0
0
Fork 1
mirror of https://mau.dev/maunium/synapse.git synced 2024-06-13 16:18:56 +02:00

Reörder the specification sections, to move 'Registration and Login' first, where it logically belongs

This commit is contained in:
Paul "LeoNerd" Evans 2014-09-29 16:10:16 +01:00
parent ae953b0884
commit 3ee9a67aa4

View file

@ -260,7 +260,7 @@ For the default HTTP transport, all API calls use a Content-Type of
``application/json``. In addition, all strings MUST be encoded as UTF-8.
Clients are authenticated using opaque ``access_token`` strings (see
`Registration and Login`_ for details), passed as a querystring parameter on
`Registration and Login`_ for details), passed as a query string parameter on
all requests.
.. TODO
@ -375,6 +375,321 @@ When the client first logs in, they will need to initially synchronise with
their home server. This is achieved via the |initialSync|_ API. This API also
returns an ``end`` token which can be used with the event stream.
Registration and login
======================
Clients must register with a home server in order to use Matrix. After
registering, the client will be given an access token which must be used in ALL
requests to that home server as a query parameter 'access_token'.
If the client has already registered, they need to be able to login to their
account. The home server may provide many different ways of logging in, such as
user/password auth, login via a social network (OAuth2), login by confirming a
token sent to their email address, etc. This specification does not define how
home servers should authorise their users who want to login to their existing
accounts, but instead defines the standard interface which implementations
should follow so that ANY client can login to ANY home server. Clients login
using the |login|_ API. Clients register using the |register|_ API.
Registration follows the same procedure as login, but the path requests are
sent to are different.
The registration/login process breaks down into the following:
1. Determine the requirements for logging in.
2. Submit the login stage credentials.
3. Get credentials or be told the next stage in the login process and repeat
step 2.
As each home server may have different ways of logging in, the client needs to
know how they should login. All distinct login stages MUST have a corresponding
``type``. A ``type`` is a namespaced string which details the mechanism for
logging in.
A client may be able to login via multiple valid login flows, and should choose
a single flow when logging in. A flow is a series of login stages. The home
server MUST respond with all the valid login flows when requested::
The client can login via 3 paths: 1a and 1b, 2a and 2b, or 3. The client should
select one of these paths.
{
"flows": [
{
"type": "<login type1a>",
"stages": [ "<login type 1a>", "<login type 1b>" ]
},
{
"type": "<login type2a>",
"stages": [ "<login type 2a>", "<login type 2b>" ]
},
{
"type": "<login type3>"
}
]
}
After the login is completed, the client's fully-qualified user ID and a new
access token MUST be returned::
{
"user_id": "@user:matrix.org",
"access_token": "abcdef0123456789"
}
The ``user_id`` key is particularly useful if the home server wishes to support
localpart entry of usernames (e.g. "user" rather than "@user:matrix.org"), as
the client may not be able to determine its ``user_id`` in this case.
If a login has multiple requests, the home server may wish to create a session.
If a home server responds with a 'session' key to a request, clients MUST
submit it in subsequent requests until the login is completed::
{
"session": "<session id>"
}
This specification defines the following login types:
- ``m.login.password``
- ``m.login.oauth2``
- ``m.login.email.code``
- ``m.login.email.url``
- ``m.login.email.identity``
Password-based
--------------
:Type:
``m.login.password``
:Description:
Login is supported via a username and password.
To respond to this type, reply with::
{
"type": "m.login.password",
"user": "<user_id or user localpart>",
"password": "<password>"
}
The home server MUST respond with either new credentials, the next stage of the
login process, or a standard error response.
OAuth2-based
------------
:Type:
``m.login.oauth2``
:Description:
Login is supported via OAuth2 URLs. This login consists of multiple requests.
To respond to this type, reply with::
{
"type": "m.login.oauth2",
"user": "<user_id or user localpart>"
}
The server MUST respond with::
{
"uri": <Authorization Request URI OR service selection URI>
}
The home server acts as a 'confidential' client for the purposes of OAuth2. If
the uri is a ``sevice selection URI``, it MUST point to a webpage which prompts
the user to choose which service to authorize with. On selection of a service,
this MUST link through to an ``Authorization Request URI``. If there is only 1
service which the home server accepts when logging in, this indirection can be
skipped and the "uri" key can be the ``Authorization Request URI``.
The client then visits the ``Authorization Request URI``, which then shows the
OAuth2 Allow/Deny prompt. Hitting 'Allow' returns the ``redirect URI`` with the
auth code. Home servers can choose any path for the ``redirect URI``. The
client should visit the ``redirect URI``, which will then finish the OAuth2
login process, granting the home server an access token for the chosen service.
When the home server gets this access token, it verifies that the cilent has
authorised with the 3rd party, and can now complete the login. The OAuth2
``redirect URI`` (with auth code) MUST respond with either new credentials, the
next stage of the login process, or a standard error response.
For example, if a home server accepts OAuth2 from Google, it would return the
Authorization Request URI for Google::
{
"uri": "https://accounts.google.com/o/oauth2/auth?response_type=code&
client_id=CLIENT_ID&redirect_uri=REDIRECT_URI&scope=photos"
}
The client then visits this URI and authorizes the home server. The client then
visits the REDIRECT_URI with the auth code= query parameter which returns::
{
"user_id": "@user:matrix.org",
"access_token": "0123456789abcdef"
}
Email-based (code)
------------------
:Type:
``m.login.email.code``
:Description:
Login is supported by typing in a code which is sent in an email. This login
consists of multiple requests.
To respond to this type, reply with::
{
"type": "m.login.email.code",
"user": "<user_id or user localpart>",
"email": "<email address>"
}
After validating the email address, the home server MUST send an email
containing an authentication code and return::
{
"type": "m.login.email.code",
"session": "<session id>"
}
The second request in this login stage involves sending this authentication
code::
{
"type": "m.login.email.code",
"session": "<session id>",
"code": "<code in email sent>"
}
The home server MUST respond to this with either new credentials, the next
stage of the login process, or a standard error response.
Email-based (url)
-----------------
:Type:
``m.login.email.url``
:Description:
Login is supported by clicking on a URL in an email. This login consists of
multiple requests.
To respond to this type, reply with::
{
"type": "m.login.email.url",
"user": "<user_id or user localpart>",
"email": "<email address>"
}
After validating the email address, the home server MUST send an email
containing an authentication URL and return::
{
"type": "m.login.email.url",
"session": "<session id>"
}
The email contains a URL which must be clicked. After it has been clicked, the
client should perform another request::
{
"type": "m.login.email.url",
"session": "<session id>"
}
The home server MUST respond to this with either new credentials, the next
stage of the login process, or a standard error response.
A common client implementation will be to periodically poll until the link is
clicked. If the link has not been visited yet, a standard error response with
an errcode of ``M_LOGIN_EMAIL_URL_NOT_YET`` should be returned.
Email-based (identity server)
-----------------------------
:Type:
``m.login.email.identity``
:Description:
Login is supported by authorising an email address with an identity server.
Prior to submitting this, the client should authenticate with an identity
server. After authenticating, the session information should be submitted to
the home server.
To respond to this type, reply with::
{
"type": "m.login.email.identity",
"threepidCreds": [
{
"sid": "<identity server session id>",
"clientSecret": "<identity server client secret>",
"idServer": "<url of identity server authed with, e.g. 'matrix.org:8090'>"
}
]
}
N-Factor Authentication
-----------------------
Multiple login stages can be combined to create N-factor authentication during
login.
This can be achieved by responding with the ``next`` login type on completion
of a previous login stage::
{
"next": "<next login type>"
}
If a home server implements N-factor authentication, it MUST respond with all
``stages`` when initially queried for their login requirements::
{
"type": "<1st login type>",
"stages": [ <1st login type>, <2nd login type>, ... , <Nth login type> ]
}
This can be represented conceptually as::
_______________________
| Login Stage 1 |
| type: "<login type1>" |
| ___________________ |
| |_Request_1_________| | <-- Returns "session" key which is used throughout.
| ___________________ |
| |_Request_2_________| | <-- Returns a "next" value of "login type2"
|_______________________|
|
|
_________V_____________
| Login Stage 2 |
| type: "<login type2>" |
| ___________________ |
| |_Request_1_________| |
| ___________________ |
| |_Request_2_________| |
| ___________________ |
| |_Request_3_________| | <-- Returns a "next" value of "login type3"
|_______________________|
|
|
_________V_____________
| Login Stage 3 |
| type: "<login type3>" |
| ___________________ |
| |_Request_1_________| | <-- Returns user credentials
|_______________________|
Fallback
--------
Clients cannot be expected to be able to know how to process every single login
type. If a client determines it does not know how to handle a given login type,
it should request a login fallback page::
GET matrix/client/api/v1/login/fallback
This MUST return an HTML page which can perform the entire login process.
Rooms
=====
@ -1347,320 +1662,6 @@ numbers, website URLs, etc...). This specification puts no requirements on the
display name other than it being a valid unicode string.
Registration and login
======================
Clients must register with a home server in order to use Matrix. After
registering, the client will be given an access token which must be used in ALL
requests to that home server as a query parameter 'access_token'.
If the client has already registered, they need to be able to login to their
account. The home server may provide many different ways of logging in, such as
user/password auth, login via a social network (OAuth2), login by confirming a
token sent to their email address, etc. This specification does not define how
home servers should authorise their users who want to login to their existing
accounts, but instead defines the standard interface which implementations
should follow so that ANY client can login to ANY home server. Clients login
using the |login|_ API. Clients register using the |register|_ API.
Registration follows the same procedure as login, but the path requests are
sent to are different.
The registration/login process breaks down into the following:
1. Determine the requirements for logging in.
2. Submit the login stage credentials.
3. Get credentials or be told the next stage in the login process and repeat
step 2.
As each home server may have different ways of logging in, the client needs to
know how they should login. All distinct login stages MUST have a corresponding
``type``. A ``type`` is a namespaced string which details the mechanism for
logging in.
A client may be able to login via multiple valid login flows, and should choose
a single flow when logging in. A flow is a series of login stages. The home
server MUST respond with all the valid login flows when requested::
The client can login via 3 paths: 1a and 1b, 2a and 2b, or 3. The client should
select one of these paths.
{
"flows": [
{
"type": "<login type1a>",
"stages": [ "<login type 1a>", "<login type 1b>" ]
},
{
"type": "<login type2a>",
"stages": [ "<login type 2a>", "<login type 2b>" ]
},
{
"type": "<login type3>"
}
]
}
After the login is completed, the client's fully-qualified user ID and a new
access token MUST be returned::
{
"user_id": "@user:matrix.org",
"access_token": "abcdef0123456789"
}
The ``user_id`` key is particularly useful if the home server wishes to support
localpart entry of usernames (e.g. "user" rather than "@user:matrix.org"), as
the client may not be able to determine its ``user_id`` in this case.
If a login has multiple requests, the home server may wish to create a session.
If a home server responds with a 'session' key to a request, clients MUST
submit it in subsequent requests until the login is completed::
{
"session": "<session id>"
}
This specification defines the following login types:
- ``m.login.password``
- ``m.login.oauth2``
- ``m.login.email.code``
- ``m.login.email.url``
- ``m.login.email.identity``
Password-based
--------------
:Type:
``m.login.password``
:Description:
Login is supported via a username and password.
To respond to this type, reply with::
{
"type": "m.login.password",
"user": "<user_id or user localpart>",
"password": "<password>"
}
The home server MUST respond with either new credentials, the next stage of the
login process, or a standard error response.
OAuth2-based
------------
:Type:
``m.login.oauth2``
:Description:
Login is supported via OAuth2 URLs. This login consists of multiple requests.
To respond to this type, reply with::
{
"type": "m.login.oauth2",
"user": "<user_id or user localpart>"
}
The server MUST respond with::
{
"uri": <Authorization Request URI OR service selection URI>
}
The home server acts as a 'confidential' client for the purposes of OAuth2. If
the uri is a ``sevice selection URI``, it MUST point to a webpage which prompts
the user to choose which service to authorize with. On selection of a service,
this MUST link through to an ``Authorization Request URI``. If there is only 1
service which the home server accepts when logging in, this indirection can be
skipped and the "uri" key can be the ``Authorization Request URI``.
The client then visits the ``Authorization Request URI``, which then shows the
OAuth2 Allow/Deny prompt. Hitting 'Allow' returns the ``redirect URI`` with the
auth code. Home servers can choose any path for the ``redirect URI``. The
client should visit the ``redirect URI``, which will then finish the OAuth2
login process, granting the home server an access token for the chosen service.
When the home server gets this access token, it verifies that the cilent has
authorised with the 3rd party, and can now complete the login. The OAuth2
``redirect URI`` (with auth code) MUST respond with either new credentials, the
next stage of the login process, or a standard error response.
For example, if a home server accepts OAuth2 from Google, it would return the
Authorization Request URI for Google::
{
"uri": "https://accounts.google.com/o/oauth2/auth?response_type=code&
client_id=CLIENT_ID&redirect_uri=REDIRECT_URI&scope=photos"
}
The client then visits this URI and authorizes the home server. The client then
visits the REDIRECT_URI with the auth code= query parameter which returns::
{
"user_id": "@user:matrix.org",
"access_token": "0123456789abcdef"
}
Email-based (code)
------------------
:Type:
``m.login.email.code``
:Description:
Login is supported by typing in a code which is sent in an email. This login
consists of multiple requests.
To respond to this type, reply with::
{
"type": "m.login.email.code",
"user": "<user_id or user localpart>",
"email": "<email address>"
}
After validating the email address, the home server MUST send an email
containing an authentication code and return::
{
"type": "m.login.email.code",
"session": "<session id>"
}
The second request in this login stage involves sending this authentication
code::
{
"type": "m.login.email.code",
"session": "<session id>",
"code": "<code in email sent>"
}
The home server MUST respond to this with either new credentials, the next
stage of the login process, or a standard error response.
Email-based (url)
-----------------
:Type:
``m.login.email.url``
:Description:
Login is supported by clicking on a URL in an email. This login consists of
multiple requests.
To respond to this type, reply with::
{
"type": "m.login.email.url",
"user": "<user_id or user localpart>",
"email": "<email address>"
}
After validating the email address, the home server MUST send an email
containing an authentication URL and return::
{
"type": "m.login.email.url",
"session": "<session id>"
}
The email contains a URL which must be clicked. After it has been clicked, the
client should perform another request::
{
"type": "m.login.email.url",
"session": "<session id>"
}
The home server MUST respond to this with either new credentials, the next
stage of the login process, or a standard error response.
A common client implementation will be to periodically poll until the link is
clicked. If the link has not been visited yet, a standard error response with
an errcode of ``M_LOGIN_EMAIL_URL_NOT_YET`` should be returned.
Email-based (identity server)
-----------------------------
:Type:
``m.login.email.identity``
:Description:
Login is supported by authorising an email address with an identity server.
Prior to submitting this, the client should authenticate with an identity
server. After authenticating, the session information should be submitted to
the home server.
To respond to this type, reply with::
{
"type": "m.login.email.identity",
"threepidCreds": [
{
"sid": "<identity server session id>",
"clientSecret": "<identity server client secret>",
"idServer": "<url of identity server authed with, e.g. 'matrix.org:8090'>"
}
]
}
N-Factor Authentication
-----------------------
Multiple login stages can be combined to create N-factor authentication during
login.
This can be achieved by responding with the ``next`` login type on completion
of a previous login stage::
{
"next": "<next login type>"
}
If a home server implements N-factor authentication, it MUST respond with all
``stages`` when initially queried for their login requirements::
{
"type": "<1st login type>",
"stages": [ <1st login type>, <2nd login type>, ... , <Nth login type> ]
}
This can be represented conceptually as::
_______________________
| Login Stage 1 |
| type: "<login type1>" |
| ___________________ |
| |_Request_1_________| | <-- Returns "session" key which is used throughout.
| ___________________ |
| |_Request_2_________| | <-- Returns a "next" value of "login type2"
|_______________________|
|
|
_________V_____________
| Login Stage 2 |
| type: "<login type2>" |
| ___________________ |
| |_Request_1_________| |
| ___________________ |
| |_Request_2_________| |
| ___________________ |
| |_Request_3_________| | <-- Returns a "next" value of "login type3"
|_______________________|
|
|
_________V_____________
| Login Stage 3 |
| type: "<login type3>" |
| ___________________ |
| |_Request_1_________| | <-- Returns user credentials
|_______________________|
Fallback
--------
Clients cannot be expected to be able to know how to process every single login
type. If a client determines it does not know how to handle a given login type,
it should request a login fallback page::
GET matrix/client/api/v1/login/fallback
This MUST return an HTML page which can perform the entire login process.
Identity
========
.. NOTE::