9.6 KiB
CloudStack Cloud Guide
Introduction
The purpose of this section is to explain how to put Ansible modules together to use Ansible in a CloudStack context. You will find more usage examples in the details section of each module.
Ansible contains a number of extra modules for interacting with CloudStack based clouds. All modules support check mode and are designed to use idempotence and have been created, tested and are maintained by the community.
Note
Some of the modules will require domain admin or root admin privileges.
Prerequisites
Prerequisites for using the CloudStack modules are minimal. In
addition to ansible itself, all of the modules require the python
library cs
https://pypi.python.org/pypi/cs.
You'll need this Python module installed on the execution host, usually your workstation.
$ pip install cs
Note
cs also includes a command line interface for ad-hoc ineraction with
the CloudStack API e.g.
$ cs listVirtualMachines state=Running
.
Credentials File
You can pass credentials and the endpoint of your cloud as module arguments, however in most cases it is a far less work to store your credentials in the cloudstack.ini file.
The python library cs looks for the credentials file in the following order (last one wins):
- A
.cloudstack.ini
(note the dot) file in the home directory. - A
CLOUDSTACK_CONFIG
environment variable pointing to an .ini file. - A
cloudstack.ini
(without the dot) file in the current working directory, same directory as your playbooks are located.
The structure of the ini file must look like this:
$ cat $HOME/.cloudstack.ini
[cloudstack]
endpoint = https://cloud.example.com/client/api
key = api key
secret = api secret
Note
The section [cloudstack]
is the default section.
CLOUDSTACK_REGION
environment variable can be used to
define the default region.
Regions
If you use more than one CloudStack region, you can define as many sections as you want and name them as you like, e.g.:
$ cat $HOME/.cloudstack.ini
[exoscale]
endpoint = https://api.exoscale.ch/compute
key = api key
secret = api secret
[exmaple_cloud_one]
endpoint = https://cloud-one.example.com/client/api
key = api key
secret = api secret
[exmaple_cloud_two]
endpoint = https://cloud-two.example.com/client/api
key = api key
secret = api secret
Hint
Sections can also be used to for login into the same region using different accounts.
By passing the argument api_region
with the CloudStack
modules, the region wanted will be selected.
- name: ensure my ssh pubkey exists on all CloudStack regions
local_action: cs_sshkeypair
name: my-ssh-key
public_key: "{{ lookup('file', '~/.ssh/id_rsa.pub') }}"
api_region: "{{ item }}"
with_items:
- exoscale
- exmaple_cloud_one
- exmaple_cloud_two
Use Cases
The following should give you some ideas how to use the modules to provision VMs to the cloud. As always, there isn't only one way to do it. But as always: keep it simple for the beginning is always a good start.
Use Case: Provisioning in a Advanced Networking CloudStack setup +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ Our CloudStack cloud has an advanced networking setup, we would like to provision web servers, which get a static NAT and open firewall ports 80 and 443. Further we provision database servers, to which we do not give any access to. For accessing the VMs by SSH we use a SSH jump host.
This is how our inventory looks like:
[cloud-vm:children]
webserver
db-server
jumphost
[webserver]
web-01.example.com public_ip=1.2.3.4
web-02.example.com public_ip=1.2.3.5
[db-server]
db-01.example.com
db-02.example.com
[jumphost]
jump.example.com public_ip=1.2.3.6
As you can see, the public IPs for our web servers and jumphost has
been assigned as variable public_ip
directly in the
inventory.
The configure the jumphost, web servers and database servers, we use
group_vars
. The group_vars
directory contains
4 files for configuration of the groups: cloud-vm, jumphost, webserver
and db-server. The cloud-vm is there for specifing the defaults of our
cloud infrastructure.
# file: group_vars/cloud-vm
---
cs_offering: Small
cs_firewall: []
Our database servers should get more CPU and RAM, so we define to use
a Large
offering for them.
# file: group_vars/db-server
---
cs_offering: Large
The web servers should get a Small
offering as we would
scale them horizontaly, which is also our default offering.
# file: group_vars/webserver
---
cs_firewall:
- { port: 80 }
- { port: 443 }
Further we provision a jump host which has only port 22 opened for accessing the VMs from our office IPv4 network.
# file: group_vars/jumphost
---
cs_firewall:
- { port: 22, cidr: "17.17.17.0/24" }
Now to the fun part. We create a playbook to create our
infrastructure we call it infra.yml
:
# file: infra.yaml
---
- name: provision our VMs
hosts: cloud-vm
connection: local
tasks:
- name: ensure VMs are created and running
cs_instance:
name: "{{ inventory_hostname_short }}"
template: Linux Debian 7 64-bit 20GB Disk
service_offering: "{{ cs_offering }}"
state: running
- name: ensure firewall ports opened
cs_firewall:
ip_address: {{ public_ip }}
port: {{ item.port }}
cidr: "{{ item.cidr | default('0.0.0.0/0') }}"
with_items: cs_firewall
when: public_ip is defined
- name: ensure static NATs
cs_staticnat: vm="{{ inventory_hostname_short }}" ip_address="{{ public_ip }}"
when: public_ip is defined
In the above play, we use the group cloud-vm
to handle
all VMs in the cloud but use connetion=local
because we
want the modules to be executed locally.
Note that for some modules, e.g. cs_sshkeypair
you
usually want this to be executed only once, not for every VM. Therefore
you would make a separate play for this targeting localhost.
- name: configure ssh keys
hosts: localhost
connection: local
tasks:
- name: ensure my ssh pubkey exists
cs_sshkeypair: name=my_key public_key="{{ lookup('file', '~/.ssh/id_rsa.pub') }}"
Use Case: Provisioning on a Basic Networking CloudStack setup
A basic networking CloudStack setup is slightly different: Every VM gets a public IP directly assigned and security groups are used for access restriction policy.
This is how our inventory looks like:
[cloud-vm:children]
webserver
[webserver]
web-01.example.com
web-02.example.com
The default for your VMs looks like this:
# file: group_vars/cloud-vm
---
cs_offering: Small
cs_securitygroups: [ 'default']
Our webserver will also be in security group web
:
# file: group_vars/webserver
---
cs_securitygroups: [ 'default', 'web' ]
The playbook looks like the following:
# file: infra.yaml
---
- name: cloud base setup
hosts: localhost
connection: local
tasks:
- name: upload ssh public key
cs_sshkeypair:
name: defaultkey
public_key: "{{ lookup('file', '~/.ssh/id_rsa.pub') }}"
- name: ensure security groups exist
cs_securitygroup:
name: "{{ item }}"
with_items:
- default
- web
- name: add inbound SSH to security group default
cs_securitygroup_rule:
security_group: default
start_port: "{{ item }}"
end_port: "{{ item }}"
with_items:
- 22
- name: add inbound TCP rules to security group web
cs_securitygroup_rule:
security_group: web
start_port: "{{ item }}"
end_port: "{{ item }}"
with_items:
- 80
- 443
- name: install VMs in the cloud
hosts: cloud-vm
connection: local
tasks:
- name: create and run VMs on cloudstack
cs_instance:
name: "{{ inventory_hostname_short }}"
template: Linux Debian 7 64-bit 20GB Disk
service_offering: "{{ cs_offering }}"
security_groups: "{{ cs_securitygroups }}"
ssh_key: defaultkey
state: Running
register: vm
- name: show VM IP
debug: msg="VM {{ inventory_hostname }} {{ vm.default_ip }}"
- name: assing IP to the inventory
set_fact: ansible_ssh_host={{ vm.default_ip }}
- name: waiting for SSH to come up
wait_for: port=22 host={{ vm.default_ip }} delay=5
In the first play we setup the security groups, in the second play the VMs will created be assigned to these groups. Further you see, that we assign the public IP returned from the modules to the host inventory. This is needed as we do not know the IPs we will get in advance. In a next step you would configure the DNS servers with these IPs for accassing the VMs with their DNS name.
In the last task we wait for SSH to be accessible, so any later play would be able to access the VM by SSH without failure.