DeepLearningExamples/PyTorch/Classification/ConvNets/image_classification/training.py
2021-11-09 13:42:18 -08:00

432 lines
13 KiB
Python

# Copyright (c) 2018-2019, NVIDIA CORPORATION
# Copyright (c) 2017- Facebook, Inc
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#
# * Redistributions of source code must retain the above copyright notice, this
# list of conditions and the following disclaimer.
#
# * Redistributions in binary form must reproduce the above copyright notice,
# this list of conditions and the following disclaimer in the documentation
# and/or other materials provided with the distribution.
#
# * Neither the name of the copyright holder nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import time
from copy import deepcopy
from functools import wraps
from typing import Callable, Dict, Optional, Tuple
import torch
import torch.nn as nn
from torch.cuda.amp import autocast
from torch.nn.parallel import DistributedDataParallel as DDP
from . import logger as log
from . import utils
from .logger import TrainingMetrics, ValidationMetrics
from .models.common import EMA
class Executor:
def __init__(
self,
model: nn.Module,
loss: Optional[nn.Module],
cuda: bool = True,
memory_format: torch.memory_format = torch.contiguous_format,
amp: bool = False,
scaler: Optional[torch.cuda.amp.GradScaler] = None,
divide_loss: int = 1,
ts_script: bool = False,
):
assert not (amp and scaler is None), "Gradient Scaler is needed for AMP"
def xform(m: nn.Module) -> nn.Module:
if cuda:
m = m.cuda()
m.to(memory_format=memory_format)
return m
self.model = xform(model)
if ts_script:
self.model = torch.jit.script(self.model)
self.ts_script = ts_script
self.loss = xform(loss) if loss is not None else None
self.amp = amp
self.scaler = scaler
self.is_distributed = False
self.divide_loss = divide_loss
self._fwd_bwd = None
self._forward = None
def distributed(self, gpu_id):
self.is_distributed = True
s = torch.cuda.Stream()
s.wait_stream(torch.cuda.current_stream())
with torch.cuda.stream(s):
self.model = DDP(self.model, device_ids=[gpu_id], output_device=gpu_id)
torch.cuda.current_stream().wait_stream(s)
def _fwd_bwd_fn(
self,
input: torch.Tensor,
target: torch.Tensor,
) -> torch.Tensor:
with autocast(enabled=self.amp):
loss = self.loss(self.model(input), target)
loss /= self.divide_loss
self.scaler.scale(loss).backward()
return loss
def _forward_fn(
self, input: torch.Tensor, target: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
with torch.no_grad(), autocast(enabled=self.amp):
output = self.model(input)
loss = None if self.loss is None else self.loss(output, target)
return output if loss is None else loss, output
def optimize(self, fn):
return fn
@property
def forward_backward(self):
if self._fwd_bwd is None:
if self.loss is None:
raise NotImplementedError(
"Loss must not be None for forward+backward step"
)
self._fwd_bwd = self.optimize(self._fwd_bwd_fn)
return self._fwd_bwd
@property
def forward(self):
if self._forward is None:
self._forward = self.optimize(self._forward_fn)
return self._forward
class Trainer:
def __init__(
self,
executor: Executor,
optimizer: torch.optim.Optimizer,
grad_acc_steps: int,
ema: Optional[float] = None,
):
self.executor = executor
self.optimizer = optimizer
self.grad_acc_steps = grad_acc_steps
self.use_ema = False
if ema is not None:
self.ema_executor = deepcopy(self.executor)
self.ema = EMA(ema, self.ema_executor.model)
self.use_ema = True
self.optimizer.zero_grad(set_to_none=True)
self.steps_since_update = 0
def train(self):
self.executor.model.train()
def eval(self):
self.executor.model.eval()
if self.use_ema:
self.executor.model.eval()
def train_step(self, input, target, step=None):
loss = self.executor.forward_backward(input, target)
self.steps_since_update += 1
if self.steps_since_update == self.grad_acc_steps:
if self.executor.scaler is not None:
self.executor.scaler.step(self.optimizer)
self.executor.scaler.update()
else:
self.optimizer.step()
self.optimizer.zero_grad()
self.steps_since_update = 0
torch.cuda.synchronize()
if self.use_ema:
self.ema(self.executor.model, step=step)
return loss
def validation_steps(self) -> Dict[str, Callable]:
vsd: Dict[str, Callable] = {"val": self.executor.forward}
if self.use_ema:
vsd["val_ema"] = self.ema_executor.forward
return vsd
def state_dict(self) -> dict:
res = {
"state_dict": self.executor.model.state_dict(),
"optimizer": self.optimizer.state_dict(),
}
if self.use_ema:
res["state_dict_ema"] = self.ema_executor.model.state_dict()
return res
def train(
train_step,
train_loader,
lr_scheduler,
log_fn,
timeout_handler,
prof=-1,
step=0,
):
interrupted = False
end = time.time()
data_iter = enumerate(train_loader)
for i, (input, target) in data_iter:
bs = input.size(0)
lr = lr_scheduler(i)
data_time = time.time() - end
loss = train_step(input, target, step=step + i)
it_time = time.time() - end
with torch.no_grad():
if torch.distributed.is_initialized():
reduced_loss = utils.reduce_tensor(loss.detach())
else:
reduced_loss = loss.detach()
log_fn(
compute_ips=utils.calc_ips(bs, it_time - data_time),
total_ips=utils.calc_ips(bs, it_time),
data_time=data_time,
compute_time=it_time - data_time,
lr=lr,
loss=reduced_loss.item(),
)
end = time.time()
if prof > 0 and (i + 1 >= prof):
time.sleep(5)
break
if ((i + 1) % 20 == 0) and timeout_handler.interrupted:
time.sleep(5)
interrupted = True
break
return interrupted
def validate(infer_fn, val_loader, log_fn, prof=-1, with_loss=True):
top1 = log.AverageMeter()
# switch to evaluate mode
end = time.time()
data_iter = enumerate(val_loader)
for i, (input, target) in data_iter:
bs = input.size(0)
data_time = time.time() - end
if with_loss:
loss, output = infer_fn(input, target)
else:
output = infer_fn(input)
with torch.no_grad():
prec1, prec5 = utils.accuracy(output.data, target, topk=(1, 5))
if torch.distributed.is_initialized():
if with_loss:
reduced_loss = utils.reduce_tensor(loss.detach())
prec1 = utils.reduce_tensor(prec1)
prec5 = utils.reduce_tensor(prec5)
else:
if with_loss:
reduced_loss = loss.detach()
prec1 = prec1.item()
prec5 = prec5.item()
infer_result = {
"top1": (prec1, bs),
"top5": (prec5, bs),
}
if with_loss:
infer_result["loss"] = (reduced_loss.item(), bs)
torch.cuda.synchronize()
it_time = time.time() - end
top1.record(prec1, bs)
log_fn(
compute_ips=utils.calc_ips(bs, it_time - data_time),
total_ips=utils.calc_ips(bs, it_time),
data_time=data_time,
compute_time=it_time - data_time,
**infer_result,
)
end = time.time()
if (prof > 0) and (i + 1 >= prof):
time.sleep(5)
break
return top1.get_val()
# Train loop {{{
def train_loop(
trainer: Trainer,
lr_scheduler,
train_loader,
train_loader_len,
val_loader,
logger,
should_backup_checkpoint,
best_prec1=0,
start_epoch=0,
end_epoch=0,
early_stopping_patience=-1,
prof=-1,
skip_training=False,
skip_validation=False,
save_checkpoints=True,
checkpoint_dir="./",
checkpoint_filename="checkpoint.pth.tar",
):
train_metrics = TrainingMetrics(logger)
val_metrics = {
k: ValidationMetrics(logger, k) for k in trainer.validation_steps().keys()
}
training_step = trainer.train_step
prec1 = -1
if early_stopping_patience > 0:
epochs_since_improvement = 0
backup_prefix = (
checkpoint_filename[: -len("checkpoint.pth.tar")]
if checkpoint_filename.endswith("checkpoint.pth.tar")
else ""
)
print(f"RUNNING EPOCHS FROM {start_epoch} TO {end_epoch}")
with utils.TimeoutHandler() as timeout_handler:
interrupted = False
for epoch in range(start_epoch, end_epoch):
if logger is not None:
logger.start_epoch()
if not skip_training:
if logger is not None:
data_iter = logger.iteration_generator_wrapper(
train_loader, mode="train"
)
else:
data_iter = train_loader
trainer.train()
interrupted = train(
training_step,
data_iter,
lambda i: lr_scheduler(trainer.optimizer, i, epoch),
train_metrics.log,
timeout_handler,
prof=prof,
step=epoch * train_loader_len,
)
if not skip_validation:
trainer.eval()
for k, infer_fn in trainer.validation_steps().items():
if logger is not None:
data_iter = logger.iteration_generator_wrapper(
val_loader, mode="val"
)
else:
data_iter = val_loader
step_prec1, _ = validate(
infer_fn,
data_iter,
val_metrics[k].log,
prof=prof,
)
if k == "val":
prec1 = step_prec1
if prec1 > best_prec1:
is_best = True
best_prec1 = prec1
else:
is_best = False
else:
is_best = False
best_prec1 = 0
if logger is not None:
logger.end_epoch()
if save_checkpoints and (
not torch.distributed.is_initialized()
or torch.distributed.get_rank() == 0
):
if should_backup_checkpoint(epoch):
backup_filename = "{}checkpoint-{}.pth.tar".format(
backup_prefix, epoch + 1
)
else:
backup_filename = None
checkpoint_state = {
"epoch": epoch + 1,
"best_prec1": best_prec1,
**trainer.state_dict(),
}
utils.save_checkpoint(
checkpoint_state,
is_best,
checkpoint_dir=checkpoint_dir,
backup_filename=backup_filename,
filename=checkpoint_filename,
)
if early_stopping_patience > 0:
if not is_best:
epochs_since_improvement += 1
else:
epochs_since_improvement = 0
if epochs_since_improvement >= early_stopping_patience:
break
if interrupted:
break
# }}}