Replaces the `federation_ip_range_blacklist` configuration setting with an
`ip_range_blacklist` setting with wider scope. It now applies to:
* Federation
* Identity servers
* Push notifications
* Checking key validitity for third-party invite events
The old `federation_ip_range_blacklist` setting is still honored if present, but
with reduced scope (it only applies to federation and identity servers).
remove the stubbing out of `request.process`, so that `requestReceived` also renders the request via the appropriate resource.
Replace render() with a stub for now.
The root resource isn't necessarily a JsonResource, so rename this method
accordingly, and update a couple of test classes to use the method rather than
directly manipulating self.resource.
Where we want to render a request against a specific Resource, call the global
make_request() function rather than the one in HomeserverTestCase, allowing us
to pass in an appropriate `Site`.
We do it this way round so that only the "owner" can delete the access token (i.e. `/logout/all` by the "owner" also deletes that token, but `/logout/all` by the "target user" doesn't).
A future PR will add an API for creating such a token.
When the target user and authenticated entity are different the `Processed request` log line will be logged with a: `{@admin:server as @bob:server} ...`. I'm not convinced by that format (especially since it adds spaces in there, making it harder to use `cut -d ' '` to chop off the start of log lines). Suggestions welcome.
This allows trailing commas in multi-line arg lists.
Minor, but we might as well keep our formatting current with regard to
our minimum supported Python version.
Signed-off-by: Dan Callahan <danc@element.io>
This implements a more standard API for instantiating a homeserver and
moves some of the dependency injection into the test suite.
More concretely this stops using `setattr` on all `kwargs` passed to `HomeServer`.
The idea is to remove some of the places we pass around `int`, where it can represent one of two things:
1. the position of an event in the stream; or
2. a token that partitions the stream, used as part of the stream tokens.
The valid operations are then:
1. did a position happen before or after a token;
2. get all events that happened before or after a token; and
3. get all events between two tokens.
(Note that we don't want to allow other operations as we want to change the tokens to be vector clocks rather than simple ints)
While working on https://github.com/matrix-org/synapse/issues/5665 I found myself digging into the `Ratelimiter` class and seeing that it was both:
* Rather undocumented, and
* causing a *lot* of config checks
This PR attempts to refactor and comment the `Ratelimiter` class, as well as encourage config file accesses to only be done at instantiation.
Best to be reviewed commit-by-commit.
A couple of changes of significance:
* remove the `_last_ack < federation_position` condition, so that
updates will still be correctly processed after restart
* Correctly wire up send_federation_ack to the right class.
Make sure that the AccountDataStream presents complete updates, in the right
order.
This is much the same fix as #7337 and #7358, but applied to a different stream.
For in memory streams when fetching updates on workers we need to query the source of the stream, which currently is hard coded to be master. This PR threads through the source instance we received via `POSITION` through to the update function in each stream, which can then be passed to the replication client for in memory streams.
We move the processing of typing and federation replication traffic into their handlers so that `Stream.current_token()` points to a valid token. This allows us to remove `get_streams_to_replicate()` and `stream_positions()`.
This is primarily for allowing us to send those commands from workers, but for now simply allows us to ignore echoed RDATA/POSITION commands that we sent (we get echoes of sent commands when using redis). Currently we log a WARNING on the master process every time we receive an echoed RDATA.
For direct TCP connections we need the master to relay REMOTE_SERVER_UP
commands to the other connections so that all instances get notified
about it. The old implementation just relayed to all connections,
assuming that sending back to the original sender of the command was
safe. This is not true for redis, where commands sent get echoed back to
the sender, which was causing master to effectively infinite loop
sending and then re-receiving REMOTE_SERVER_UP commands that it sent.
The fix is to ensure that we only relay to *other* connections and not
to the connection we received the notification from.
Fixes#7334.