, model::decoder &);
|
|
extern void backprop(const opts &, const u32, const f32, model::decoder &, f32 *const __restrict__ [2]) noexcept;
|
|
|
|
template<class T>
|
|
static void fmma(T *out, const T *in, const T *bias, const T *weight, const math::fmma_opts &);
|
|
|
|
static void gelu(f32x4 &, const f32x4 &);
|
|
static void gelu(f32x4 *, const f32x4 *);
|
|
static void norm(f32x4 *, const f32x4 *, const f32x4 *, const f32x4 *, const f32);
|
|
static void vals(float (&)[12][1024][64], const float (&)[12][1024][1024], const float (&)[3][1024][12][64], const size_t);
|
|
static void pare(float (&)[12][1024][1024], const float (&)[3][1024][12][64], const size_t);
|
|
static void mask(float (&)[12][1024][1024], const float (&)[12][1024][1024], const size_t);
|
|
static void smax(float (&)[12][1024][1024], const float (&)[12][1024][1024], const size_t);
|
|
static void attn(float (&)[3][1024][12][64], const float *const, const size_t, const model::decoder &, const uint layer);
|
|
static void ffnn(float *, const float *, const model::decoder &, const uint layer);
|
|
static void coil(float *, const size_t, const model::decoder &);
|
|
static void logitsmax(float *, const float *, const size_t);
|
|
static void logits(float *, const float *, const model::decoder &);
|
|
static void tail(float *, const float *, const model::decoder &);
|
|
static u16 argmax(const float *, const opts &);
|
|
static void embed(float *, const u16 token, const u16 position, const model::decoder &);
|
|
|
|
static f32
|
|
logit alignas(64) [65536],
|
|
embeds alignas(64) [1024 * 768],
|
|
scratch alignas(64) [1024 * 768];
|
|
}
|
|
|
|
void
|
|
ircd::gpt::embed(float *const out,
|
|
const u16 token,
|
|
const u16 position,
|
|
const model::decoder &model)
|
|
{
|
|
const auto &wpe
|
|
{
|
|
model.embed.pos[position]
|
|
};
|
|
|
|
const auto &wte
|
|
{
|
|
model.embed.token[token]
|
|
};
|
|
|
|
for(uint j(0); j < 768; ++j)
|
|
out[j] = wte.elem[j] + wpe.elem[j];
|
|
}
|
|
|
|
uint16_t
|
|
ircd::gpt::argmax(const float *const __restrict__ logit,
|
|
const opts &opts)
|
|
{
|
|
static const auto max
|
|
{
|
|
32U
|
|
};
|
|
|
|
const auto top
|
|
{
|
|
std::clamp(opts.top_k, 1U, max - 1)
|
|
};
|
|
|
|
u16 best[max] {0};
|
|
for(uint j(0); j < vocab::tokens; ++j)
|
|
{
|
|
best[top] = j;
|
|
std::sort(begin(best), begin(best) + top + 1, [&logit]
|
|
(const auto &a, const auto &b)
|
|
{
|
|
return logit[a] > logit[b];
|
|
});
|
|
}
|
|
|
|
const auto x
|
|
{
|
|
top > 1?
|
|
rand::integer(0, top - 1):
|
|
0
|
|
};
|
|
|
|
return best[x];
|
|
}
|
|
|
|
[[gnu::noinline]]
|
|
void
|
|
ircd::gpt::tail(float *const __restrict__ logit,
|
|
const float *const __restrict__ state,
|
|
const model::decoder &d)
|
|
{
|
|
constexpr float lnf_epsilon
|
|
{
|
|
0.00001
|
|
};
|
|
|
|
static float
|
|
buf alignas(64) [1][768];
|
|
for(uint i(0); i < 768; ++i)
|
|
buf[0][i] = state[i];
|
|
|
|
norm((f32x4 *)buf[0], (const f32x4 *)state, (const f32x4 *)d.embed.norm.bias.elem, (const f32x4 *)d.embed.norm.weight.elem, lnf_epsilon);
|
|
logits(logit, buf[0], d);
|
|
//logitsmax(logit, logit, vocab::tokens);
|
|
}
|
|
|
|
void
|
|
ircd::gpt::logits(float *const __restrict__ out,
|
|
const float *const __restrict__ in,
|
|
const model::decoder &d)
|
|
{
|
|
for(uint j(0); j < vocab::tokens; ++j)
|
|
out[j] = 0;
|
|
|
|
for(uint j(0); j < vocab::tokens; ++j)
|
|
for(uint k(0); k < 768; ++k)
|
|
out[j] += in[k] * d.embed.token[j].elem[k];
|
|
}
|
|
|
|
[[gnu::noinline]]
|
|
void
|
|
ircd::gpt::logitsmax(float *const out,
|
|
const float *const in,
|
|
const size_t num)
|
|
{
|
|
static f64x4
|
|
exps alignas(4096) [2][65536 / 4];
|
|
|
|
math::smax<f32x4, f64x4>
|
|
(
|
|
{(f32x4 *)out, num / 4},
|
|
{(const f32x4 *)in, num / 4},
|
|
exps[0],
|
|
exps[1]
|
|
);
|
|
}
|
|
|
|
[[gnu::noinline]]
|
|
void
|
|
ircd::gpt::coil(float *__restrict__ accum,
|
|
const size_t tokens,
|
|
const model::decoder &decoder)
|
|
{
|
|
static float
|
|
qkv alignas(4096) [3][1024][12][64],
|
|
state alignas(4096) [12][1024][1024],
|
|
attns alignas(4096) [12][1024][64];
|
|
|
|
for(uint i(0); i < 12; ++i)
|
|
{
|
|
const auto &layer
|
|
{
|
|
decoder.layer[i]
|
|
};
|
|
|
|
attn(qkv, accum, tokens, decoder, i);
|
|
pare(state, qkv, tokens);
|
|
mask(state, state, tokens);
|
|
smax(state, state, tokens);
|
|
vals(attns, state, qkv, tokens);
|
|
|
|
static f32 a alignas(64) [1024][768];
|
|
memset(a, 0x0, 768 * tokens * sizeof(float));
|
|
for(uint j(0); j < tokens; j++)
|
|
{
|
|
for(uint k(0); k < 12; k++)
|
|
for(uint l(0); l < 64; l++)
|
|
a[j][k * 64 + l] = attns[k][j][l];
|
|
}
|
|
|
|
static const math::fmma_opts fmma_opts
|
|
{
|
|
768, 768, 2U
|
|
};
|
|
|
|
for(uint j(0); j < tokens; ++j)
|
|
fmma((f32x4 *)(accum + j * 768), (const f32x4 *)(a[j]), (const f32x4 *)layer.attn.proj_bias.elem, (const f32x4 *)layer.attn.proj_weight, fmma_opts);
|
|
|
|
for(uint j(0); j < tokens; ++j)
|
|
ffnn(accum + j * 768, accum + j * 768, decoder, i);
|
|
}
|
|
}
|
|
|
|
void
|
|
ircd::gpt::attn(float (&__restrict__ out)[3][1024][12][64],
|
|
const float *const __restrict__ in,
|
|
const size_t num,
|
|
const model::decoder &decoder,
|
|
const uint laynum)
|
|
{
|
|
constexpr float ln1_epsilon
|
|
{
|
|
0.00001
|
|
};
|
|
|
|
const auto &layer
|
|
{
|
|
decoder.layer[laynum]
|
|
};
|
|
|
|
float
|
|
(&__restrict__ qry)[1024][12][64] { out[0] },
|
|
(&__restrict__ key)[1024][12][64] { out[1] },
|
|
(&__restrict__ val)[1024][12][64] { out[2] };
|
|
|
|
for(uint i(0); i < num; ++i)
|
|
{
|
|
static float
|
|
buf alignas(64) [768],
|
|
proj alignas(64) [2304];
|
|
|
|
norm((f32x4 *)buf, (const f32x4 *)(in + i * 768), (const f32x4 *)layer.attn.norm.bias.elem, (const f32x4 *)layer.attn.norm.weight.elem, ln1_epsilon);
|
|
|
|
static const math::fmma_opts fmma_opts
|
|
{
|
|
768, 2304, 2U,
|
|
};
|
|
|
|
memset(proj, 0x0, sizeof(proj));
|
|
fmma((f32x4 *)proj, (const f32x4 *)buf, (const f32x4 *)layer.attn.fcon_bias.fcon, (const f32x4 *)layer.attn.fcon_weight, fmma_opts);
|
|
|
|
#pragma clang loop unroll (disable)
|
|
for(uint j(0); j < 12; ++j)
|
|
for(uint k(0); k < 64; ++k)
|
|
qry[i][j][k] = proj[768 * 0 + j * 64 + k];
|
|
|
|
#pragma clang loop unroll (disable)
|
|
for(uint j(0); j < 12; ++j)
|
|
for(uint k(0); k < 64; ++k)
|
|
key[i][j][k] = proj[768 * 1 + j * 64 + k];
|
|
|
|
#pragma clang loop unroll (disable)
|
|
for(uint j(0); j < 12; ++j)
|
|
for(uint k(0); k < 64; ++k)
|
|
val[i][j][k] = proj[768 * 2 + j * 64 + k];
|
|
}
|
|
}
|
|
|
|
void
|
|
ircd::gpt::pare(float (&__restrict__ out)[12][1024][1024],
|
|
const float (&__restrict__ qkv)[3][1024][12][64],
|
|
const size_t num)
|
|
{
|
|
const float
|
|
(&__restrict__ qry)[1024][12][64] { qkv[0] },
|
|
(&__restrict__ key)[1024][12][64] { qkv[1] },
|
|
(&__restrict__ val)[1024][12][64] { qkv[2] };
|
|
|
|
#pragma clang loop unroll (disable)
|
|
for(uint j(0); j < 12; ++j)
|
|
for(uint k(0); k < num; ++k)
|
|
for(uint l(0); l < num; ++l)
|
|
out[j][k][l] = 0;
|
|
|
|
#pragma clang loop unroll (disable)
|
|
for(uint j(0); j < 12; ++j)
|
|
for(uint k(0); k < num; ++k)
|
|
for(uint l(0); l < num; ++l)
|
|
for(uint m(0); m < 64; ++m)
|
|
out[j][k][l] += qry[k][j][m] * key[l][j][m];
|
|
|
|
#pragma clang loop unroll (disable)
|
|
for(uint j(0); j < 12; ++j)
|
|
for(uint k(0); k < num; ++k)
|
|
for(uint l(0); l < num; ++l)
|
|
out[j][k][l] /= 8.0;
|
|
}
|
|
|
|
void
|
|
ircd::gpt::mask(float (&__restrict__ out)[12][1024][1024],
|
|
const float (&__restrict__ in)[12][1024][1024],
|
|
const size_t num)
|
|
{
|
|
static const float masked
|
|
{
|
|
-10000.0
|
|
};
|
|
|
|
#pragma clang loop unroll (disable)
|
|
for(uint j(0); j < 12; ++j)
|
|
for(uint k(0); k < num; ++k)
|
|
for(uint l(0); l < num; ++l)
|
|
out[j][k][l] = (k < l)? in[j][k][l]: masked;
|
|
}
|
|
|
|
void
|
|
ircd::gpt::smax(float (&__restrict__ out)[12][1024][1024],
|
|
const float (&__restrict__ in)[12][1024][1024],
|
|
const size_t num)
|
|
{
|
|
static f64
|
|
tmp alignas(4096) [2][1024];
|
|
|
|
#pragma clang loop unroll (disable)
|
|
for(uint j(0); j < 12; ++j)
|
|
for(uint k(0); k < num; ++k)
|
|
math::smax<f32, f64>
|
|
(
|
|
out[j][k], { in[j][k], num }, tmp[0], tmp[1]
|
|
);
|
|
}
|
|
|
|
void
|
|
ircd::gpt::vals(float (&__restrict__ out)[12][1024][64],
|
|
const float (&__restrict__ in)[12][1024][1024],
|
|
const float (&__restrict__ qkv)[3][1024][12][64],
|
|
const size_t num)
|
|
{
|
|
const float
|
|
(&__restrict__ val)[1024][12][64] { qkv[2] };
|
|
|
|
#pragma clang loop unroll (disable)
|
|
for(uint j(0); j < 12; ++j)
|
|
for(uint k(0); k < num; ++k)
|
|
for(uint l(0); l < 64; ++l)
|
|
out[j][k][l] = 0;
|
|
|
|
#pragma clang loop unroll (disable)
|
|
for(uint j(0); j < 12; ++j)
|
|
for(uint k(0); k < num; ++k)
|
|
for(uint l(0); l < num; ++l)
|
|
for(uint m(0); m < 64; ++m)
|
|
out[j][k][m] += in[j][k][l] * val[l][j][m];
|
|
}
|
|
|
|
void
|
|
ircd::gpt::ffnn(float *const out,
|
|
const float *const in,
|
|
const model::decoder &decoder,
|
|
const uint laynum)
|
|
{
|
|
static const math::fmma_opts fmma3_opts
|
|
{
|
|
768, 3072, 2U,
|
|
};
|
|
|
|
static const math::fmma_opts fmma4_opts
|
|
{
|
|
3072, 768, 2U,
|
|
};
|
|
|
|
constexpr float ln2_epsilon
|
|
{
|
|
0.00001
|
|
};
|
|
|
|
const auto &layer
|
|
{
|
|
decoder.layer[laynum]
|
|
};
|
|
|
|
static float
|
|
buf alignas(64) [768],
|
|
buf2 alignas(64) [3072];
|
|
|
|
memset(buf2, 0x0, sizeof(buf2));
|
|
norm((f32x4 *)buf, (const f32x4 *)in, (const f32x4 *)layer.ffnn.norm.bias.elem, (const f32x4 *)layer.ffnn.norm.weight.elem, ln2_epsilon);
|
|
fmma((f32x4 *)buf2, (const f32x4 *)buf, (const f32x4 *)layer.ffnn.fcon_bias.fcon, (const f32x4 *)layer.ffnn.fcon_weight, fmma3_opts);
|
|
gelu((f32x4 *)buf2, (const f32x4 *)buf2);
|
|
fmma((f32x4 *)out, (const f32x4 *)buf2, (const f32x4 *)layer.ffnn.proj_bias.elem, (const f32x4 *)layer.ffnn.proj_weight, fmma4_opts);
|
|
}
|
|
|
|
void
|
|
ircd::gpt::norm(f32x4 *const __restrict__ out,
|
|
const f32x4 *const __restrict__ in,
|
|
const f32x4 *const __restrict__ bias,
|
|
const f32x4 *const __restrict__ weight,
|
|
const float epsilon)
|
|
{
|
|
static f64x4
|
|
tmp alignas(64) [768 / 4];
|
|
|
|
math::norm<f32x4, f64x4>
|
|
(
|
|
{out, 192}, {in, 192}, epsilon, tmp
|
|
);
|
|
|
|
for(uint j(0); j < 768 / 4; ++j)
|
|
out[j] = out[j] * weight[j] + bias[j];
|
|
}
|
|
|
|
template<class T>
|
|
void
|
|
ircd::gpt::fmma(T *const __restrict__ out,
|
|
const T *const __restrict__ in,
|
|
const T *const __restrict__ bias,
|
|
const T *const __restrict__ weight,
|
|
const math::fmma_opts &opts)
|
|
{
|
|
for(uint i(0); i < opts.rows / simd::lanes<T>(); ++i)
|
|
out[i] += bias[i];
|
|
|
|
math::fmma(out, in, weight, opts);
|
|
}
|
|
|
|
void
|
|
ircd::gpt::gelu(f32x4 *const out,
|
|
const f32x4 *const in)
|
|
{
|
|
for(uint j(0); j < 3072 / 4; ++j)
|
|
gelu(out[j], in[j]);
|
|
}
|
|
|
|
void
|
|
ircd::gpt::gelu(f32x4 &out,
|
|
const f32x4 &in)
|
|
{
|
|
out = 0.5 * in * (1.0 + tanh(in * f32(0.7978845608) * (1.0 + f32(0.044715) * in * in)));
|
|
}
|
|
|
|
//
|
|
// backside
|
|
//
|
|
|
|
[[gnu::noinline]]
|
|
void
|
|
ircd::gpt::backprop(const opts &opts,
|
|
const u32 step,
|
|
const f32 grad,
|
|
model::decoder &__restrict__ param,
|
|
f32 *const __restrict__ buf[2])
|
|
noexcept
|
|
{
|
|
model::decoder *const __restrict__ moment[2]
|
|
{
|
|
reinterpret_cast<model::decoder *>(buf[0]),
|
|
reinterpret_cast<model::decoder *>(buf[1]),
|
|
};
|
|
|
|
backprop(opts, step, grad, param, *moment[0], *moment[1]);
|
|
}
|
|
|
|
void
|
|
ircd::gpt::backprop(const opts &opts,
|
|
const u32 step,
|
|
const f32 grad,
|
|
model::decoder &__restrict__ param,
|
|
model::decoder &__restrict__ moment0,
|
|
model::decoder &__restrict__ moment1)
|
|
{
|
|
fpe::errors_handle eh;
|
|
|
|
assume(opts.attn_rank > 0);
|
|
assume(opts.layers > 0);
|
|
const auto eln
|
|
{
|
|
opts.layers - 1 // step % opts.layers
|
|
};
|
|
|
|
for(int i(opts.layers - 1); i >= int(opts.layers - eln - 1); --i)
|
|
{
|
|
assert(i >= 0 && i < int(opts.layers));
|
|
backprop(opts, step, grad, param.layer[i], moment0.layer[i], moment1.layer[i]);
|
|
}
|
|
|
|
backprop(opts, step, grad, param.embed, moment0.embed, moment1.embed);
|
|
|
|
auto pending(eh.pending());
|
|
eh.clear_pending();
|
|
pending &= ~pending & FE_INEXACT;
|
|
if(unlikely(pending))
|
|
fpe::throw_errors(pending);
|
|
}
|
|
|
|
void
|
|
ircd::gpt::backprop(const opts &opts,
|
|
const u32 step,
|
|
const f32 grad,
|
|
model::embed &__restrict__ param,
|
|
model::embed &__restrict__ moment0,
|
|
model::embed &__restrict__ moment1)
|
|
{
|
|
backprop(opts, step, grad, param.norm, moment0.norm, moment1.norm);
|
|
|
|
assume(opts.context_tokens > 0);
|
|
for(uint i(0); i < opts.context_tokens; ++i)
|
|
adamw(opts, step, grad, 768, param.pos[i].elem, moment0.pos[i].elem, moment1.pos[i].elem);
|
|
|
|
assume(opts.logits > 0);
|
|
for(uint i(0); i < opts.logits; ++i)
|
|
adamw(opts, step, grad, 768, param.token[i].elem, moment0.token[i].elem, moment1.token[i].elem);
|
|
}
|
|
|
|
void
|
|
ircd::gpt::backprop(const opts &opts,
|
|
const u32 step,
|
|
const f32 grad,
|
|
model::block &__restrict__ param,
|
|
model::block &__restrict__ moment0,
|
|
model::block &__restrict__ moment1)
|
|
{
|
|
backprop(opts, step, grad, param.attn.norm, moment0.attn.norm, moment1.attn.norm);
|
|
backprop(opts, step, grad, param.attn, moment0.attn, moment1.attn);
|
|
|
|
backprop(opts, step, grad, param.ffnn.norm, moment0.ffnn.norm, moment1.ffnn.norm);
|
|
backprop(opts, step, grad, param.ffnn, moment0.ffnn, moment1.ffnn);
|
|
}
|
|
|
|
void
|
|
ircd::gpt::backprop(const opts &opts,
|
|
const u32 step,
|
|
const f32 grad,
|
|
model::attn &__restrict__ param,
|
|
model::attn &__restrict__ moment0,
|
|
model::attn &__restrict__ moment1)
|
|
{
|
|
adamw(opts, step, grad, 2304, param.fcon_bias.fcon, moment0.fcon_bias.fcon, moment1.fcon_bias.fcon);
|
|
|
|
for(uint i(0); i < 768; ++i)
|
|
adamw(opts, step, grad, 2304, param.fcon_weight[i].fcon, moment0.fcon_weight[i].fcon, moment1.fcon_weight[i].fcon);
|
|
|
|
adamw(opts, step, grad, 768, param.proj_bias.elem, moment0.proj_bias.elem, moment1.proj_bias.elem);
|
|
|
|
for(uint i(0); i < 768; ++i)
|
|
adamw(opts, step, grad, 768, param.proj_weight[i].elem, moment0.proj_weight[i].elem, moment1.proj_weight[i].elem);
|
|
}
|
|
|
|
void
|
|
ircd::gpt::backprop(const opts &opts,
|
|
const u32 step,
|
|
const f32 grad,
|
|
model::ffnn &__restrict__ param,
|
|
model::ffnn &__restrict__ moment0,
|
|
model::ffnn &__restrict__ moment1)
|
|
{
|
|
adamw(opts, step, grad, 3072, param.fcon_bias.fcon, moment0.fcon_bias.fcon, moment1.fcon_bias.fcon);
|
|
|
|
for(uint i(0); i < 768; ++i)
|
|
adamw(opts, step, grad, 3072, param.fcon_weight[i].fcon, moment0.fcon_weight[i].fcon, moment1.fcon_weight[i].fcon);
|
|
|
|
adamw(opts, step, grad, 768, param.proj_bias.elem, moment0.proj_bias.elem, moment1.proj_bias.elem);
|
|
|
|
for(uint i(0); i < 3072; ++i)
|
|
adamw(opts, step, grad, 768, param.proj_weight[i].elem, moment0.proj_weight[i].elem, moment1.proj_weight[i].elem);
|
|
}
|
|
|
|
void
|
|
ircd::gpt::backprop(const opts &opts,
|
|
const u32 step,
|
|
const f32 grad,
|
|
model::norm &__restrict__ param,
|
|
model::norm &__restrict__ moment0,
|
|
model::norm &__restrict__ moment1)
|
|
{
|
|
adamw(opts, step, grad, 768, param.bias.elem, moment0.bias.elem, moment1.bias.elem);
|
|
adamw(opts, step, grad, 768, param.weight.elem, moment0.weight.elem, moment1.weight.elem);
|
|
}
|
|
|
|
namespace ircd::gpt
|
|
{
|
|
static f32x4 adamw_moment(const f32x4, const f32, const f32);
|
|
static f32x4 adamw_numer(const f32x4, const f32, const u32);
|
|
static f32x4 adamw_denom(const f32x4, const f32, const u32);
|
|
static f32x4 adamw_delta(const f32x4, const f32x4, const f32, const f32, const f32, const u32);
|
|
static void adamw(f32x4 &, f32x4 &, f32x4 &, const f32, const f32, const f32, const f32, const u32);
|
|
static void adamw(const opts &, const u32, const f32, const u32, f32 *, f32 *, f32 *);
|
|
}
|
|
|
|
void
|
|
ircd::gpt::adamw(const opts &opts,
|
|
const u32 step,
|
|
const f32 grad,
|
|
const u32 num,
|
|
f32 *const __restrict__ param,
|
|
f32 *const __restrict__ moment0,
|
|
f32 *const __restrict__ moment1)
|
|
{
|
|
f32x4 *const __restrict__ val[3]
|
|
{
|
|
reinterpret_cast<f32x4 *>(param),
|
|
reinterpret_cast<f32x4 *>(moment0),
|
|
reinterpret_cast<f32x4 *>(moment1),
|
|
};
|
|
|
|
const auto n
|
|
{
|
|
num / 4
|
|
};
|
|
|
|
assume(0 < n);
|
|
for(uint i(0); i < n; ++i)
|
|
adamw
|
|
(
|
|
val[0][i],
|
|
val[1][i],
|
|
val[2][i],
|
|
grad,
|
|
opts.alpha,
|
|
opts.beta[0],
|
|
opts.beta[1],
|
|
step + 1
|
|
);
|
|
}
|
|
|
|
void
|
|
ircd::gpt::adamw(f32x4 &__restrict__ param,
|
|
f32x4 &__restrict__ moment0,
|
|
f32x4 &__restrict__ moment1,
|
|
const f32 grad_,
|
|
const f32 alpha_,
|
|
const f32 beta0,
|
|
const f32 beta1,
|
|
const u32 step)
|
|
{
|
|
const f32 alpha
|
|
{
|
|
grad_ < 0? -alpha_ : alpha_
|
|
};
|
|
|
|
const f32 grad
|
|
{
|
|
grad_ < 0? -grad_ : grad_
|
|
};
|
|
|
|
const f32 grad_grad
|
|
{
|
|
grad * grad
|
|
};
|
|
|
|
const f32x4 moment[]
|
|
{
|
|
adamw_moment(moment0, grad, beta0),
|
|
adamw_moment(moment1, grad_grad, beta1)
|
|
};
|
|
|
|
const f32x4 delta
|
|
{
|
|
adamw_delta(moment[0], moment[1], alpha, beta0, beta1, step)
|
|
};
|
|
|
|
const f32x4 update
|
|
{
|
|
param - delta
|
|
};
|
|
|
|
if((false))
|
|
for(uint i(0); i < 4; ++i)
|
|
printf("%-15p p[%11.8lf] m[%11.8lf][%11.8lf] g[%11.8lf] d[%11.8lf] p[%11.8lf] m[%11.8lf][%11.8lf]\n",
|
|
((f32 *)¶m) + i,
|
|
param[i],
|
|
moment0[i],
|
|
moment1[i],
|
|
grad,
|
|
delta[i],
|
|
update[i],
|
|
moment[0][i],
|
|
moment[1][i]);
|
|
|
|
assert(std::isnormal(update[0]));
|
|
assert(std::isnormal(update[1]));
|
|
assert(std::isnormal(update[2]));
|
|
assert(std::isnormal(update[3]));
|
|
|
|
assert(std::isnormal(moment[0][0]));
|
|
assert(std::isnormal(moment[0][1]));
|
|
assert(std::isnormal(moment[0][2]));
|
|
assert(std::isnormal(moment[0][3]));
|
|
|
|
assert(std::isnormal(moment[1][0]));
|
|
assert(std::isnormal(moment[1][1]));
|
|
assert(std::isnormal(moment[1][2]));
|
|
assert(std::isnormal(moment[1][3]));
|
|
|
|
param = update;
|
|
//__builtin_nontemporal_store(update, ¶m);
|
|
|
|
moment0 = moment[0];
|
|
moment1 = moment[1];
|
|
//__builtin_nontemporal_store(moment[0], &moment0);
|
|
//__builtin_nontemporal_store(moment[1], &moment1);
|
|
}
|
|
|
|
ircd::f32x4
|
|
ircd::gpt::adamw_delta(const f32x4 moment0,
|
|
const f32x4 moment1,
|
|
const f32 alpha,
|
|
const f32 beta0,
|
|
const f32 beta1,
|
|
const u32 step)
|
|
{
|
|
static const f32 epsilon
|
|
{
|
|
FLT_EPSILON
|
|
};
|
|
|
|
const f32x4 denom
|
|
{
|
|
adamw_denom(moment1, beta1, step) + epsilon
|
|
};
|
|
|
|
const f32x4 decay
|
|
{
|
|
adamw_numer(moment0, beta0, step)
|
|
};
|
|
|
|
const f32x4 smooth
|
|
{
|
|
alpha * decay
|
|
};
|
|
|
|
assert(std::isnormal(denom[0]));
|
|
assert(std::isnormal(denom[1]));
|
|
assert(std::isnormal(denom[2]));
|
|
assert(std::isnormal(denom[3]));
|
|
const f32x4 delta
|
|
{
|
|
smooth / denom
|
|
};
|
|
|
|
return delta;
|
|
}
|
|
|
|
ircd::f32x4
|
|
ircd::gpt::adamw_denom(const f32x4 moment,
|
|
const f32 beta,
|
|
const u32 step)
|
|
{
|
|
static const f32x4 one
|
|
{
|
|
1.0f, 1.0f, 1.0f, 1.0f,
|
|
};
|
|
|
|
assert(step > 0);
|
|
const f32x4 decay
|
|
{
|
|
one - powf(beta, step)
|
|
};
|
|
|
|
assert(std::isnormal(decay[0]));
|
|
assert(std::isnormal(decay[1]));
|
|
assert(std::isnormal(decay[2]));
|
|
assert(std::isnormal(decay[3]));
|
|
const f32x4 bias
|
|
{
|
|
moment / decay
|
|
};
|
|
|
|
const f32x4 denom
|
|
{
|
|
sqrtf(bias)
|
|
};
|
|
|
|
return denom;
|
|
}
|
|
|
|
ircd::f32x4
|
|
ircd::gpt::adamw_numer(const f32x4 moment,
|
|
const f32 beta,
|
|
const u32 step)
|
|
{
|
|
static const f32x4 one
|
|
{
|
|
1.0f, 1.0f, 1.0f, 1.0f,
|
|
};
|
|
|
|
assert(step > 0);
|
|
const f32x4 decay
|
|
{
|
|
one - powf(beta, step)
|
|
};
|
|
|
|
assert(std::isnormal(decay[0]));
|
|
assert(std::isnormal(decay[1]));
|
|
assert(std::isnormal(decay[2]));
|
|
assert(std::isnormal(decay[3]));
|
|
const f32x4 bias
|
|
{
|
|
moment / decay
|
|
};
|
|
|
|
return bias;
|
|
}
|
|
|
|
ircd::f32x4
|
|
ircd::gpt::adamw_moment(const f32x4 moment,
|
|
const f32 grad,
|
|
const f32 beta)
|
|
{
|
|
static const f32x4 one
|
|
{
|
|
1.0f, 1.0f, 1.0f, 1.0f,
|
|
};
|
|
|
|
const f32x4 rate
|
|
{
|
|
one - beta
|
|
};
|
|
|
|
const f32x4 avg
|
|
{
|
|
moment * beta
|
|
};
|
|
|
|
const f32x4 dot
|
|
{
|
|
rate * grad + avg
|
|
};
|
|
|
|
return dot;
|
|
}
|