8.2 KiB
Option Declarations
An option declaration specifies the name, type and description of a NixOS configuration option. It is invalid to define an option that hasn't been declared in any module. An option declaration generally looks like this:
options = {
name = mkOption {
type = type specification;
default = default value;
example = example value;
description = "Description for use in the NixOS manual.";
};
};
The attribute names within the name
attribute path must be camel
cased in general but should, as an exception, match the package
attribute name
when referencing a Nixpkgs package. For example, the option
services.nix-serve.bindAddress
references the nix-serve
Nixpkgs
package.
The function mkOption
accepts the following arguments.
type
-
The type of the option (see ). This argument is mandatory for nixpkgs modules. Setting this is highly recommended for the sake of documentation and type checking. In case it is not set, a fallback type with unspecified behavior is used.
default
-
The default value used if no value is defined by any module. A default is not required; but if a default is not given, then users of the module will have to define the value of the option, otherwise an error will be thrown.
defaultText
-
A textual representation of the default value to be rendered verbatim in the manual. Useful if the default value is a complex expression or depends on other values or packages. Use
lib.literalExpression
for a Nix expression,lib.literalDocBook
for a plain English description in DocBook format. example
-
An example value that will be shown in the NixOS manual. You can use
lib.literalExpression
andlib.literalDocBook
in the same way as indefaultText
. description
-
A textual description of the option, in DocBook format, that will be included in the NixOS manual. During the migration process from DocBook to CommonMark the description may also be written in CommonMark, but has to be wrapped in
lib.mdDoc
to differentiate it from DocBook. See the nixpkgs manual for the list of CommonMark extensions supported by NixOS documentation.New documentation should preferably be written as CommonMark.
Utility functions for common option patterns
mkEnableOption
Creates an Option attribute set for a boolean value option i.e an option to be toggled on or off.
This function takes a single string argument, the name of the thing to be toggled.
The option's description is "Whether to enable <name>.".
For example:
::: {#ex-options-declarations-util-mkEnableOption-magic .example}
lib.mkEnableOption "magic"
# is like
lib.mkOption {
type = lib.types.bool;
default = false;
example = true;
description = "Whether to enable magic.";
}
mkPackageOption
Usage:
mkPackageOption pkgs "name" { default = [ "path" "in" "pkgs" ]; example = "literal example"; }
Creates an Option attribute set for an option that specifies the package a module should use for some purpose.
Note: You shouldn’t necessarily make package options for all of your modules. You can always overwrite a specific package throughout nixpkgs by using nixpkgs overlays.
The default package is specified as a list of strings representing its attribute path in nixpkgs. Because of this, you need to pass nixpkgs itself as the first argument.
The second argument is the name of the option, used in the description "The <name> package to use.". You can also pass an example value, either a literal string or a package's attribute path.
You can omit the default path if the name of the option is also attribute path in nixpkgs.
::: {#ex-options-declarations-util-mkPackageOption .title} Examples:
::: {#ex-options-declarations-util-mkPackageOption-hello .example}
lib.mkPackageOption pkgs "hello" { }
# is like
lib.mkOption {
type = lib.types.package;
default = pkgs.hello;
defaultText = lib.literalExpression "pkgs.hello";
description = "The hello package to use.";
}
::: {#ex-options-declarations-util-mkPackageOption-ghc .example}
lib.mkPackageOption pkgs "GHC" {
default = [ "ghc" ];
example = "pkgs.haskell.package.ghc923.ghc.withPackages (hkgs: [ hkgs.primes ])";
}
# is like
lib.mkOption {
type = lib.types.package;
default = pkgs.ghc;
defaultText = lib.literalExpression "pkgs.ghc";
example = lib.literalExpression "pkgs.haskell.package.ghc923.ghc.withPackages (hkgs: [ hkgs.primes ])";
description = "The GHC package to use.";
}
Extensible Option Types
Extensible option types is a feature that allow to extend certain types
declaration through multiple module files. This feature only work with a
restricted set of types, namely enum
and submodules
and any composed
forms of them.
Extensible option types can be used for enum
options that affects
multiple modules, or as an alternative to related enable
options.
As an example, we will take the case of display managers. There is a central display manager module for generic display manager options and a module file per display manager backend (sddm, gdm ...).
There are two approaches we could take with this module structure:
-
Configuring the display managers independently by adding an enable option to every display manager module backend. (NixOS)
-
Configuring the display managers in the central module by adding an option to select which display manager backend to use.
Both approaches have problems.
Making backends independent can quickly become hard to manage. For
display managers, there can only be one enabled at a time, but the
type system cannot enforce this restriction as there is no relation
between each backend's enable
option. As a result, this restriction
has to be done explicitly by adding assertions in each display manager
backend module.
On the other hand, managing the display manager backends in the central module will require changing the central module option every time a new backend is added or removed.
By using extensible option types, it is possible to create a placeholder
option in the central module
(Example: Extensible type placeholder in the service module),
and to extend it in each backend module
(Example: Extending services.xserver.displayManager.enable
in the gdm
module,
Example: Extending services.xserver.displayManager.enable
in the sddm
module).
As a result, displayManager.enable
option values can be added without
changing the main service module file and the type system automatically
enforces that there can only be a single display manager enabled.
::: {#ex-option-declaration-eot-service .example} ::: {.title} Example: Extensible type placeholder in the service module :::
services.xserver.displayManager.enable = mkOption {
description = "Display manager to use";
type = with types; nullOr (enum [ ]);
};
:::
::: {#ex-option-declaration-eot-backend-gdm .example}
::: {.title}
Example: Extending services.xserver.displayManager.enable
in the gdm
module
:::
services.xserver.displayManager.enable = mkOption {
type = with types; nullOr (enum [ "gdm" ]);
};
:::
::: {#ex-option-declaration-eot-backend-sddm .example}
::: {.title}
Example: Extending services.xserver.displayManager.enable
in the sddm
module
:::
services.xserver.displayManager.enable = mkOption {
type = with types; nullOr (enum [ "sddm" ]);
};
:::
The placeholder declaration is a standard mkOption
declaration, but it
is important that extensible option declarations only use the type
argument.
Extensible option types work with any of the composed variants of enum
such as with types; nullOr (enum [ "foo" "bar" ])
or with types; listOf (enum [ "foo" "bar" ])
.