ansible/docsite/rst/playbooks2.rst
2012-11-14 18:39:01 -05:00

26 KiB

Advanced Playbooks

Here are some advanced features of the playbooks language. Using all of these features are not neccessary, but many of them will prove useful. If a feature doesn't seem immediately relevant, feel free to skip it. For many people, the features documented in playbooks will be 90% or more of what they use in Ansible.

Tags

0.6

If you have a large playbook it may become useful to be able to run a specific part of the configuration. Both plays and tasks support a "tags:" attribute for this reason.

Example:

tasks:

    - action: yum name=$item state=installed
      with_items:
         - httpd
         - memcached
      tags:
         - packages

    - action: template src=templates/src.j2 dest=/etc/foo.conf
      tags:
         - configuration

If you wanted to just run the "configuration" and "packages" part of a very long playbook, you could do this:

ansible-playbook example.yml --tags "configuration,packages"

Playbooks Including Playbooks

0.6

To further advance the concept of include files, playbook files can include other playbook files. Suppose you define the behavior of all your webservers in "webservers.yml" and all your database servers in "dbservers.yml". You can create a "site.yml" that would reconfigure all of your systems like this:

----
- include: playbooks/webservers.yml
- include: playbooks/dbservers.yml

This concept works great with tags to rapidly select exactly what plays you want to run, and exactly what parts of those plays.

Ignoring Failed Commands

0.6

Generally playbooks will stop executing any more steps on a host that has a failure. Sometimes, though, you want to continue on. To do so, write a task that looks like this:

- name: this will not be counted as a failure
  action: command /bin/false
  ignore_errors: True

Accessing Complex Variable Data

Some provided facts, like networking information, are made available as nested data structures. To access them a simple '$foo' is not sufficient, but it is still easy to do. Here's how we get an IP address:

${ansible_eth0.ipv4.address}

It is also possible to access variables whose elements are arrays:

${somelist[0]}

And the array and hash reference syntaxes can be mixed.

In templates, the simple access form still holds, but they can also be accessed from Jinja2 in more Python-native ways if that is preferred:

{{ ansible_eth0["ipv4"]["address"] }}

Accessing Information About Other Hosts

If your database server wants to check the value of a 'fact' from another node, or an inventory variable assigned to another node, it's easy to do so within a template or even an action line:

${hostvars.hostname.factname}

Note

No database or other complex system is required to exchange data between hosts. The hosts that you want to reference data from must be included in either the current play or any previous play if you are using a version prior to 0.8. If you are using 0.8, and you have not yet contacted the host, you'll be able to read inventory variables but not fact variables. Speak to the host by including it in a play to make fact information available.

Additionally, group_names is a list (array) of all the groups the current host is in. This can be used in templates using Jinja2 syntax to make template source files that vary based on the group membership (or role) of the host:

{% if 'webserver' in group_names %}
   # some part of a configuration file that only applies to webservers
{% endif %}

groups is a list of all the groups (and hosts) in the inventory. This can be used to enumerate all hosts within a group. For example:

{% for host in groups['app_servers'] %}
   # something that applies to all app servers.
{% endfor %}

Use cases include pointing a frontend proxy server to all of the app servers, setting up the correct firewall rules between servers, etc.

inventory_hostname is the name of the hostname as configured in Ansible's inventory host file. This can be useful for when you don't want to rely on the discovered hostname ansible_hostname or for other mysterious reasons. If you have a long FQDN, inventory_hostname_short (in Ansible 0.6) also contains the part up to the first period.

Don't worry about any of this unless you think you need it. You'll know when you do.

Variable File Separation

It's a great idea to keep your playbooks under source control, but you may wish to make the playbook source public while keeping certain important variables private. Similarly, sometimes you may just want to keep certain information in different files, away from the main playbook.

You can do this by using an external variables file, or files, just like this:

---
- hosts: all
  user: root
  vars:
    favcolor: blue
  vars_files:
    - /vars/external_vars.yml
  tasks:
  - name: this is just a placeholder
    action: command /bin/echo foo

This removes the risk of sharing sensitive data with others when sharing your playbook source with them.

The contents of each variables file is a simple YAML dictionary, like this:

---
# in the above example, this would be vars/external_vars.yml
somevar: somevalue
password: magic

Note

It's also possible to keep per-host and per-group variables in very similar files, this is covered in patterns.

Prompting For Sensitive Data

You may wish to prompt the user for certain input, and can do so with the similarly named 'vars_prompt' section. This has uses beyond security, for instance, you may use the same playbook for all software releases and would prompt for a particular release version in a push-script:

---
- hosts: all
  user: root
  vars:
    from: "camelot"
  vars_prompt:
    name: "what is your name?"
    quest: "what is your quest?"
    favcolor: "what is your favorite color?"

There are full examples of both of these items in the github examples/playbooks directory.

An alternative form of vars_prompt allows for hiding input from the user, and may later support some other options, but otherwise works equivalently:

vars_prompt:
  - name: "some_password"
    prompt: "Enter password"
    private: True
  - name: "release_version"
    prompt: "Product release version"
    private: False

Passing Variables On The Command Line

In addition to vars_prompt and vars_files, it is possible to send variables over the ansible command line. This is particularly useful when writing a generic release playbook where you may want to pass in the version of the application to deploy:

ansible-playbook release.yml --extra-vars "version=1.23.45 other_variable=foo"

This is useful, for, among other things, setting the hosts group or the user for the playbook.

Example:

-----
- user: $user
  hosts: $hosts
  tasks:
     - ...

ansible-playbook release.yml --extra-vars "hosts=vipers user=starbuck"

Conditional Execution

Sometimes you will want to skip a particular step on a particular host. This could be something as simple as not installing a certain package if the operating system is a particular version, or it could be something like performing some cleanup steps if a filesystem is getting full.

This is easy to do in Ansible, with the only_if clause, which actually is a Python expression. Don't panic -- it's actually pretty simple:

vars:
  favcolor: blue
  is_favcolor_blue: "'$favcolor' == 'blue'"
  is_centos: "'$facter_operatingsystem' == 'CentOS'"

tasks:
  - name: "shutdown if my favorite color is blue"
    action: command /sbin/shutdown -t now
    only_if: '$is_favcolor_blue'

Variables from tools like facter and ohai can be used here, if installed, or you can use variables that bubble up from ansible, which many are provided by the setup module. As a reminder, these variables are prefixed, so it's $facter_operatingsystem, not $operatingsystem. Ansible's built in variables are prefixed with ansible_.

The only_if expression is actually a tiny small bit of Python, so be sure to quote variables and make something that evaluates to True or False. It is a good idea to use 'vars_files' instead of 'vars' to define all of your conditional expressions in a way that makes them very easy to reuse between plays and playbooks.

You cannot use live checks here, like 'os.path.exists', so don't try.

It's also easy to provide your own facts if you want, which is covered in moduledev. To run them, just make a call to your own custom fact gathering module at the top of your list of tasks, and variables returned there will be accessible to future tasks:

tasks:
    - name: gather site specific fact data
      action: site_facts
    - action: command echo ${my_custom_fact_can_be_used_now}

One common useful trick with only_if is to key off the changed result of a last command. As an example:

tasks:
    - action: template src=/templates/foo.j2 dest=/etc/foo.conf
      register: last_result
    - action: command echo 'the file has changed'
      only_if: '${last_result.changed}'

$last_result is a variable set by the register directive. This assumes Ansible 0.8 and later.

In Ansible 0.8, a few shortcuts are available for testing whether a variable is defined or not:

tasks:
    - action: command echo hi
      only_if: is_set('$some_variable')

There is a matching 'is_unset' that works the same way. Quoting the variable inside the function is mandatory.

When combining only_if with with_items, be aware that the only_if statement is processed for each item. This is a deliberate design:

tasks:
    - action: command echo $item
      with_item: [ 0, 2, 4, 6, 8, 10 ]
      only_if: "$item > 5"

While only_if is a pretty good option for advanced users, it exposes more guts of the engine than we'd like, and we can do better. In 0.9, we will be adding when, which will be like a syntactic sugar for only_if and hide this level of complexity -- it will numerous built in operators.

Conditional Imports

Sometimes you will want to do certain things differently in a playbook based on certain criteria. Having one playbook that works on multiple platforms and OS versions is a good example.

As an example, the name of the Apache package may be different between CentOS and Debian, but it is easily handled with a minimum of syntax in an Ansible Playbook:

---
- hosts: all
  user: root
  vars_files:
    - "vars/common.yml"
    - [ "vars/$facter_operatingsystem.yml", "vars/os_defaults.yml" ]
  tasks:
  - name: make sure apache is running
    action: service name=$apache state=running

Note

The variable ($facter_operatingsystem) is being interpolated into the list of filenames being defined for vars_files.

As a reminder, the various YAML files contain just keys and values:

---
# for vars/CentOS.yml
apache: httpd
somethingelse: 42

How does this work? If the operating system was 'CentOS', the first file Ansible would try to import would be 'vars/CentOS.yml', followed up by '/vars/os_defaults.yml' if that file did not exist. If no files in the list were found, an error would be raised. On Debian, it would instead first look towards 'vars/Debian.yml' instead of 'vars/CentOS.yml', before falling back on 'vars/os_defaults.yml'. Pretty simple.

To use this conditional import feature, you'll need facter or ohai installed prior to running the playbook, but you can of course push this out with Ansible if you like:

# for facter
ansible -m yum -a "pkg=facter ensure=installed"
ansible -m yum -a "pkg=ruby-json ensure=installed"

# for ohai
ansible -m yum -a "pkg=ohai ensure=installed"

Ansible's approach to configuration -- separating variables from tasks, keeps your playbooks from turning into arbitrary code with ugly nested ifs, conditionals, and so on - and results in more streamlined & auditable configuration rules -- especially because there are a minimum of decision points to track.

Loops

To save some typing, repeated tasks can be written in short-hand like so:

- name: add user $item
  action: user name=$item state=present groups=wheel
  with_items:
     - testuser1
     - testuser2

If you have defined a YAML list in a variables file, or the 'vars' section, you can also do:

with_items: $somelist

The above would be the equivalent of:

- name: add user testuser1
  action: user name=testuser1 state=present groups=wheel
- name: add user testuser2
  action: user name=testuser2 state=present groups=wheel

The yum and apt modules use with_items to execute fewer package manager transactions.

Note that the types of items you iterate over with 'with_items' do not have to be simple lists of strings. If you have a list of hashes, you can reference subkeys using things like:

${item.subKeyName}

More Loops

Various 'lookup plugins' allow additional ways to iterate over data. Ansible will have more of these over time. In 0.8, the only lookup plugin that comes stock is 'with_fileglob', but you can also write your own.

'with_fileglob' matches all files in a single directory, non-recursively, that match a pattern. It can be used like this:

----
- hosts: all

  tasks:

    # first ensure our target directory exists
    - action: file dest=/etc/fooapp state=directory

    # copy each file over that matches the given pattern
    - action: copy src=$item dest=/etc/fooapp/ owner=root mode=600
      with_fileglob: /playbooks/files/fooapp/*

Getting values from files

Sometimes you'll want to include the content of a file directly into a playbook. You can do so using a macro. This syntax will remain in future versions, though we will also will provide ways to do this via lookup plugins (see "More Loops") as well. What follows is an example using the authorized_key module, which requires the actual text of the SSH key as a parameter:

tasks:
    - authorized_key name=$item key="$FILE('/keys/$user1')"
      with_items:
         - pinky
         - brain
         - snowball

The "$PIPE" macro works just like file, except you would feed it a command string instead. It executes locally, not remotely, as does $FILE.

Selecting Files And Templates Based On Variables

Sometimes a configuration file you want to copy, or a template you will use may depend on a variable. The following construct selects the first available file appropriate for the variables of a given host, which is often much cleaner than putting a lot of if conditionals in a template.

The following example shows how to template out a configuration file that was very different between, say, CentOS and Debian:

- name: template a file
  action: template src=$item dest=/etc/myapp/foo.conf
  first_available_file:
    - /srv/templates/myapp/${ansible_distribution}.conf
    - /srv/templates/myapp/default.conf

first_available_file is only available to the copy and template modules.

Asynchronous Actions and Polling

By default tasks in playbooks block, meaning the connections stay open until the task is done on each node. If executing playbooks with a small parallelism value (aka --forks), you may wish that long running operations can go faster. The easiest way to do this is to kick them off all at once and then poll until they are done.

You will also want to use asynchronous mode on very long running operations that might be subject to timeout.

To launch a task asynchronously, specify its maximum runtime and how frequently you would like to poll for status. The default poll value is 10 seconds if you do not specify a value for `poll`:

---
- hosts: all
  user: root
  tasks:
  - name: simulate long running op (15 sec), wait for up to 45, poll every 5
    action: command /bin/sleep 15
    async: 45
    poll: 5

Note

There is no default for the async time limit. If you leave off the 'async' keyword, the task runs synchronously, which is Ansible's default.

Alternatively, if you do not need to wait on the task to complete, you may "fire and forget" by specifying a poll value of 0:

---
- hosts: all
  user: root
  tasks:
  - name: simulate long running op, allow to run for 45, fire and forget
    action: command /bin/sleep 15
    async: 45
    poll: 0

Note

You shouldn't "fire and forget" with operations that require exclusive locks, such as yum transactions, if you expect to run other commands later in the playbook against those same resources.

Note

Using a higher value for --forks will result in kicking off asynchronous tasks even faster. This also increases the efficiency of polling.

Local Playbooks

It may be useful to use a playbook locally, rather than by connecting over SSH. This can be useful for assuring the configuration of a system by putting a playbook on a crontab. This may also be used to run a playbook inside a OS installer, such as an Anaconda kickstart.

To run an entire playbook locally, just set the "hosts:" line to "hosts:127.0.0.1" and then run the playbook like so:

ansible-playbook playbook.yml --connection=local

Alternatively, a local connection can be used in a single playbook play, even if other plays in the playbook use the default remote connection type:

hosts: 127.0.0.1
connection: local

Turning Off Facts

If you know you don't need any fact data about your hosts, and know everything about your systems centrally, you can turn off fact gathering. This has advantages in scaling ansible in push mode with very large numbers of systems, mainly, or if you are using Ansible on experimental platforms. In any play, just do this:

- hosts: whatever
  gather_facts: False

Pull-Mode Playbooks

The use of playbooks in local mode (above) is made extremely powerful with the addition of ansible-pull. A script for setting up ansible-pull is provided in the examples/playbooks directory of the source checkout.

The basic idea is to use Ansible to set up a remote copy of ansible on each managed node, each set to run via cron and update playbook source via git. This inverts the default push architecture of ansible into a pull architecture, which has near-limitless scaling potential. The setup playbook can be tuned to change the cron frequency, logging locations, and parameters to ansible-pull.

This is useful both for extreme scale-out as well as periodic remediation. Usage of the 'fetch' module to retrieve logs from ansible-pull runs would be an excellent way to gather and analyze remote logs from ansible-pull.

Register Variables

0.7

Often in a playbook it may be useful to store the result of a given command in a variable and access it later. Use of the command module in this way can in many ways eliminate the need to write site specific facts, for instance, you could test for the existance of a particular program.

The 'register' keyword decides what variable to save a result in. The resulting variables can be used in templates, action lines, or only_if statements. It looks like this (in an obviously trivial example):

- name: test play
  hosts: all

  tasks:

      - action: shell cat /etc/motd
        register: motd_contents

      - action: shell echo "motd contains the word hi"
        only_if: "'${motd_contents.stdout}'.find('hi') != -1"

Rolling Updates

0.7

By default ansible will try to manage all of the machines referenced in a play in parallel. For a rolling updates use case, you can define how many hosts ansible should manage at a single time by using the ''serial'' keyword:

- name: test play
  hosts: webservers
  serial: 3

In the above example, if we had 100 hosts, 3 hosts in the group 'webservers' would complete the play completely before moving on to the next 3 hosts.

Delegation

0.7

If you want to perform a task on one host with reference to other hosts, use the 'delegate_to' keyword on a task. This is ideal for placing nodes in a load balanced pool, or removing them. It is also very useful for controlling outage windows. Using this with the 'serial' keyword to control the number of hosts executing at one time is also a good idea:

---
- hosts: webservers
  serial: 5

  tasks:
  - name: take out of load balancer pool
    action: command /usr/bin/take_out_of_pool $inventory_hostname
    delegate_to: 127.0.0.1

  - name: actual steps would go here
    action: yum name=acme-web-stack state=latest

  - name: add back to load balancer pool
    action: command /usr/bin/add_back_to_pool $inventory_hostname
    delegate_to: 127.0.0.1

Here is the same playbook as above, but using the shorthand syntax, 'local_action', for delegating to 127.0.0.1:

---
# ...
  tasks:
  - name: take out of load balancer pool
    local_action: command /usr/bin/take_out_of_pool $inventory_hostname

# ...

  - name: add back to load balancer pool
    local_action: command /usr/bin/add_back_to_pool $inventory_hostname

Fireball Mode

0.8

Paramiko's core connection types of 'local', 'paramiko', and 'ssh' are augmented in version 0.8 by a new extra-fast connection type called 'fireball'. It can only be used with playbooks and does require some additional setup outside the lines of ansible's normal "no bootstrapping" philosophy. You are not required to use fireball mode to use Ansible, though some users may appreciate it.

Fireball mode works by launching a temporary 0mq daemon from SSH that by default lives for only 30 minutes before shutting off. Fireball mode once running uses temporary AES keys to encrypt a session, and requires direct communication to given nodes on the configured port. The default is 5099. The fireball daemon runs as any user you set it down as. So it can run as you, root, or so on. If multiple users are running Ansible as the same batch of hosts, take care to use unique ports.

Fireball mode is roughly 10 times faster than paramiko for communicating with nodes and may be a good option if you have a large number of hosts:

---

# set up the fireball transport
- hosts: all
  gather_facts: False
  connection: ssh # or paramiko
  sudo: True
  tasks:
      - action: fireball

# these operations will occur over the fireball transport
- hosts: all
  connection: fireball
  tasks:
      - action: shell echo "Hello ${item}"
        with_items:
            - one
            - two

In order to use fireball mode, certain dependencies must be installed on both ends. You can use this playbook as a basis for initial bootstrapping on any platform. You will also need gcc and zeromq-devel installed from your package manager, which you can of course also get Ansible to install:

---
- hosts: all
  sudo: True
  gather_facts: False
  connection: ssh
  tasks:
      - action: easy_install name=pip
      - action: pip name=$item state=present
        with_items:
          - pyzmq
          - pyasn1
          - PyCrypto
          - python-keyczar

For more information about fireball, see the module documentation section.

Understanding Variable Precedence

You have already learned about inventory host and group variables, 'vars', and 'vars_files'.

If a variable name is defined in more than one place with the same name, priority is as follows to determine which place sets the value of the variable.

  1. Variables loaded from YAML files mentioned in 'vars_files' in a playbook.
  2. 'vars' as defined in the playbook.
  3. facts, whether built in or custom, or variables assigned from the 'register' keyword.
  4. variables passed to parameterized task include statements.
  5. Host variables from inventory.
  6. Group variables from inventory, in order of least specific group to most specific.

Therefore, if you want to set a default value for something you wish to override somewhere else, the best place to set such a default is in a group variable.

Style Points

Ansible playbooks are colorized. If you do not like this, set the ANSIBLE_NOCOLOR=1 environment variable.

Ansible playbooks also look more impressive with cowsay installed, and we encourage installing this package.

YAMLSyntax

Learn about YAML syntax

playbooks

Review the basic playbook features

bestpractices

Various tips about playbooks in the real world

modules

Learn about available modules

moduledev

Learn how to extend Ansible by writing your own modules

patterns

Learn about how to select hosts

Github examples directory

Complete playbook files from the github project source

Mailing List

Questions? Help? Ideas? Stop by the list on Google Groups