godot/modules/bullet/space_bullet.cpp

1164 lines
45 KiB
C++
Raw Normal View History

/*************************************************************************/
/* space_bullet.cpp */
/* Author: AndreaCatania */
/*************************************************************************/
/* This file is part of: */
/* GODOT ENGINE */
/* http://www.godotengine.org */
/*************************************************************************/
/* Copyright (c) 2007-2017 Juan Linietsky, Ariel Manzur. */
/* Copyright (c) 2014-2017 Godot Engine contributors (cf. AUTHORS.md) */
/* */
/* Permission is hereby granted, free of charge, to any person obtaining */
/* a copy of this software and associated documentation files (the */
/* "Software"), to deal in the Software without restriction, including */
/* without limitation the rights to use, copy, modify, merge, publish, */
/* distribute, sublicense, and/or sell copies of the Software, and to */
/* permit persons to whom the Software is furnished to do so, subject to */
/* the following conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF */
/* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.*/
/* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY */
/* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, */
/* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE */
/* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */
/*************************************************************************/
#include "space_bullet.h"
#include "BulletCollision/CollisionDispatch/btCollisionObject.h"
#include "BulletCollision/CollisionDispatch/btGhostObject.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkEpaPenetrationDepthSolver.h"
#include "BulletCollision/NarrowPhaseCollision/btGjkPairDetector.h"
#include "BulletCollision/NarrowPhaseCollision/btPointCollector.h"
#include "BulletSoftBody/btSoftBodyRigidBodyCollisionConfiguration.h"
#include "BulletSoftBody/btSoftRigidDynamicsWorld.h"
#include "btBulletDynamicsCommon.h"
#include "bullet_physics_server.h"
#include "bullet_types_converter.h"
#include "bullet_utilities.h"
#include "constraint_bullet.h"
#include "godot_collision_configuration.h"
#include "godot_collision_dispatcher.h"
#include "rigid_body_bullet.h"
#include "servers/physics_server.h"
#include "soft_body_bullet.h"
#include "ustring.h"
#include <assert.h>
// test only
//#include "scene/3d/immediate_geometry.h"
BulletPhysicsDirectSpaceState::BulletPhysicsDirectSpaceState(SpaceBullet *p_space)
: PhysicsDirectSpaceState(), space(p_space) {}
int BulletPhysicsDirectSpaceState::intersect_point(const Vector3 &p_point, ShapeResult *r_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_layer, uint32_t p_object_type_mask) {
if (p_result_max <= 0)
return 0;
btVector3 bt_point;
G_TO_B(p_point, bt_point);
btSphereShape sphere_point(0.f);
btCollisionObject collision_object_point;
collision_object_point.setCollisionShape(&sphere_point);
collision_object_point.setWorldTransform(btTransform(btQuaternion::getIdentity(), bt_point));
// Setup query
GodotAllContactResultCallback btResult(&collision_object_point, r_results, p_result_max, &p_exclude);
btResult.m_collisionFilterGroup = p_collision_layer;
btResult.m_collisionFilterMask = p_object_type_mask;
space->dynamicsWorld->contactTest(&collision_object_point, btResult);
// The results is already populated by GodotAllConvexResultCallback
return btResult.m_count;
}
bool BulletPhysicsDirectSpaceState::intersect_ray(const Vector3 &p_from, const Vector3 &p_to, RayResult &r_result, const Set<RID> &p_exclude, uint32_t p_collision_layer, uint32_t p_object_type_mask, bool p_pick_ray) {
btVector3 btVec_from;
btVector3 btVec_to;
G_TO_B(p_from, btVec_from);
G_TO_B(p_to, btVec_to);
// setup query
GodotClosestRayResultCallback btResult(btVec_from, btVec_to, &p_exclude);
btResult.m_collisionFilterGroup = p_collision_layer;
btResult.m_collisionFilterMask = p_object_type_mask;
btResult.m_pickRay = p_pick_ray;
space->dynamicsWorld->rayTest(btVec_from, btVec_to, btResult);
if (btResult.hasHit()) {
B_TO_G(btResult.m_hitPointWorld, r_result.position);
B_TO_G(btResult.m_hitNormalWorld.normalize(), r_result.normal);
CollisionObjectBullet *gObj = static_cast<CollisionObjectBullet *>(btResult.m_collisionObject->getUserPointer());
if (gObj) {
r_result.shape = 0;
r_result.rid = gObj->get_self();
r_result.collider_id = gObj->get_instance_id();
r_result.collider = 0 == r_result.collider_id ? NULL : ObjectDB::get_instance(r_result.collider_id);
} else {
WARN_PRINTS("The raycast performed has hit a collision object that is not part of Godot scene, please check it.");
}
return true;
} else {
return false;
}
}
int BulletPhysicsDirectSpaceState::intersect_shape(const RID &p_shape, const Transform &p_xform, float p_margin, ShapeResult *p_results, int p_result_max, const Set<RID> &p_exclude, uint32_t p_collision_layer, uint32_t p_object_type_mask) {
if (p_result_max <= 0)
return 0;
ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->get(p_shape);
btConvexShape *btConvex = dynamic_cast<btConvexShape *>(shape->create_bt_shape());
if (!btConvex) {
bulletdelete(btConvex);
ERR_PRINTS("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type()));
return 0;
}
btVector3 scale_with_margin;
G_TO_B(p_xform.basis.get_scale(), scale_with_margin);
btConvex->setLocalScaling(scale_with_margin);
btTransform bt_xform;
G_TO_B(p_xform, bt_xform);
btCollisionObject collision_object;
collision_object.setCollisionShape(btConvex);
collision_object.setWorldTransform(bt_xform);
GodotAllContactResultCallback btQuery(&collision_object, p_results, p_result_max, &p_exclude);
btQuery.m_collisionFilterGroup = p_collision_layer;
btQuery.m_collisionFilterMask = p_object_type_mask;
btQuery.m_closestDistanceThreshold = p_margin;
space->dynamicsWorld->contactTest(&collision_object, btQuery);
bulletdelete(btConvex);
return btQuery.m_count;
}
bool BulletPhysicsDirectSpaceState::cast_motion(const RID &p_shape, const Transform &p_xform, const Vector3 &p_motion, float p_margin, float &p_closest_safe, float &p_closest_unsafe, const Set<RID> &p_exclude, uint32_t p_collision_layer, uint32_t p_object_type_mask, ShapeRestInfo *r_info) {
ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->get(p_shape);
btConvexShape *bt_convex_shape = dynamic_cast<btConvexShape *>(shape->create_bt_shape());
if (!bt_convex_shape) {
bulletdelete(bt_convex_shape);
ERR_PRINTS("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type()));
return 0;
}
btVector3 bt_motion;
G_TO_B(p_motion, bt_motion);
btVector3 scale_with_margin;
G_TO_B(p_xform.basis.get_scale() + Vector3(p_margin, p_margin, p_margin), scale_with_margin);
bt_convex_shape->setLocalScaling(scale_with_margin);
btTransform bt_xform_from;
G_TO_B(p_xform, bt_xform_from);
btTransform bt_xform_to(bt_xform_from);
bt_xform_to.getOrigin() += bt_motion;
GodotClosestConvexResultCallback btResult(bt_xform_from.getOrigin(), bt_xform_to.getOrigin(), &p_exclude);
btResult.m_collisionFilterGroup = p_collision_layer;
btResult.m_collisionFilterMask = p_object_type_mask;
space->dynamicsWorld->convexSweepTest(bt_convex_shape, bt_xform_from, bt_xform_to, btResult);
if (btResult.hasHit()) {
if (btCollisionObject::CO_RIGID_BODY == btResult.m_hitCollisionObject->getInternalType()) {
B_TO_G(static_cast<const btRigidBody *>(btResult.m_hitCollisionObject)->getVelocityInLocalPoint(btResult.m_hitPointWorld), r_info->linear_velocity);
}
CollisionObjectBullet *collision_object = static_cast<CollisionObjectBullet *>(btResult.m_hitCollisionObject->getUserPointer());
p_closest_safe = p_closest_unsafe = btResult.m_closestHitFraction;
B_TO_G(btResult.m_hitPointWorld, r_info->point);
B_TO_G(btResult.m_hitNormalWorld, r_info->normal);
r_info->rid = collision_object->get_self();
r_info->collider_id = collision_object->get_instance_id();
r_info->shape = btResult.m_shapePart;
}
bulletdelete(bt_convex_shape);
return btResult.hasHit();
}
/// Returns the list of contacts pairs in this order: Local contact, other body contact
bool BulletPhysicsDirectSpaceState::collide_shape(RID p_shape, const Transform &p_shape_xform, float p_margin, Vector3 *r_results, int p_result_max, int &r_result_count, const Set<RID> &p_exclude, uint32_t p_collision_layer, uint32_t p_object_type_mask) {
if (p_result_max <= 0)
return 0;
ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->get(p_shape);
btConvexShape *btConvex = dynamic_cast<btConvexShape *>(shape->create_bt_shape());
if (!btConvex) {
bulletdelete(btConvex);
ERR_PRINTS("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type()));
return 0;
}
btVector3 scale_with_margin;
G_TO_B(p_shape_xform.basis.get_scale(), scale_with_margin);
btConvex->setLocalScaling(scale_with_margin);
btTransform bt_xform;
G_TO_B(p_shape_xform, bt_xform);
btCollisionObject collision_object;
collision_object.setCollisionShape(btConvex);
collision_object.setWorldTransform(bt_xform);
GodotContactPairContactResultCallback btQuery(&collision_object, r_results, p_result_max, &p_exclude);
btQuery.m_collisionFilterGroup = p_collision_layer;
btQuery.m_collisionFilterMask = p_object_type_mask;
btQuery.m_closestDistanceThreshold = p_margin;
space->dynamicsWorld->contactTest(&collision_object, btQuery);
r_result_count = btQuery.m_count;
bulletdelete(btConvex);
return btQuery.m_count;
}
bool BulletPhysicsDirectSpaceState::rest_info(RID p_shape, const Transform &p_shape_xform, float p_margin, ShapeRestInfo *r_info, const Set<RID> &p_exclude, uint32_t p_collision_layer, uint32_t p_object_type_mask) {
ShapeBullet *shape = space->get_physics_server()->get_shape_owner()->get(p_shape);
btConvexShape *btConvex = dynamic_cast<btConvexShape *>(shape->create_bt_shape());
if (!btConvex) {
bulletdelete(btConvex);
ERR_PRINTS("The shape is not a convex shape, then is not supported: shape type: " + itos(shape->get_type()));
return 0;
}
btVector3 scale_with_margin;
G_TO_B(p_shape_xform.basis.get_scale() + Vector3(p_margin, p_margin, p_margin), scale_with_margin);
btConvex->setLocalScaling(scale_with_margin);
btTransform bt_xform;
G_TO_B(p_shape_xform, bt_xform);
btCollisionObject collision_object;
collision_object.setCollisionShape(btConvex);
collision_object.setWorldTransform(bt_xform);
GodotRestInfoContactResultCallback btQuery(&collision_object, r_info, &p_exclude);
btQuery.m_collisionFilterGroup = p_collision_layer;
btQuery.m_collisionFilterMask = p_object_type_mask;
btQuery.m_closestDistanceThreshold = p_margin;
space->dynamicsWorld->contactTest(&collision_object, btQuery);
bulletdelete(btConvex);
if (btQuery.m_collided) {
if (btCollisionObject::CO_RIGID_BODY == btQuery.m_rest_info_collision_object->getInternalType()) {
B_TO_G(static_cast<const btRigidBody *>(btQuery.m_rest_info_collision_object)->getVelocityInLocalPoint(btQuery.m_rest_info_bt_point), r_info->linear_velocity);
}
B_TO_G(btQuery.m_rest_info_bt_point, r_info->point);
}
return btQuery.m_collided;
}
Vector3 BulletPhysicsDirectSpaceState::get_closest_point_to_object_volume(RID p_object, const Vector3 p_point) const {
RigidCollisionObjectBullet *rigid_object = space->get_physics_server()->get_rigid_collisin_object(p_object);
ERR_FAIL_COND_V(!rigid_object, Vector3());
btVector3 out_closest_point(0, 0, 0);
btScalar out_distance = 1e20;
btVector3 bt_point;
G_TO_B(p_point, bt_point);
btGjkEpaPenetrationDepthSolver gjk_epa_pen_solver;
btVoronoiSimplexSolver gjk_simplex_solver;
gjk_simplex_solver.setEqualVertexThreshold(0.);
btSphereShape point_shape(0.);
btCollisionShape *shape;
btConvexShape *convex_shape;
btTransform child_transform;
btTransform body_transform(rigid_object->get_bt_collision_object()->getWorldTransform());
btGjkPairDetector::ClosestPointInput input;
input.m_transformA.getBasis().setIdentity();
input.m_transformA.setOrigin(bt_point);
bool shapes_found = false;
btCompoundShape *compound = rigid_object->get_compound_shape();
for (int i = compound->getNumChildShapes() - 1; 0 <= i; --i) {
shape = compound->getChildShape(i);
if (shape->isConvex()) {
child_transform = compound->getChildTransform(i);
convex_shape = static_cast<btConvexShape *>(shape);
input.m_transformB = body_transform * child_transform;
btPointCollector result;
btGjkPairDetector gjk_pair_detector(&point_shape, convex_shape, &gjk_simplex_solver, &gjk_epa_pen_solver);
gjk_pair_detector.getClosestPoints(input, result, 0);
if (out_distance > result.m_distance) {
out_distance = result.m_distance;
out_closest_point = result.m_pointInWorld;
}
}
shapes_found = true;
}
if (shapes_found) {
Vector3 out;
B_TO_G(out_closest_point, out);
return out;
} else {
// no shapes found, use distance to origin.
return rigid_object->get_transform().get_origin();
}
}
SpaceBullet::SpaceBullet(bool p_create_soft_world)
: broadphase(NULL),
dispatcher(NULL),
solver(NULL),
collisionConfiguration(NULL),
dynamicsWorld(NULL),
soft_body_world_info(NULL),
ghostPairCallback(NULL),
godotFilterCallback(NULL),
gravityDirection(0, -1, 0),
gravityMagnitude(10),
contactDebugCount(0) {
create_empty_world(p_create_soft_world);
direct_access = memnew(BulletPhysicsDirectSpaceState(this));
}
SpaceBullet::~SpaceBullet() {
memdelete(direct_access);
destroy_world();
}
void SpaceBullet::flush_queries() {
const btCollisionObjectArray &colObjArray = dynamicsWorld->getCollisionObjectArray();
for (int i = colObjArray.size() - 1; 0 <= i; --i) {
static_cast<CollisionObjectBullet *>(colObjArray[i]->getUserPointer())->dispatch_callbacks();
}
}
void SpaceBullet::step(real_t p_delta_time) {
dynamicsWorld->stepSimulation(p_delta_time, 0, 0);
}
void SpaceBullet::set_param(PhysicsServer::AreaParameter p_param, const Variant &p_value) {
assert(dynamicsWorld);
switch (p_param) {
case PhysicsServer::AREA_PARAM_GRAVITY:
gravityMagnitude = p_value;
update_gravity();
break;
case PhysicsServer::AREA_PARAM_GRAVITY_VECTOR:
gravityDirection = p_value;
update_gravity();
break;
case PhysicsServer::AREA_PARAM_LINEAR_DAMP:
case PhysicsServer::AREA_PARAM_ANGULAR_DAMP:
break; // No damp
case PhysicsServer::AREA_PARAM_PRIORITY:
// Priority is always 0, the lower
break;
case PhysicsServer::AREA_PARAM_GRAVITY_IS_POINT:
case PhysicsServer::AREA_PARAM_GRAVITY_DISTANCE_SCALE:
case PhysicsServer::AREA_PARAM_GRAVITY_POINT_ATTENUATION:
break;
default:
WARN_PRINTS("This set parameter (" + itos(p_param) + ") is ignored, the SpaceBullet doesn't support it.");
break;
}
}
Variant SpaceBullet::get_param(PhysicsServer::AreaParameter p_param) {
switch (p_param) {
case PhysicsServer::AREA_PARAM_GRAVITY:
return gravityMagnitude;
case PhysicsServer::AREA_PARAM_GRAVITY_VECTOR:
return gravityDirection;
case PhysicsServer::AREA_PARAM_LINEAR_DAMP:
case PhysicsServer::AREA_PARAM_ANGULAR_DAMP:
return 0; // No damp
case PhysicsServer::AREA_PARAM_PRIORITY:
return 0; // Priority is always 0, the lower
case PhysicsServer::AREA_PARAM_GRAVITY_IS_POINT:
return false;
case PhysicsServer::AREA_PARAM_GRAVITY_DISTANCE_SCALE:
return 0;
case PhysicsServer::AREA_PARAM_GRAVITY_POINT_ATTENUATION:
return 0;
default:
WARN_PRINTS("This get parameter (" + itos(p_param) + ") is ignored, the SpaceBullet doesn't support it.");
return Variant();
}
}
void SpaceBullet::set_param(PhysicsServer::SpaceParameter p_param, real_t p_value) {
switch (p_param) {
case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS:
case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION:
case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION:
case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD:
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD:
case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP:
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO:
case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS:
default:
WARN_PRINTS("This set parameter (" + itos(p_param) + ") is ignored, the SpaceBullet doesn't support it.");
break;
}
}
real_t SpaceBullet::get_param(PhysicsServer::SpaceParameter p_param) {
switch (p_param) {
case PhysicsServer::SPACE_PARAM_CONTACT_RECYCLE_RADIUS:
case PhysicsServer::SPACE_PARAM_CONTACT_MAX_SEPARATION:
case PhysicsServer::SPACE_PARAM_BODY_MAX_ALLOWED_PENETRATION:
case PhysicsServer::SPACE_PARAM_BODY_LINEAR_VELOCITY_SLEEP_THRESHOLD:
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_SLEEP_THRESHOLD:
case PhysicsServer::SPACE_PARAM_BODY_TIME_TO_SLEEP:
case PhysicsServer::SPACE_PARAM_BODY_ANGULAR_VELOCITY_DAMP_RATIO:
case PhysicsServer::SPACE_PARAM_CONSTRAINT_DEFAULT_BIAS:
default:
WARN_PRINTS("The SpaceBullet doesn't support this get parameter (" + itos(p_param) + "), 0 is returned.");
return 0.f;
}
}
void SpaceBullet::add_area(AreaBullet *p_area) {
areas.push_back(p_area);
dynamicsWorld->addCollisionObject(p_area->get_bt_ghost(), p_area->get_collision_layer(), p_area->get_collision_mask());
}
void SpaceBullet::remove_area(AreaBullet *p_area) {
areas.erase(p_area);
dynamicsWorld->removeCollisionObject(p_area->get_bt_ghost());
}
void SpaceBullet::reload_collision_filters(AreaBullet *p_area) {
// This is necessary to change collision filter
dynamicsWorld->removeCollisionObject(p_area->get_bt_ghost());
dynamicsWorld->addCollisionObject(p_area->get_bt_ghost(), p_area->get_collision_layer(), p_area->get_collision_mask());
}
void SpaceBullet::add_rigid_body(RigidBodyBullet *p_body) {
if (p_body->is_static()) {
dynamicsWorld->addCollisionObject(p_body->get_bt_rigid_body(), p_body->get_collision_layer(), p_body->get_collision_mask());
} else {
dynamicsWorld->addRigidBody(p_body->get_bt_rigid_body(), p_body->get_collision_layer(), p_body->get_collision_mask());
}
}
void SpaceBullet::remove_rigid_body(RigidBodyBullet *p_body) {
if (p_body->is_static()) {
dynamicsWorld->removeCollisionObject(p_body->get_bt_rigid_body());
} else {
dynamicsWorld->removeRigidBody(p_body->get_bt_rigid_body());
}
}
void SpaceBullet::reload_collision_filters(RigidBodyBullet *p_body) {
// This is necessary to change collision filter
remove_rigid_body(p_body);
add_rigid_body(p_body);
}
void SpaceBullet::add_soft_body(SoftBodyBullet *p_body) {
if (is_using_soft_world()) {
if (p_body->get_bt_soft_body()) {
static_cast<btSoftRigidDynamicsWorld *>(dynamicsWorld)->addSoftBody(p_body->get_bt_soft_body(), p_body->get_collision_layer(), p_body->get_collision_mask());
}
} else {
ERR_PRINT("This soft body can't be added to non soft world");
}
}
void SpaceBullet::remove_soft_body(SoftBodyBullet *p_body) {
if (is_using_soft_world()) {
if (p_body->get_bt_soft_body()) {
static_cast<btSoftRigidDynamicsWorld *>(dynamicsWorld)->removeSoftBody(p_body->get_bt_soft_body());
}
}
}
void SpaceBullet::reload_collision_filters(SoftBodyBullet *p_body) {
// This is necessary to change collision filter
remove_soft_body(p_body);
add_soft_body(p_body);
}
void SpaceBullet::add_constraint(ConstraintBullet *p_constraint, bool disableCollisionsBetweenLinkedBodies) {
p_constraint->set_space(this);
dynamicsWorld->addConstraint(p_constraint->get_bt_constraint(), disableCollisionsBetweenLinkedBodies);
}
void SpaceBullet::remove_constraint(ConstraintBullet *p_constraint) {
dynamicsWorld->removeConstraint(p_constraint->get_bt_constraint());
}
int SpaceBullet::get_num_collision_objects() const {
return dynamicsWorld->getNumCollisionObjects();
}
void SpaceBullet::remove_all_collision_objects() {
for (int i = dynamicsWorld->getNumCollisionObjects() - 1; 0 <= i; --i) {
btCollisionObject *btObj = dynamicsWorld->getCollisionObjectArray()[i];
CollisionObjectBullet *colObj = static_cast<CollisionObjectBullet *>(btObj->getUserPointer());
colObj->set_space(NULL);
}
}
void onBulletPreTickCallback(btDynamicsWorld *p_dynamicsWorld, btScalar timeStep) {
static_cast<SpaceBullet *>(p_dynamicsWorld->getWorldUserInfo())->flush_queries();
}
void onBulletTickCallback(btDynamicsWorld *p_dynamicsWorld, btScalar timeStep) {
// Notify all Collision objects the collision checker is started
const btCollisionObjectArray &colObjArray = p_dynamicsWorld->getCollisionObjectArray();
for (int i = colObjArray.size() - 1; 0 <= i; --i) {
CollisionObjectBullet *colObj = static_cast<CollisionObjectBullet *>(colObjArray[i]->getUserPointer());
assert(NULL != colObj);
colObj->on_collision_checker_start();
}
SpaceBullet *sb = static_cast<SpaceBullet *>(p_dynamicsWorld->getWorldUserInfo());
sb->check_ghost_overlaps();
sb->check_body_collision();
}
BulletPhysicsDirectSpaceState *SpaceBullet::get_direct_state() {
return direct_access;
}
btScalar calculateGodotCombinedRestitution(const btCollisionObject *body0, const btCollisionObject *body1) {
return MAX(body0->getRestitution(), body1->getRestitution());
}
void SpaceBullet::create_empty_world(bool p_create_soft_world) {
assert(NULL == broadphase);
assert(NULL == dispatcher);
assert(NULL == solver);
assert(NULL == collisionConfiguration);
assert(NULL == dynamicsWorld);
assert(NULL == ghostPairCallback);
assert(NULL == godotFilterCallback);
void *world_mem;
if (p_create_soft_world) {
world_mem = malloc(sizeof(btSoftRigidDynamicsWorld));
} else {
world_mem = malloc(sizeof(btDiscreteDynamicsWorld));
}
if (p_create_soft_world) {
collisionConfiguration = bulletnew(btSoftBodyRigidBodyCollisionConfiguration);
} else {
collisionConfiguration = bulletnew(GodotCollisionConfiguration(static_cast<btDiscreteDynamicsWorld *>(world_mem)));
}
dispatcher = bulletnew(GodotCollisionDispatcher(collisionConfiguration));
broadphase = bulletnew(btDbvtBroadphase);
solver = bulletnew(btSequentialImpulseConstraintSolver);
if (p_create_soft_world) {
dynamicsWorld = new (world_mem) btSoftRigidDynamicsWorld(dispatcher, broadphase, solver, collisionConfiguration);
soft_body_world_info = bulletnew(btSoftBodyWorldInfo);
} else {
dynamicsWorld = new (world_mem) btDiscreteDynamicsWorld(dispatcher, broadphase, solver, collisionConfiguration);
}
ghostPairCallback = bulletnew(btGhostPairCallback);
godotFilterCallback = bulletnew(GodotFilterCallback);
gCalculateCombinedRestitutionCallback = &calculateGodotCombinedRestitution;
dynamicsWorld->setWorldUserInfo(this);
dynamicsWorld->setInternalTickCallback(onBulletPreTickCallback, this, true);
dynamicsWorld->setInternalTickCallback(onBulletTickCallback, this, false);
dynamicsWorld->getBroadphase()->getOverlappingPairCache()->setInternalGhostPairCallback(ghostPairCallback); // Setup ghost check
dynamicsWorld->getPairCache()->setOverlapFilterCallback(godotFilterCallback);
if (soft_body_world_info) {
soft_body_world_info->m_broadphase = broadphase;
soft_body_world_info->m_dispatcher = dispatcher;
soft_body_world_info->m_sparsesdf.Initialize();
}
update_gravity();
}
void SpaceBullet::destroy_world() {
assert(NULL != broadphase);
assert(NULL != dispatcher);
assert(NULL != solver);
assert(NULL != collisionConfiguration);
assert(NULL != dynamicsWorld);
assert(NULL != ghostPairCallback);
assert(NULL != godotFilterCallback);
/// The world elements (like: Collision Objects, Constraints, Shapes) are managed by godot
dynamicsWorld->getBroadphase()->getOverlappingPairCache()->setInternalGhostPairCallback(NULL);
dynamicsWorld->getPairCache()->setOverlapFilterCallback(NULL);
bulletdelete(ghostPairCallback);
bulletdelete(godotFilterCallback);
// Deallocate world
dynamicsWorld->~btDiscreteDynamicsWorld();
free(dynamicsWorld);
dynamicsWorld = NULL;
bulletdelete(solver);
bulletdelete(broadphase);
bulletdelete(dispatcher);
bulletdelete(collisionConfiguration);
bulletdelete(soft_body_world_info);
}
void SpaceBullet::check_ghost_overlaps() {
/// Algorith support variables
btGjkEpaPenetrationDepthSolver gjk_epa_pen_solver;
btVoronoiSimplexSolver gjk_simplex_solver;
gjk_simplex_solver.setEqualVertexThreshold(0.f);
btConvexShape *other_body_shape;
btConvexShape *area_shape;
btGjkPairDetector::ClosestPointInput gjk_input;
AreaBullet *area;
RigidCollisionObjectBullet *otherObject;
int x(-1), i(-1), y(-1), z(-1), indexOverlap(-1);
/// For each areas
for (x = areas.size() - 1; 0 <= x; --x) {
area = areas[x];
if (!area->is_monitoring())
continue;
/// 1. Reset all states
for (i = area->overlappingObjects.size() - 1; 0 <= i; --i) {
AreaBullet::OverlappingObjectData &otherObj = area->overlappingObjects[i];
// This check prevent the overwrite of ENTER state
// if this function is called more times before dispatchCallbacks
if (otherObj.state != AreaBullet::OVERLAP_STATE_ENTER) {
otherObj.state = AreaBullet::OVERLAP_STATE_DIRTY;
}
}
/// 2. Check all overlapping objects using GJK
const btAlignedObjectArray<btCollisionObject *> ghostOverlaps = area->get_bt_ghost()->getOverlappingPairs();
// For each overlapping
for (i = ghostOverlaps.size() - 1; 0 <= i; --i) {
if (!(ghostOverlaps[i]->getUserIndex() == CollisionObjectBullet::TYPE_RIGID_BODY || ghostOverlaps[i]->getUserIndex() == CollisionObjectBullet::TYPE_AREA))
continue;
otherObject = static_cast<RigidCollisionObjectBullet *>(ghostOverlaps[i]->getUserPointer());
bool hasOverlap = false;
// For each area shape
for (y = area->get_compound_shape()->getNumChildShapes() - 1; 0 <= y; --y) {
if (!area->get_compound_shape()->getChildShape(y)->isConvex())
continue;
gjk_input.m_transformA = area->get_transform__bullet() * area->get_compound_shape()->getChildTransform(y);
area_shape = static_cast<btConvexShape *>(area->get_compound_shape()->getChildShape(y));
// For each other object shape
for (z = otherObject->get_compound_shape()->getNumChildShapes() - 1; 0 <= z; --z) {
if (!otherObject->get_compound_shape()->getChildShape(z)->isConvex())
continue;
other_body_shape = static_cast<btConvexShape *>(otherObject->get_compound_shape()->getChildShape(z));
gjk_input.m_transformB = otherObject->get_transform__bullet() * otherObject->get_compound_shape()->getChildTransform(z);
btPointCollector result;
btGjkPairDetector gjk_pair_detector(area_shape, other_body_shape, &gjk_simplex_solver, &gjk_epa_pen_solver);
gjk_pair_detector.getClosestPoints(gjk_input, result, 0);
if (0 >= result.m_distance) {
hasOverlap = true;
goto collision_found;
}
} // ~For each other object shape
} // ~For each area shape
collision_found:
if (!hasOverlap)
continue;
indexOverlap = area->find_overlapping_object(otherObject);
if (-1 == indexOverlap) {
// Not found
area->add_overlap(otherObject);
} else {
// Found
area->put_overlap_as_inside(indexOverlap);
}
}
/// 3. Remove not overlapping
for (i = area->overlappingObjects.size() - 1; 0 <= i; --i) {
// If the overlap has DIRTY state it means that it's no more overlapping
if (area->overlappingObjects[i].state == AreaBullet::OVERLAP_STATE_DIRTY) {
area->put_overlap_as_exit(i);
}
}
}
}
void SpaceBullet::check_body_collision() {
#ifdef DEBUG_ENABLED
reset_debug_contact_count();
#endif
const int numManifolds = dynamicsWorld->getDispatcher()->getNumManifolds();
for (int i = 0; i < numManifolds; ++i) {
btPersistentManifold *contactManifold = dynamicsWorld->getDispatcher()->getManifoldByIndexInternal(i);
const btCollisionObject *obA = contactManifold->getBody0();
const btCollisionObject *obB = contactManifold->getBody1();
if (btCollisionObject::CO_RIGID_BODY != obA->getInternalType() || btCollisionObject::CO_RIGID_BODY != obB->getInternalType()) {
// This checks is required to be sure the ghost object is skipped
// The ghost object "getUserPointer" return the BodyBullet owner so this check is required
continue;
}
// Asserts all Godot objects are assigned
assert(NULL != obA->getUserPointer());
assert(NULL != obB->getUserPointer());
// I know this static cast is a bit risky. But I'm checking its type just after it.
// This allow me to avoid a lot of other cast and checks
RigidBodyBullet *bodyA = static_cast<RigidBodyBullet *>(obA->getUserPointer());
RigidBodyBullet *bodyB = static_cast<RigidBodyBullet *>(obB->getUserPointer());
if (CollisionObjectBullet::TYPE_RIGID_BODY == bodyA->getType() && CollisionObjectBullet::TYPE_RIGID_BODY == bodyB->getType()) {
if (!bodyA->can_add_collision() && !bodyB->can_add_collision()) {
continue;
}
const int numContacts = contactManifold->getNumContacts();
#define REPORT_ALL_CONTACTS 0
#if REPORT_ALL_CONTACTS
for (int j = 0; j < numContacts; j++) {
btManifoldPoint &pt = contactManifold->getContactPoint(j);
#else
// Since I don't need report all contacts for these objects, I'll report only the first
if (numContacts) {
btManifoldPoint &pt = contactManifold->getContactPoint(0);
#endif
Vector3 collisionWorldPosition;
Vector3 collisionLocalPosition;
Vector3 normalOnB;
B_TO_G(pt.m_normalWorldOnB, normalOnB);
if (bodyA->can_add_collision()) {
B_TO_G(pt.getPositionWorldOnB(), collisionWorldPosition);
/// pt.m_localPointB Doesn't report the exact point in local space
B_TO_G(pt.getPositionWorldOnB() - obB->getWorldTransform().getOrigin(), collisionLocalPosition);
bodyA->add_collision_object(bodyB, collisionWorldPosition, collisionLocalPosition, normalOnB, pt.m_index1, pt.m_index0);
}
if (bodyB->can_add_collision()) {
B_TO_G(pt.getPositionWorldOnA(), collisionWorldPosition);
/// pt.m_localPointA Doesn't report the exact point in local space
B_TO_G(pt.getPositionWorldOnA() - obA->getWorldTransform().getOrigin(), collisionLocalPosition);
bodyB->add_collision_object(bodyA, collisionWorldPosition, collisionLocalPosition, normalOnB * -1, pt.m_index0, pt.m_index1);
}
#ifdef DEBUG_ENABLED
if (is_debugging_contacts()) {
add_debug_contact(collisionWorldPosition);
}
#endif
}
}
}
}
void SpaceBullet::update_gravity() {
btVector3 btGravity;
G_TO_B(gravityDirection * gravityMagnitude, btGravity);
dynamicsWorld->setGravity(btGravity);
if (soft_body_world_info) {
soft_body_world_info->m_gravity = btGravity;
}
}
/// IMPORTANT: Please don't turn it ON this is not managed correctly!!
/// I'm leaving this here just for future tests.
/// Debug motion and normal vector drawing
#define debug_test_motion 0
#if debug_test_motion
static ImmediateGeometry *motionVec(NULL);
static ImmediateGeometry *normalLine(NULL);
static Ref<SpatialMaterial> red_mat;
static Ref<SpatialMaterial> blue_mat;
#endif
#define IGNORE_AREAS_TRUE true
bool SpaceBullet::test_body_motion(RigidBodyBullet *p_body, const Transform &p_from, const Vector3 &p_motion, real_t p_margin, PhysicsServer::MotionResult *r_result) {
#if debug_test_motion
/// Yes I know this is not good, but I've used it as fast debugging.
/// I'm leaving it here just for speedup the other eventual debugs
if (!normalLine) {
motionVec = memnew(ImmediateGeometry);
normalLine = memnew(ImmediateGeometry);
SceneTree::get_singleton()->get_current_scene()->add_child(motionVec);
SceneTree::get_singleton()->get_current_scene()->add_child(normalLine);
red_mat = Ref<SpatialMaterial>(memnew(SpatialMaterial));
red_mat->set_flag(SpatialMaterial::FLAG_UNSHADED, true);
red_mat->set_line_width(20.0);
red_mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
red_mat->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
red_mat->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true);
red_mat->set_albedo(Color(1, 0, 0, 1));
motionVec->set_material_override(red_mat);
blue_mat = Ref<SpatialMaterial>(memnew(SpatialMaterial));
blue_mat->set_flag(SpatialMaterial::FLAG_UNSHADED, true);
blue_mat->set_line_width(20.0);
blue_mat->set_feature(SpatialMaterial::FEATURE_TRANSPARENT, true);
blue_mat->set_flag(SpatialMaterial::FLAG_ALBEDO_FROM_VERTEX_COLOR, true);
blue_mat->set_flag(SpatialMaterial::FLAG_SRGB_VERTEX_COLOR, true);
blue_mat->set_albedo(Color(0, 0, 1, 1));
normalLine->set_material_override(blue_mat);
}
#endif
///// Release all generated manifolds
//{
// if(p_body->get_kinematic_utilities()){
// for(int i= p_body->get_kinematic_utilities()->m_generatedManifold.size()-1; 0<=i; --i){
// dispatcher->releaseManifold( p_body->get_kinematic_utilities()->m_generatedManifold[i] );
// }
// p_body->get_kinematic_utilities()->m_generatedManifold.clear();
// }
//}
btVector3 recover_initial_position;
recover_initial_position.setZero();
/// I'm performing the unstack at the end of movement so I'm sure the player is unstacked even after the movement.
/// I've removed the initial unstack because this is useful just for the first tick since after the first
/// the real unstack is performed at the end of process.
/// However I'm leaving here the old code.
/// Note: It has a bug when two shapes touches something simultaneously the body is moved too much away (I'm not fixing it for the reason written above).
#define INITIAL_UNSTACK 0
#if !INITIAL_UNSTACK
btTransform body_safe_position;
G_TO_B(p_from, body_safe_position);
//btTransform body_unsafe_positino;
//G_TO_B(p_from, body_unsafe_positino);
#else
btTransform body_safe_position;
btTransform body_unsafe_positino;
{ /// Phase one - multi shapes depenetration using margin
G_TO_B(p_from, body_safe_position);
G_TO_B(p_from, body_unsafe_positino);
// MAX_PENETRATION_DEPTH Is useful have the ghost a bit penetrated so I can detect the floor easily
recover_from_penetration(p_body, body_safe_position, MAX_PENETRATION_DEPTH, /* p_depenetration_speed */ 1, recover_initial_position);
/// Not required if I put p_depenetration_speed = 1
//for(int t = 0; t<4; ++t){
// if(!recover_from_penetration(p_body, body_safe_position, MAX_PENETRATION_DEPTH, /* p_depenetration_speed */0.2, recover_initial_position)){
// break;
// }
//}
// Add recover position to "From" and "To" transforms
body_safe_position.getOrigin() += recover_initial_position;
}
#endif
int shape_most_recovered(-1);
btVector3 recovered_motion;
G_TO_B(p_motion, recovered_motion);
const int shape_count(p_body->get_shape_count());
{ /// phase two - sweep test, from a secure position without margin
#if debug_test_motion
Vector3 sup_line;
B_TO_G(body_safe_position.getOrigin(), sup_line);
motionVec->clear();
motionVec->begin(Mesh::PRIMITIVE_LINES, NULL);
motionVec->add_vertex(sup_line);
motionVec->add_vertex(sup_line + p_motion * 10);
motionVec->end();
#endif
for (int shIndex = 0; shIndex < shape_count; ++shIndex) {
if (p_body->is_shape_disabled(shIndex)) {
continue;
}
btConvexShape *convex_shape_test(dynamic_cast<btConvexShape *>(p_body->get_bt_shape(shIndex)));
if (!convex_shape_test) {
// Skip no convex shape
continue;
}
btTransform shape_xform_from;
G_TO_B(p_body->get_shape_transform(shIndex), shape_xform_from);
//btTransform shape_xform_to(shape_xform_from);
// Add local shape transform
shape_xform_from.getOrigin() += body_safe_position.getOrigin();
shape_xform_from.getBasis() *= body_safe_position.getBasis();
btTransform shape_xform_to(shape_xform_from);
//shape_xform_to.getOrigin() += body_unsafe_positino.getOrigin();
//shape_xform_to.getBasis() *= body_unsafe_positino.getBasis();
shape_xform_to.getOrigin() += recovered_motion;
GodotKinClosestConvexResultCallback btResult(shape_xform_from.getOrigin(), shape_xform_to.getOrigin(), p_body, IGNORE_AREAS_TRUE);
btResult.m_collisionFilterGroup = p_body->get_collision_layer();
btResult.m_collisionFilterMask = p_body->get_collision_mask();
dynamicsWorld->convexSweepTest(convex_shape_test, shape_xform_from, shape_xform_to, btResult);
if (btResult.hasHit()) {
//recovered_motion *= btResult.m_closestHitFraction;
/// Since for each sweep test I fix the motion of new shapes in base the recover result,
/// if another shape will hit something it means that has a deepest recovering respect the previous shape
shape_most_recovered = shIndex;
}
}
}
bool hasHit = false;
{ /// Phase three - contact test with margin
btGhostObject *ghost = p_body->get_kinematic_utilities()->m_ghostObject;
GodotRecoverAndClosestContactResultCallback result_callabck;
if (false && 0 <= shape_most_recovered) {
result_callabck.m_self_object = p_body;
result_callabck.m_ignore_areas = IGNORE_AREAS_TRUE;
result_callabck.m_collisionFilterGroup = p_body->get_collision_layer();
result_callabck.m_collisionFilterMask = p_body->get_collision_mask();
const RigidBodyBullet::KinematicShape &kin(p_body->get_kinematic_utilities()->m_shapes[shape_most_recovered]);
ghost->setCollisionShape(kin.shape);
ghost->setWorldTransform(body_safe_position);
ghost->getWorldTransform().getOrigin() += recovered_motion;
ghost->getWorldTransform().getOrigin() += kin.transform.getOrigin();
ghost->getWorldTransform().getBasis() *= kin.transform.getBasis();
dynamicsWorld->contactTest(ghost, result_callabck);
recovered_motion += result_callabck.m_recover_penetration; // Required to avoid all kind of penetration
} else {
// The sweep result does not return a penetrated shape, so I've to check all shapes
// Then return the most penetrated shape
GodotRecoverAndClosestContactResultCallback iter_result_callabck(p_body, IGNORE_AREAS_TRUE);
iter_result_callabck.m_collisionFilterGroup = p_body->get_collision_layer();
iter_result_callabck.m_collisionFilterMask = p_body->get_collision_mask();
btScalar max_penetration(99999999999);
for (int i = 0; i < shape_count; ++i) {
const RigidBodyBullet::KinematicShape &kin(p_body->get_kinematic_utilities()->m_shapes[i]);
if (!kin.is_active()) {
continue;
}
// reset callback each function
iter_result_callabck.reset();
ghost->setCollisionShape(kin.shape);
ghost->setWorldTransform(body_safe_position);
ghost->getWorldTransform().getOrigin() += recovered_motion;
ghost->getWorldTransform().getOrigin() += kin.transform.getOrigin();
ghost->getWorldTransform().getBasis() *= kin.transform.getBasis();
dynamicsWorld->contactTest(ghost, iter_result_callabck);
if (iter_result_callabck.hasHit()) {
if (max_penetration > iter_result_callabck.m_penetration_distance) {
max_penetration = iter_result_callabck.m_penetration_distance;
shape_most_recovered = i;
// This is more penetrated
result_callabck.m_pointCollisionObject = iter_result_callabck.m_pointCollisionObject;
result_callabck.m_pointNormalWorld = iter_result_callabck.m_pointNormalWorld;
result_callabck.m_pointWorld = iter_result_callabck.m_pointWorld;
result_callabck.m_penetration_distance = iter_result_callabck.m_penetration_distance;
result_callabck.m_other_compound_shape_index = iter_result_callabck.m_other_compound_shape_index;
recovered_motion += iter_result_callabck.m_recover_penetration; // Required to avoid all kind of penetration
}
}
}
}
hasHit = result_callabck.hasHit();
if (r_result) {
B_TO_G(recovered_motion + recover_initial_position, r_result->motion);
if (hasHit) {
if (btCollisionObject::CO_RIGID_BODY != result_callabck.m_pointCollisionObject->getInternalType()) {
ERR_PRINT("The collision is not against a rigid body. Please check what's going on.");
goto EndExecution;
}
const btRigidBody *btRigid = static_cast<const btRigidBody *>(result_callabck.m_pointCollisionObject);
CollisionObjectBullet *collisionObject = static_cast<CollisionObjectBullet *>(btRigid->getUserPointer());
r_result->remainder = p_motion - r_result->motion; // is the remaining movements
B_TO_G(result_callabck.m_pointWorld, r_result->collision_point);
B_TO_G(result_callabck.m_pointNormalWorld, r_result->collision_normal);
B_TO_G(btRigid->getVelocityInLocalPoint(result_callabck.m_pointWorld - btRigid->getWorldTransform().getOrigin()), r_result->collider_velocity); // It calculates velocity at point and assign it using special function Bullet_to_Godot
r_result->collider = collisionObject->get_self();
r_result->collider_id = collisionObject->get_instance_id();
r_result->collider_shape = result_callabck.m_other_compound_shape_index;
r_result->collision_local_shape = shape_most_recovered;
//{ /// Add manifold point to manage collisions
// btPersistentManifold* manifold = dynamicsWorld->getDispatcher()->getNewManifold(p_body->getBtBody(), btRigid);
// btManifoldPoint manifoldPoint(result_callabck.m_pointWorld, result_callabck.m_pointWorld, result_callabck.m_pointNormalWorld, result_callabck.m_penetration_distance);
// manifoldPoint.m_index0 = r_result->collision_local_shape;
// manifoldPoint.m_index1 = r_result->collider_shape;
// manifold->addManifoldPoint(manifoldPoint);
// p_body->get_kinematic_utilities()->m_generatedManifold.push_back(manifold);
//}
#if debug_test_motion
Vector3 sup_line2;
B_TO_G(recovered_motion, sup_line2);
//Vector3 sup_pos;
//B_TO_G( pt.getPositionWorldOnB(), sup_pos);
normalLine->clear();
normalLine->begin(Mesh::PRIMITIVE_LINES, NULL);
normalLine->add_vertex(r_result->collision_point);
normalLine->add_vertex(r_result->collision_point + r_result->collision_normal * 10);
normalLine->end();
#endif
} else {
r_result->remainder = Vector3();
}
}
}
EndExecution:
p_body->get_kinematic_utilities()->resetDefShape();
return hasHit;
}
/// Note: It has a bug when two shapes touches something simultaneously the body is moved too much away
/// (I'm not fixing it because I don't use it).
bool SpaceBullet::recover_from_penetration(RigidBodyBullet *p_body, const btTransform &p_from, btScalar p_maxPenetrationDepth, btScalar p_depenetration_speed, btVector3 &out_recover_position) {
bool penetration = false;
btPairCachingGhostObject *ghost = p_body->get_kinematic_utilities()->m_ghostObject;
for (int kinIndex = p_body->get_kinematic_utilities()->m_shapes.size() - 1; 0 <= kinIndex; --kinIndex) {
const RigidBodyBullet::KinematicShape &kin_shape(p_body->get_kinematic_utilities()->m_shapes[kinIndex]);
if (!kin_shape.is_active()) {
continue;
}
btConvexShape *convexShape = kin_shape.shape;
btTransform shape_xform(kin_shape.transform);
// from local to world
shape_xform.getOrigin() += p_from.getOrigin();
shape_xform.getBasis() *= p_from.getBasis();
// Apply last recovery to avoid doubling the recovering
shape_xform.getOrigin() += out_recover_position;
ghost->setCollisionShape(convexShape);
ghost->setWorldTransform(shape_xform);
btVector3 minAabb, maxAabb;
convexShape->getAabb(shape_xform, minAabb, maxAabb);
dynamicsWorld->getBroadphase()->setAabb(ghost->getBroadphaseHandle(),
minAabb,
maxAabb,
dynamicsWorld->getDispatcher());
dynamicsWorld->getDispatcher()->dispatchAllCollisionPairs(ghost->getOverlappingPairCache(), dynamicsWorld->getDispatchInfo(), dynamicsWorld->getDispatcher());
for (int i = 0; i < ghost->getOverlappingPairCache()->getNumOverlappingPairs(); ++i) {
p_body->get_kinematic_utilities()->m_manifoldArray.resize(0);
btBroadphasePair *collisionPair = &ghost->getOverlappingPairCache()->getOverlappingPairArray()[i];
btCollisionObject *obj0 = static_cast<btCollisionObject *>(collisionPair->m_pProxy0->m_clientObject);
btCollisionObject *obj1 = static_cast<btCollisionObject *>(collisionPair->m_pProxy1->m_clientObject);
if ((obj0 && !obj0->hasContactResponse()) || (obj1 && !obj1->hasContactResponse()))
continue;
// This is not required since the dispatched does all the job
//if (!needsCollision(obj0, obj1))
// continue;
if (collisionPair->m_algorithm)
collisionPair->m_algorithm->getAllContactManifolds(p_body->get_kinematic_utilities()->m_manifoldArray);
for (int j = 0; j < p_body->get_kinematic_utilities()->m_manifoldArray.size(); ++j) {
btPersistentManifold *manifold = p_body->get_kinematic_utilities()->m_manifoldArray[j];
btScalar directionSign = manifold->getBody0() == ghost ? btScalar(-1.0) : btScalar(1.0);
for (int p = 0; p < manifold->getNumContacts(); ++p) {
const btManifoldPoint &pt = manifold->getContactPoint(p);
btScalar dist = pt.getDistance();
if (dist < -p_maxPenetrationDepth) {
penetration = true;
out_recover_position += pt.m_normalWorldOnB * directionSign * (dist + p_maxPenetrationDepth) * p_depenetration_speed;
//print_line("penetrate distance: " + rtos(dist));
}
//else {
// print_line("touching distance: " + rtos(dist));
//}
}
}
}
}
p_body->get_kinematic_utilities()->resetDefShape();
return penetration;
}