0
0
Fork 1
mirror of https://mau.dev/maunium/synapse.git synced 2025-01-06 00:04:11 +01:00

On catchup, process each row with its own stream id (#7286)

Other parts of the code (such as the StreamChangeCache) assume that there will
not be multiple changes with the same stream id.

This code was introduced in #7024, and I hope this fixes #7206.
This commit is contained in:
Richard van der Hoff 2020-04-20 11:43:29 +01:00 committed by GitHub
parent 054c231e58
commit 0f8f02bc39
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
3 changed files with 72 additions and 5 deletions

1
changelog.d/7286.misc Normal file
View file

@ -0,0 +1 @@
Move catchup of replication streams logic to worker.

View file

@ -15,7 +15,18 @@
# limitations under the License.
import logging
from typing import Any, Callable, Dict, List, Optional, Set
from typing import (
Any,
Callable,
Dict,
Iterable,
Iterator,
List,
Optional,
Set,
Tuple,
TypeVar,
)
from prometheus_client import Counter
@ -268,11 +279,14 @@ class ReplicationCommandHandler:
missing_updates,
) = await stream.get_updates_since(current_token, cmd.token)
if updates:
# TODO: add some tests for this
# Some streams return multiple rows with the same stream IDs,
# which need to be processed in batches.
for token, rows in _batch_updates(updates):
await self.on_rdata(
cmd.stream_name,
current_token,
[stream.parse_row(update[1]) for update in updates],
cmd.stream_name, token, [stream.parse_row(row) for row in rows],
)
# We've now caught up to position sent to us, notify handler.
@ -404,3 +418,52 @@ class ReplicationCommandHandler:
We need to check if the client is interested in the stream or not
"""
self.send_command(RdataCommand(stream_name, token, data))
UpdateToken = TypeVar("UpdateToken")
UpdateRow = TypeVar("UpdateRow")
def _batch_updates(
updates: Iterable[Tuple[UpdateToken, UpdateRow]]
) -> Iterator[Tuple[UpdateToken, List[UpdateRow]]]:
"""Collect stream updates with the same token together
Given a series of updates returned by Stream.get_updates_since(), collects
the updates which share the same stream_id together.
For example:
[(1, a), (1, b), (2, c), (3, d), (3, e)]
becomes:
[
(1, [a, b]),
(2, [c]),
(3, [d, e]),
]
"""
update_iter = iter(updates)
first_update = next(update_iter, None)
if first_update is None:
# empty input
return
current_batch_token = first_update[0]
current_batch = [first_update[1]]
for token, row in update_iter:
if token != current_batch_token:
# different token to the previous row: flush the previous
# batch and start anew
yield current_batch_token, current_batch
current_batch_token = token
current_batch = []
current_batch.append(row)
# flush the final batch
yield current_batch_token, current_batch

View file

@ -126,6 +126,9 @@ class StreamChangeCache(object):
"""
assert type(stream_pos) is int
# FIXME: add a sanity check here that we are not overwriting existing
# data in self._cache
if stream_pos > self._earliest_known_stream_pos:
old_pos = self._entity_to_key.get(entity, None)
if old_pos is not None: