DeepLearningExamples/PyTorch/LanguageModeling/BERT/optimization.py
Cliff Woolley 8546c7a6df Cleanups
2019-08-13 15:33:32 -07:00

394 lines
16 KiB
Python

# coding=utf-8
# Copyright (c) 2019 NVIDIA CORPORATION. All rights reserved.
# Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch optimization for BERT model."""
import math
import torch
from torch.optim import Optimizer
from torch.optim.optimizer import required
from torch.nn.utils import clip_grad_norm_
#from fused_adam_local import FusedAdam
from apex.optimizers import FusedAdam
from apex.multi_tensor_apply import multi_tensor_applier
import amp_C
multi_tensor_l2norm = amp_C.multi_tensor_l2norm
lamb_compute_update = amp_C.multi_tensor_lamb_stage1_cuda
lamb_apply_update = amp_C.multi_tensor_lamb_stage2_cuda
scale = amp_C.multi_tensor_scale
def warmup_cosine(x, warmup=0.002):
if x < warmup:
return x/warmup
return 0.5 * (1.0 + torch.cos(math.pi * x))
def warmup_constant(x, warmup=0.002):
if x < warmup:
return x/warmup
return 1.0
def warmup_linear(x, warmup=0.002):
if x < warmup:
return x/warmup
return max((x - 1. )/ (warmup - 1.), 0.)
def warmup_poly(x, warmup=0.002, degree=0.5):
if x < warmup:
return x/warmup
return (1.0 - x)**degree
SCHEDULES = {
'warmup_cosine':warmup_cosine,
'warmup_constant':warmup_constant,
'warmup_linear':warmup_linear,
'warmup_poly':warmup_poly,
}
class BertLAMB(Optimizer):
"""Implements BERT version of LAMB algorithm.
Params:
lr: learning rate
warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1
t_total: total number of training steps for the learning
rate schedule, -1 means constant learning rate. Default: -1
schedule: schedule to use for the warmup (see above). Default: 'warmup_linear'
b1: LAMBs b1. Default: 0.9
b2: LAMBs b2. Default: 0.999
e: LAMBs epsilon. Default: 1e-6
weight_decay: Weight decay. Default: 0.01
max_grad_norm: Maximum global norm for the gradients. Default: 1.0
"""
def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_poly',
b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01,
max_grad_norm=1.0):
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
if schedule not in SCHEDULES:
raise ValueError("Invalid schedule parameter: {}".format(schedule))
if not 0.0 <= warmup < 1.0 and not warmup == -1:
raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
if not 0.0 <= b1 < 1.0:
raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
if not 0.0 <= b2 < 1.0:
raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
if not e >= 0.0:
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
b1=b1, b2=b2, e=e, weight_decay=weight_decay,
max_grad_norm=max_grad_norm)
super(BertLAMB, self).__init__(params, defaults)
self.step_count = 0
self.b1 = b1
self.b2 = b2
self.epsilon = e
self.max_global_grad_norm = max_grad_norm
self.learning_rate = lr
self.schedule = schedule
self.warmup = warmup
self.max_steps = t_total
self.updates_created=False
def get_lr(self):
lr = []
for group in self.param_groups:
for p in group['params']:
state = self.state[p]
if len(state) == 0:
return [0]
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']]
lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup'])
else:
lr_scheduled = group['lr']
lr.append(lr_scheduled)
return lr
def apply_gradients(self, dummy_overflow_buf, lr_scheduled, per_param_decay, grad_list, param_list, momentum, velocity, update):
# Compute global gradient norm
global_grad_norm = multi_tensor_applier(
multi_tensor_l2norm,
dummy_overflow_buf,
[grad_list],
False)[0].item()
# Compute per parameter norm
param_norms = multi_tensor_applier(
multi_tensor_l2norm,
dummy_overflow_buf,
[param_list],
True)[1]
# Compute LAMB update
multi_tensor_applier(
lamb_compute_update,
dummy_overflow_buf,
[grad_list, param_list, momentum, velocity, update],
torch.cuda.FloatTensor(per_param_decay),
self.step_count,
self.b1,
self.b2,
self.epsilon,
global_grad_norm,
self.max_global_grad_norm,
)
# Computer per parameter update norm
update_norms = multi_tensor_applier(
multi_tensor_l2norm,
dummy_overflow_buf,
[update],
True)[1]
# Apply LAMB update on parameters
multi_tensor_applier(
lamb_apply_update,
dummy_overflow_buf,
[param_list, update],
param_norms,
update_norms,
lr_scheduled,
)
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
check = 1#torch.norm(all_grads, 2)
grad_list = []
param_list = []
per_param_decay = []
momentum = []
velocity = []
fp16_grad_list = []
fp16_from_fp32_param_list = []
fp32_param_list = []
fp16_per_param_decay = []
fp16_momentum = []
fp16_velocity = []
if not self.updates_created:
self.update = []
self.fp16_update = []
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
# Keep step here for compatibility with earlier resume from checkpoint
state['step'] = 0
# Exponential moving average of gradient values
state['momentum'] = torch.zeros_like(p.data, dtype=torch.float32)
# Exponential moving average of squared gradient values
state['velocity'] = torch.zeros_like(p.data, dtype=torch.float32)
# fp32 master weights
if 'master_param' not in state.keys() and p.type() == 'torch.cuda.HalfTensor':
state['master_param'] = p.detach().clone().float()
# ensure these 3 are float tensors
if state['momentum'].type() != 'torch.cuda.FloatTensor':
state['momentum'] = state['momentum'].float()
if state['velocity'].type() != 'torch.cuda.FloatTensor':
state['velocity'] = state['velocity'].float()
if 'master_param' in state.keys() and state['master_param'].type() != 'torch.cuda.FloatTensor':
state['master_param'] = state['master_param'].float()
# Append all params, gradients, decays, velocity, momentum and updates to a list
if p.type() == 'torch.cuda.HalfTensor':
fp16_grad_list.append(grad)
fp32_param_list.append(state['master_param'])
fp16_from_fp32_param_list.append(p.data)
fp16_per_param_decay.append(group['weight_decay'])
fp16_momentum.append(state["momentum"])
fp16_velocity.append(state["velocity"])
if not self.updates_created:
#self.fp16_update.append(torch.empty_like(p.data, dtype=torch.float32))
# Use fp16 weights as temporary buffer for update term.
# This is safe because fp16 weights are overwritten after apply_gradients
self.fp16_update.append(p.data)
else:
grad_list.append(grad)
param_list.append(p.data)
per_param_decay.append(group['weight_decay'])
momentum.append(state["momentum"])
velocity.append(state["velocity"])
if not self.updates_created:
self.update.append(torch.empty_like(p.data))
state['step'] += 1
self.updates_created=True
update = self.update
fp16_update = self.fp16_update
self.step_count = state['step']
# Calculate learning rate from input schedule
# if self.max_steps != -1:
schedule_fct = SCHEDULES[self.schedule]
lr_scheduled = self.learning_rate * schedule_fct(self.step_count / self.max_steps, self.warmup)
if torch.distributed.get_rank() == 0:
print("Step {} LR {}".format(self.step_count, lr_scheduled))
# else:
# lr_scheduled = self.learning_rate
overflow_buf = torch.cuda.IntTensor([0])
if len(grad_list) > 0:
self.apply_gradients(overflow_buf, lr_scheduled, per_param_decay, grad_list, param_list, momentum, velocity, update)
if len(fp16_grad_list) > 0:
self.apply_gradients(overflow_buf, lr_scheduled, fp16_per_param_decay, fp16_grad_list, fp32_param_list, fp16_momentum, fp16_velocity, fp16_update)
multi_tensor_applier(
scale,
overflow_buf,
[fp32_param_list, fp16_from_fp32_param_list],
1.)
return loss
class BertAdam(Optimizer):
"""Implements BERT version of Adam algorithm with weight decay fix.
Params:
lr: learning rate
warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1
t_total: total number of training steps for the learning
rate schedule, -1 means constant learning rate. Default: -1
schedule: schedule to use for the warmup (see above). Default: 'warmup_linear'
b1: Adams b1. Default: 0.9
b2: Adams b2. Default: 0.999
e: Adams epsilon. Default: 1e-6
weight_decay: Weight decay. Default: 0.01
max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0
"""
def __init__(self, params, lr=required, warmup=-1, t_total=-1, schedule='warmup_linear',
b1=0.9, b2=0.999, e=1e-6, weight_decay=0.01,
max_grad_norm=1.0):
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr))
if schedule not in SCHEDULES:
raise ValueError("Invalid schedule parameter: {}".format(schedule))
if not 0.0 <= warmup < 1.0 and not warmup == -1:
raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup))
if not 0.0 <= b1 < 1.0:
raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1))
if not 0.0 <= b2 < 1.0:
raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2))
if not e >= 0.0:
raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e))
defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total,
b1=b1, b2=b2, e=e, weight_decay=weight_decay,
max_grad_norm=max_grad_norm)
super(BertAdam, self).__init__(params, defaults)
def get_lr(self):
lr = []
for group in self.param_groups:
for p in group['params']:
state = self.state[p]
if len(state) == 0:
return [0]
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']]
lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup'])
else:
lr_scheduled = group['lr']
lr.append(lr_scheduled)
return lr
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead')
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['next_m'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['next_v'] = torch.zeros_like(p.data)
next_m, next_v = state['next_m'], state['next_v']
beta1, beta2 = group['b1'], group['b2']
# Add grad clipping
if group['max_grad_norm'] > 0:
clip_grad_norm_(p, group['max_grad_norm'])
# Decay the first and second moment running average coefficient
# In-place operations to update the averages at the same time
next_m.mul_(beta1).add_(1 - beta1, grad)
next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad)
update = next_m / (next_v.sqrt() + group['e'])
# Just adding the square of the weights to the loss function is *not*
# the correct way of using L2 regularization/weight decay with Adam,
# since that will interact with the m and v parameters in strange ways.
#
# Instead we want to decay the weights in a manner that doesn't interact
# with the m/v parameters. This is equivalent to adding the square
# of the weights to the loss with plain (non-momentum) SGD.
if group['weight_decay'] > 0.0:
update += group['weight_decay'] * p.data
if group['t_total'] != -1:
schedule_fct = SCHEDULES[group['schedule']]
lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup'])
else:
lr_scheduled = group['lr']
update_with_lr = lr_scheduled * update
p.data.add_(-update_with_lr)
state['step'] += 1
# step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1
# No bias correction
# bias_correction1 = 1 - beta1 ** state['step']
# bias_correction2 = 1 - beta2 ** state['step']
return loss