0
0
Fork 0
mirror of https://github.com/go-gitea/gitea synced 2024-11-09 19:42:09 +01:00
gitea/vendor/github.com/dgrijalva/jwt-go/README.md
Fabian Zaremba 2e7ccecfe6 Git LFS support v2 (#122)
* Import github.com/git-lfs/lfs-test-server as lfs module base

Imported commit is 3968aac269a77b73924649b9412ae03f7ccd3198

Removed:

Dockerfile CONTRIBUTING.md mgmt* script/ vendor/ kvlogger.go
.dockerignore .gitignore README.md

* Remove config, add JWT support from github.com/mgit-at/lfs-test-server

Imported commit f0cdcc5a01599c5a955dc1bbf683bb4acecdba83

* Add LFS settings

* Add LFS meta object model

* Add LFS routes and initialization

* Import github.com/dgrijalva/jwt-go into vendor/

* Adapt LFS module: handlers, routing, meta store

* Move LFS routes to /user/repo/info/lfs/*

* Add request header checks to LFS BatchHandler / PostHandler

* Implement LFS basic authentication

* Rework JWT secret generation / load

* Implement LFS SSH token authentication with JWT

Specification: https://github.com/github/git-lfs/tree/master/docs/api

* Integrate LFS settings into install process

* Remove LFS objects when repository is deleted

Only removes objects from content store when deleted repo is the only
referencing repository

* Make LFS module stateless

Fixes bug where LFS would not work after installation without
restarting Gitea

* Change 500 'Internal Server Error' to 400 'Bad Request'

* Change sql query to xorm call

* Remove unneeded type from LFS module

* Change internal imports to code.gitea.io/gitea/

* Add Gitea authors copyright

* Change basic auth realm to "gitea-lfs"

* Add unique indexes to LFS model

* Use xorm count function in LFS check on repository delete

* Return io.ReadCloser from content store and close after usage

* Add LFS info to runWeb()

* Export LFS content store base path

* LFS file download from UI

* Work around git-lfs client issue with unauthenticated requests

Returning a dummy Authorization header for unauthenticated requests
lets git-lfs client skip asking for auth credentials
See: https://github.com/github/git-lfs/issues/1088

* Fix unauthenticated UI downloads from public repositories

* Authentication check order, Finish LFS file view logic

* Ignore LFS hooks if installed for current OS user

Fixes Gitea UI actions for repositories tracking LFS files.
Checks for minimum needed git version by parsing the semantic version
string.

* Hide LFS metafile diff from commit view, marking as binary

* Show LFS notice if file in commit view is tracked

* Add notbefore/nbf JWT claim

* Correct lint suggestions - comments for structs and functions

- Add comments to LFS model
- Function comment for GetRandomBytesAsBase64
- LFS server function comments and lint variable suggestion

* Move secret generation code out of conditional

Ensures no LFS code may run with an empty secret

* Do not hand out JWT tokens if LFS server support is disabled
2016-12-26 09:16:37 +08:00

85 lines
7.2 KiB
Markdown

A [go](http://www.golang.org) (or 'golang' for search engine friendliness) implementation of [JSON Web Tokens](http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html)
[![Build Status](https://travis-ci.org/dgrijalva/jwt-go.svg?branch=master)](https://travis-ci.org/dgrijalva/jwt-go)
**BREAKING CHANGES:*** Version 3.0.0 is here. It includes _a lot_ of changes including a few that break the API. We've tried to break as few things as possible, so there should just be a few type signature changes. A full list of breaking changes is available in `VERSION_HISTORY.md`. See `MIGRATION_GUIDE.md` for more information on updating your code.
**NOTICE:** A vulnerability in JWT was [recently published](https://auth0.com/blog/2015/03/31/critical-vulnerabilities-in-json-web-token-libraries/). As this library doesn't force users to validate the `alg` is what they expected, it's possible your usage is effected. There will be an update soon to remedy this, and it will likey require backwards-incompatible changes to the API. In the short term, please make sure your implementation verifies the `alg` is what you expect.
## What the heck is a JWT?
JWT.io has [a great introduction](https://jwt.io/introduction) to JSON Web Tokens.
In short, it's a signed JSON object that does something useful (for example, authentication). It's commonly used for `Bearer` tokens in Oauth 2. A token is made of three parts, separated by `.`'s. The first two parts are JSON objects, that have been [base64url](http://tools.ietf.org/html/rfc4648) encoded. The last part is the signature, encoded the same way.
The first part is called the header. It contains the necessary information for verifying the last part, the signature. For example, which encryption method was used for signing and what key was used.
The part in the middle is the interesting bit. It's called the Claims and contains the actual stuff you care about. Refer to [the RFC](http://self-issued.info/docs/draft-jones-json-web-token.html) for information about reserved keys and the proper way to add your own.
## What's in the box?
This library supports the parsing and verification as well as the generation and signing of JWTs. Current supported signing algorithms are HMAC SHA, RSA, RSA-PSS, and ECDSA, though hooks are present for adding your own.
## Examples
See [the project documentation](https://godoc.org/github.com/dgrijalva/jwt-go) for examples of usage:
* [Simple example of parsing and validating a token](https://godoc.org/github.com/dgrijalva/jwt-go#example-Parse--Hmac)
* [Simple example of building and signing a token](https://godoc.org/github.com/dgrijalva/jwt-go#example-New--Hmac)
* [Directory of Examples](https://godoc.org/github.com/dgrijalva/jwt-go#pkg-examples)
## Extensions
This library publishes all the necessary components for adding your own signing methods. Simply implement the `SigningMethod` interface and register a factory method using `RegisterSigningMethod`.
Here's an example of an extension that integrates with the Google App Engine signing tools: https://github.com/someone1/gcp-jwt-go
## Compliance
This library was last reviewed to comply with [RTF 7519](http://www.rfc-editor.org/info/rfc7519) dated May 2015 with a few notable differences:
* In order to protect against accidental use of [Unsecured JWTs](http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html#UnsecuredJWT), tokens using `alg=none` will only be accepted if the constant `jwt.UnsafeAllowNoneSignatureType` is provided as the key.
## Project Status & Versioning
This library is considered production ready. Feedback and feature requests are appreciated. The API should be considered stable. There should be very few backwards-incompatible changes outside of major version updates (and only with good reason).
This project uses [Semantic Versioning 2.0.0](http://semver.org). Accepted pull requests will land on `master`. Periodically, versions will be tagged from `master`. You can find all the releases on [the project releases page](https://github.com/dgrijalva/jwt-go/releases).
While we try to make it obvious when we make breaking changes, there isn't a great mechanism for pushing announcements out to users. You may want to use this alternative package include: `gopkg.in/dgrijalva/jwt-go.v2`. It will do the right thing WRT semantic versioning.
## Usage Tips
### Signing vs Encryption
A token is simply a JSON object that is signed by its author. this tells you exactly two things about the data:
* The author of the token was in the possession of the signing secret
* The data has not been modified since it was signed
It's important to know that JWT does not provide encryption, which means anyone who has access to the token can read its contents. If you need to protect (encrypt) the data, there is a companion spec, `JWE`, that provides this functionality. JWE is currently outside the scope of this library.
### Choosing a Signing Method
There are several signing methods available, and you should probably take the time to learn about the various options before choosing one. The principal design decision is most likely going to be symmetric vs asymmetric.
Symmetric signing methods, such as HSA, use only a single secret. This is probably the simplest signing method to use since any `[]byte` can be used as a valid secret. They are also slightly computationally faster to use, though this rarely is enough to matter. Symmetric signing methods work the best when both producers and consumers of tokens are trusted, or even the same system. Since the same secret is used to both sign and validate tokens, you can't easily distribute the key for validation.
Asymmetric signing methods, such as RSA, use different keys for signing and verifying tokens. This makes it possible to produce tokens with a private key, and allow any consumer to access the public key for verification.
### JWT and OAuth
It's worth mentioning that OAuth and JWT are not the same thing. A JWT token is simply a signed JSON object. It can be used anywhere such a thing is useful. There is some confusion, though, as JWT is the most common type of bearer token used in OAuth2 authentication.
Without going too far down the rabbit hole, here's a description of the interaction of these technologies:
* OAuth is a protocol for allowing an identity provider to be separate from the service a user is logging in to. For example, whenever you use Facebook to log into a different service (Yelp, Spotify, etc), you are using OAuth.
* OAuth defines several options for passing around authentication data. One popular method is called a "bearer token". A bearer token is simply a string that _should_ only be held by an authenticated user. Thus, simply presenting this token proves your identity. You can probably derive from here why a JWT might make a good bearer token.
* Because bearer tokens are used for authentication, it's important they're kept secret. This is why transactions that use bearer tokens typically happen over SSL.
## More
Documentation can be found [on godoc.org](http://godoc.org/github.com/dgrijalva/jwt-go).
The command line utility included in this project (cmd/jwt) provides a straightforward example of token creation and parsing as well as a useful tool for debugging your own integration. You'll also find several implementation examples in to documentation.