Added volumetric fog effect.

This commit is contained in:
Juan Linietsky 2020-08-12 22:21:01 -03:00
parent 64d859df0c
commit 079ca220e1
29 changed files with 1984 additions and 198 deletions

View file

@ -278,7 +278,7 @@ Vector2 CameraMatrix::get_viewport_half_extents() const {
return Vector2(res.x, res.y);
}
void CameraMatrix::get_far_plane_size(real_t &r_width, real_t &r_height) const {
Vector2 CameraMatrix::get_far_plane_half_extents() const {
const real_t *matrix = (const real_t *)this->matrix;
///////--- Far Plane ---///////
Plane far_plane = Plane(matrix[3] - matrix[2],
@ -303,8 +303,7 @@ void CameraMatrix::get_far_plane_size(real_t &r_width, real_t &r_height) const {
Vector3 res;
far_plane.intersect_3(right_plane, top_plane, &res);
r_width = res.x;
r_height = res.y;
return Vector2(res.x, res.y);
}
bool CameraMatrix::get_endpoints(const Transform &p_transform, Vector3 *p_8points) const {

View file

@ -74,7 +74,7 @@ struct CameraMatrix {
bool get_endpoints(const Transform &p_transform, Vector3 *p_8points) const;
Vector2 get_viewport_half_extents() const;
void get_far_plane_size(real_t &r_width, real_t &r_height) const;
Vector2 get_far_plane_half_extents() const;
void invert();
CameraMatrix inverse() const;

View file

@ -498,6 +498,10 @@ void EditorNode::_notification(int p_what) {
RS::get_singleton()->environment_set_sdfgi_ray_count(ray_count);
RS::GIProbeQuality gi_probe_quality = RS::GIProbeQuality(int(GLOBAL_GET("rendering/quality/gi_probes/quality")));
RS::get_singleton()->gi_probe_set_quality(gi_probe_quality);
RS::get_singleton()->environment_set_volumetric_fog_volume_size(GLOBAL_GET("rendering/volumetric_fog/volume_size"), GLOBAL_GET("rendering/volumetric_fog/volume_depth"));
RS::get_singleton()->environment_set_volumetric_fog_filter_active(bool(GLOBAL_GET("rendering/volumetric_fog/use_filter")));
RS::get_singleton()->environment_set_volumetric_fog_directional_shadow_shrink_size(GLOBAL_GET("rendering/volumetric_fog/directional_shadow_shrink"));
RS::get_singleton()->environment_set_volumetric_fog_positional_shadow_shrink_size(GLOBAL_GET("rendering/volumetric_fog/positional_shadow_shrink"));
}
ResourceImporterTexture::get_singleton()->update_imports();

View file

@ -14,6 +14,7 @@ class RDHeaderStruct:
self.vertex_included_files = []
self.fragment_included_files = []
self.compute_included_files = []
self.reading = ""
self.line_offset = 0

View file

@ -270,6 +270,7 @@ void Light3D::_bind_methods() {
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "shadow_normal_bias", PROPERTY_HINT_RANGE, "0,10,0.001"), "set_param", "get_param", PARAM_SHADOW_NORMAL_BIAS);
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "shadow_reverse_cull_face"), "set_shadow_reverse_cull_face", "get_shadow_reverse_cull_face");
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "shadow_transmittance_bias", PROPERTY_HINT_RANGE, "-16,16,0.01"), "set_param", "get_param", PARAM_TRANSMITTANCE_BIAS);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "shadow_fog_fade", PROPERTY_HINT_RANGE, "0.01,10,0.01"), "set_param", "get_param", PARAM_SHADOW_VOLUMETRIC_FOG_FADE);
ADD_PROPERTYI(PropertyInfo(Variant::FLOAT, "shadow_blur", PROPERTY_HINT_RANGE, "0.1,8,0.01"), "set_param", "get_param", PARAM_SHADOW_BLUR);
ADD_GROUP("Editor", "");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "editor_only"), "set_editor_only", "is_editor_only");
@ -292,6 +293,7 @@ void Light3D::_bind_methods() {
BIND_ENUM_CONSTANT(PARAM_SHADOW_BIAS);
BIND_ENUM_CONSTANT(PARAM_SHADOW_PANCAKE_SIZE);
BIND_ENUM_CONSTANT(PARAM_SHADOW_BLUR);
BIND_ENUM_CONSTANT(PARAM_SHADOW_VOLUMETRIC_FOG_FADE);
BIND_ENUM_CONSTANT(PARAM_TRANSMITTANCE_BIAS);
BIND_ENUM_CONSTANT(PARAM_MAX);
@ -345,6 +347,7 @@ Light3D::Light3D(RenderingServer::LightType p_type) {
set_param(PARAM_SHADOW_BIAS, 0.02);
set_param(PARAM_SHADOW_NORMAL_BIAS, 1.0);
set_param(PARAM_TRANSMITTANCE_BIAS, 0.05);
set_param(PARAM_SHADOW_VOLUMETRIC_FOG_FADE, 1.0);
set_param(PARAM_SHADOW_FADE_START, 1);
set_disable_scale(true);
}

View file

@ -58,6 +58,7 @@ public:
PARAM_SHADOW_BIAS = RS::LIGHT_PARAM_SHADOW_BIAS,
PARAM_SHADOW_PANCAKE_SIZE = RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE,
PARAM_SHADOW_BLUR = RS::LIGHT_PARAM_SHADOW_BLUR,
PARAM_SHADOW_VOLUMETRIC_FOG_FADE = RS::LIGHT_PARAM_SHADOW_VOLUMETRIC_FOG_FADE,
PARAM_TRANSMITTANCE_BIAS = RS::LIGHT_PARAM_TRANSMITTANCE_BIAS,
PARAM_MAX = RS::LIGHT_PARAM_MAX
};

View file

@ -840,6 +840,74 @@ void Environment::_update_fog_height() {
fog_height_curve);
}
// Volumetric Fog
void Environment::_update_volumetric_fog() {
RS::get_singleton()->environment_set_volumetric_fog(environment, volumetric_fog_enabled, volumetric_fog_density, volumetric_fog_light, volumetric_fog_light_energy, volumetric_fog_length, volumetric_fog_detail_spread, volumetric_fog_gi_inject, RS::EnvVolumetricFogShadowFilter(volumetric_fog_shadow_filter));
}
void Environment::set_volumetric_fog_enabled(bool p_enable) {
volumetric_fog_enabled = p_enable;
_update_volumetric_fog();
}
bool Environment::is_volumetric_fog_enabled() const {
return volumetric_fog_enabled;
}
void Environment::set_volumetric_fog_density(float p_density) {
p_density = CLAMP(p_density, 0.0000001, 1.0);
volumetric_fog_density = p_density;
_update_volumetric_fog();
}
float Environment::get_volumetric_fog_density() const {
return volumetric_fog_density;
}
void Environment::set_volumetric_fog_light(Color p_color) {
volumetric_fog_light = p_color;
_update_volumetric_fog();
}
Color Environment::get_volumetric_fog_light() const {
return volumetric_fog_light;
}
void Environment::set_volumetric_fog_light_energy(float p_begin) {
volumetric_fog_light_energy = p_begin;
_update_volumetric_fog();
}
float Environment::get_volumetric_fog_light_energy() const {
return volumetric_fog_light_energy;
}
void Environment::set_volumetric_fog_length(float p_length) {
volumetric_fog_length = p_length;
_update_volumetric_fog();
}
float Environment::get_volumetric_fog_length() const {
return volumetric_fog_length;
}
void Environment::set_volumetric_fog_detail_spread(float p_detail_spread) {
volumetric_fog_detail_spread = p_detail_spread;
_update_volumetric_fog();
}
float Environment::get_volumetric_fog_detail_spread() const {
return volumetric_fog_detail_spread;
}
void Environment::set_volumetric_fog_gi_inject(float p_gi_inject) {
volumetric_fog_gi_inject = p_gi_inject;
_update_volumetric_fog();
}
float Environment::get_volumetric_fog_gi_inject() const {
return volumetric_fog_gi_inject;
}
void Environment::set_volumetric_fog_shadow_filter(VolumetricFogShadowFilter p_filter) {
volumetric_fog_shadow_filter = p_filter;
_update_volumetric_fog();
}
Environment::VolumetricFogShadowFilter Environment::get_volumetric_fog_shadow_filter() const {
return volumetric_fog_shadow_filter;
}
// Adjustment
void Environment::set_adjustment_enabled(bool p_enabled) {
@ -1251,7 +1319,7 @@ void Environment::_bind_methods() {
ClassDB::bind_method(D_METHOD("set_fog_height_curve", "curve"), &Environment::set_fog_height_curve);
ClassDB::bind_method(D_METHOD("get_fog_height_curve"), &Environment::get_fog_height_curve);
ADD_GROUP("Fog", "fog_");
ADD_GROUP("Fixed Fog", "fog_");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "fog_enabled"), "set_fog_enabled", "is_fog_enabled");
ADD_PROPERTY(PropertyInfo(Variant::COLOR, "fog_color"), "set_fog_color", "get_fog_color");
ADD_PROPERTY(PropertyInfo(Variant::COLOR, "fog_sun_color"), "set_fog_sun_color", "get_fog_sun_color");
@ -1269,6 +1337,33 @@ void Environment::_bind_methods() {
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "fog_height_max", PROPERTY_HINT_RANGE, "-4000,4000,0.1,or_lesser,or_greater"), "set_fog_height_max", "get_fog_height_max");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "fog_height_curve", PROPERTY_HINT_EXP_EASING), "set_fog_height_curve", "get_fog_height_curve");
ClassDB::bind_method(D_METHOD("set_volumetric_fog_enabled", "enabled"), &Environment::set_volumetric_fog_enabled);
ClassDB::bind_method(D_METHOD("is_volumetric_fog_enabled"), &Environment::is_volumetric_fog_enabled);
ClassDB::bind_method(D_METHOD("set_volumetric_fog_light", "color"), &Environment::set_volumetric_fog_light);
ClassDB::bind_method(D_METHOD("get_volumetric_fog_light"), &Environment::get_volumetric_fog_light);
ClassDB::bind_method(D_METHOD("set_volumetric_fog_density", "density"), &Environment::set_volumetric_fog_density);
ClassDB::bind_method(D_METHOD("get_volumetric_fog_density"), &Environment::get_volumetric_fog_density);
ClassDB::bind_method(D_METHOD("set_volumetric_fog_light_energy", "begin"), &Environment::set_volumetric_fog_light_energy);
ClassDB::bind_method(D_METHOD("get_volumetric_fog_light_energy"), &Environment::get_volumetric_fog_light_energy);
ClassDB::bind_method(D_METHOD("set_volumetric_fog_length", "length"), &Environment::set_volumetric_fog_length);
ClassDB::bind_method(D_METHOD("get_volumetric_fog_length"), &Environment::get_volumetric_fog_length);
ClassDB::bind_method(D_METHOD("set_volumetric_fog_detail_spread", "detail_spread"), &Environment::set_volumetric_fog_detail_spread);
ClassDB::bind_method(D_METHOD("get_volumetric_fog_detail_spread"), &Environment::get_volumetric_fog_detail_spread);
ClassDB::bind_method(D_METHOD("set_volumetric_fog_gi_inject", "gi_inject"), &Environment::set_volumetric_fog_gi_inject);
ClassDB::bind_method(D_METHOD("get_volumetric_fog_gi_inject"), &Environment::get_volumetric_fog_gi_inject);
ClassDB::bind_method(D_METHOD("set_volumetric_fog_shadow_filter", "shadow_filter"), &Environment::set_volumetric_fog_shadow_filter);
ClassDB::bind_method(D_METHOD("get_volumetric_fog_shadow_filter"), &Environment::get_volumetric_fog_shadow_filter);
ADD_GROUP("Volumetric Fog", "volumetric_fog_");
ADD_PROPERTY(PropertyInfo(Variant::BOOL, "volumetric_fog_enabled"), "set_volumetric_fog_enabled", "is_volumetric_fog_enabled");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "volumetric_fog_density", PROPERTY_HINT_RANGE, "0,1,0.0001,or_greater"), "set_volumetric_fog_density", "get_volumetric_fog_density");
ADD_PROPERTY(PropertyInfo(Variant::COLOR, "volumetric_fog_light", PROPERTY_HINT_COLOR_NO_ALPHA), "set_volumetric_fog_light", "get_volumetric_fog_light");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "volumetric_fog_light_energy", PROPERTY_HINT_RANGE, "0,1024,0.01,or_greater"), "set_volumetric_fog_light_energy", "get_volumetric_fog_light_energy");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "volumetric_fog_gi_inject", PROPERTY_HINT_EXP_RANGE, "0.00,16,0.01"), "set_volumetric_fog_gi_inject", "get_volumetric_fog_gi_inject");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "volumetric_fog_length", PROPERTY_HINT_RANGE, "0,1024,0.01,or_greater"), "set_volumetric_fog_length", "get_volumetric_fog_length");
ADD_PROPERTY(PropertyInfo(Variant::FLOAT, "volumetric_fog_detail_spread", PROPERTY_HINT_EXP_EASING, "0.01,16,0.01"), "set_volumetric_fog_detail_spread", "get_volumetric_fog_detail_spread");
ADD_PROPERTY(PropertyInfo(Variant::INT, "volumetric_fog_shadow_filter", PROPERTY_HINT_ENUM, "Disabled,Low,Medium,High"), "set_volumetric_fog_shadow_filter", "get_volumetric_fog_shadow_filter");
// Adjustment
ClassDB::bind_method(D_METHOD("set_adjustment_enabled", "enabled"), &Environment::set_adjustment_enabled);
@ -1331,6 +1426,11 @@ void Environment::_bind_methods() {
BIND_ENUM_CONSTANT(SDFGI_Y_SCALE_DISABLED);
BIND_ENUM_CONSTANT(SDFGI_Y_SCALE_75_PERCENT);
BIND_ENUM_CONSTANT(SDFGI_Y_SCALE_50_PERCENT);
BIND_ENUM_CONSTANT(VOLUMETRIC_FOG_SHADOW_FILTER_DISABLED);
BIND_ENUM_CONSTANT(VOLUMETRIC_FOG_SHADOW_FILTER_LOW);
BIND_ENUM_CONSTANT(VOLUMETRIC_FOG_SHADOW_FILTER_MEDIUM);
BIND_ENUM_CONSTANT(VOLUMETRIC_FOG_SHADOW_FILTER_HIGH);
}
Environment::Environment() {
@ -1347,7 +1447,7 @@ Environment::Environment() {
_update_fog_depth();
_update_fog_height();
_update_adjustment();
_update_volumetric_fog();
_change_notify();
}

View file

@ -97,6 +97,13 @@ public:
GLOW_BLEND_MODE_MIX,
};
enum VolumetricFogShadowFilter {
VOLUMETRIC_FOG_SHADOW_FILTER_DISABLED,
VOLUMETRIC_FOG_SHADOW_FILTER_LOW,
VOLUMETRIC_FOG_SHADOW_FILTER_MEDIUM,
VOLUMETRIC_FOG_SHADOW_FILTER_HIGH,
};
private:
RID environment;
@ -196,6 +203,17 @@ private:
float fog_height_curve = 1.0;
void _update_fog_height();
// Volumetric Fog
bool volumetric_fog_enabled = false;
float volumetric_fog_density = 0.01;
Color volumetric_fog_light = Color(0.0, 0.0, 0.0);
float volumetric_fog_light_energy = 1.0;
float volumetric_fog_length = 64.0;
float volumetric_fog_detail_spread = 2.0;
VolumetricFogShadowFilter volumetric_fog_shadow_filter = VOLUMETRIC_FOG_SHADOW_FILTER_LOW;
float volumetric_fog_gi_inject = 0.0;
void _update_volumetric_fog();
// Adjustment
bool adjustment_enabled = false;
float adjustment_brightness = 1.0;
@ -375,6 +393,24 @@ public:
void set_fog_height_curve(float p_distance);
float get_fog_height_curve() const;
// Volumetric Fog
void set_volumetric_fog_enabled(bool p_enable);
bool is_volumetric_fog_enabled() const;
void set_volumetric_fog_density(float p_density);
float get_volumetric_fog_density() const;
void set_volumetric_fog_light(Color p_color);
Color get_volumetric_fog_light() const;
void set_volumetric_fog_light_energy(float p_begin);
float get_volumetric_fog_light_energy() const;
void set_volumetric_fog_length(float p_length);
float get_volumetric_fog_length() const;
void set_volumetric_fog_detail_spread(float p_detail_spread);
float get_volumetric_fog_detail_spread() const;
void set_volumetric_fog_shadow_filter(VolumetricFogShadowFilter p_filter);
VolumetricFogShadowFilter get_volumetric_fog_shadow_filter() const;
void set_volumetric_fog_gi_inject(float p_gi_inject);
float get_volumetric_fog_gi_inject() const;
// Adjustment
void set_adjustment_enabled(bool p_enabled);
bool is_adjustment_enabled() const;
@ -399,5 +435,6 @@ VARIANT_ENUM_CAST(Environment::SSAOBlur)
VARIANT_ENUM_CAST(Environment::SDFGICascades)
VARIANT_ENUM_CAST(Environment::SDFGIYScale)
VARIANT_ENUM_CAST(Environment::GlowBlendMode)
VARIANT_ENUM_CAST(Environment::VolumetricFogShadowFilter)
#endif // ENVIRONMENT_H

View file

@ -88,6 +88,13 @@ public:
virtual void environment_glow_set_use_bicubic_upscale(bool p_enable) = 0;
virtual void environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture) = 0;
virtual void environment_set_volumetric_fog(RID p_env, bool p_enable, float p_density, const Color &p_light, float p_light_energy, float p_lenght, float p_detail_spread, float p_gi_inject, RS::EnvVolumetricFogShadowFilter p_shadow_filter) = 0;
virtual void environment_set_volumetric_fog_volume_size(int p_size, int p_depth) = 0;
virtual void environment_set_volumetric_fog_filter_active(bool p_enable) = 0;
virtual void environment_set_volumetric_fog_directional_shadow_shrink_size(int p_shrink_size) = 0;
virtual void environment_set_volumetric_fog_positional_shadow_shrink_size(int p_shrink_size) = 0;
virtual void environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance) = 0;
virtual void environment_set_ssr_roughness_quality(RS::EnvironmentSSRRoughnessQuality p_quality) = 0;

View file

@ -1229,6 +1229,50 @@ void RasterizerEffectsRD::resolve_gi(RID p_source_depth, RID p_source_normal_rou
RD::get_singleton()->compute_list_end();
}
void RasterizerEffectsRD::reduce_shadow(RID p_source_shadow, RID p_dest_shadow, const Size2i &p_source_size, const Rect2i &p_source_rect, int p_shrink_limit, RD::ComputeListID compute_list) {
uint32_t push_constant[8] = { (uint32_t)p_source_size.x, (uint32_t)p_source_size.y, (uint32_t)p_source_rect.position.x, (uint32_t)p_source_rect.position.y, (uint32_t)p_shrink_limit, 0, 0, 0 };
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, shadow_reduce.pipelines[SHADOW_REDUCE_REDUCE]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_image_pair(p_source_shadow, p_dest_shadow), 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(uint32_t) * 8);
RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_source_rect.size.width, p_source_rect.size.height, 1, 8, 8, 1);
}
void RasterizerEffectsRD::filter_shadow(RID p_shadow, RID p_backing_shadow, const Size2i &p_source_size, const Rect2i &p_source_rect, RenderingServer::EnvVolumetricFogShadowFilter p_filter, RD::ComputeListID compute_list, bool p_vertical, bool p_horizontal) {
uint32_t push_constant[8] = { (uint32_t)p_source_size.x, (uint32_t)p_source_size.y, (uint32_t)p_source_rect.position.x, (uint32_t)p_source_rect.position.y, 0, 0, 0, 0 };
switch (p_filter) {
case RS::ENV_VOLUMETRIC_FOG_SHADOW_FILTER_DISABLED:
case RS::ENV_VOLUMETRIC_FOG_SHADOW_FILTER_LOW: {
push_constant[5] = 0;
} break;
case RS::ENV_VOLUMETRIC_FOG_SHADOW_FILTER_MEDIUM: {
push_constant[5] = 9;
} break;
case RS::ENV_VOLUMETRIC_FOG_SHADOW_FILTER_HIGH: {
push_constant[5] = 18;
} break;
}
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, shadow_reduce.pipelines[SHADOW_REDUCE_FILTER]);
if (p_vertical) {
push_constant[6] = 1;
push_constant[7] = 0;
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_image_pair(p_shadow, p_backing_shadow), 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(uint32_t) * 8);
RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_source_rect.size.width, p_source_rect.size.height, 1, 8, 8, 1);
}
if (p_vertical && p_horizontal) {
RD::get_singleton()->compute_list_add_barrier(compute_list);
}
if (p_horizontal) {
push_constant[6] = 0;
push_constant[7] = 1;
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, _get_compute_uniform_set_from_image_pair(p_backing_shadow, p_shadow), 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(uint32_t) * 8);
RD::get_singleton()->compute_list_dispatch_threads(compute_list, p_source_rect.size.width, p_source_rect.size.height, 1, 8, 8, 1);
}
}
RasterizerEffectsRD::RasterizerEffectsRD() {
{ // Initialize copy
Vector<String> copy_modes;
@ -1560,6 +1604,20 @@ RasterizerEffectsRD::RasterizerEffectsRD() {
}
}
{
Vector<String> shadow_reduce_modes;
shadow_reduce_modes.push_back("\n#define MODE_REDUCE\n");
shadow_reduce_modes.push_back("\n#define MODE_FILTER\n");
shadow_reduce.shader.initialize(shadow_reduce_modes);
shadow_reduce.shader_version = shadow_reduce.shader.version_create();
for (int i = 0; i < SHADOW_REDUCE_MAX; i++) {
shadow_reduce.pipelines[i] = RD::get_singleton()->compute_pipeline_create(shadow_reduce.shader.version_get_shader(shadow_reduce.shader_version, i));
}
}
RD::SamplerState sampler;
sampler.mag_filter = RD::SAMPLER_FILTER_LINEAR;
sampler.min_filter = RD::SAMPLER_FILTER_LINEAR;
@ -1624,4 +1682,5 @@ RasterizerEffectsRD::~RasterizerEffectsRD() {
ssr_scale.shader.version_free(ssr_scale.shader_version);
sss.shader.version_free(sss.shader_version);
tonemap.shader.version_free(tonemap.shader_version);
shadow_reduce.shader.version_free(shadow_reduce.shader_version);
}

View file

@ -46,6 +46,7 @@
#include "servers/rendering/rasterizer_rd/shaders/screen_space_reflection.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/screen_space_reflection_filter.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/screen_space_reflection_scale.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/shadow_reduce.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/specular_merge.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/ssao.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/ssao_blur.glsl.gen.h"
@ -534,6 +535,18 @@ class RasterizerEffectsRD {
RID pipelines[RESOLVE_MODE_MAX]; //3 quality levels
} resolve;
enum ShadowReduceMode {
SHADOW_REDUCE_REDUCE,
SHADOW_REDUCE_FILTER,
SHADOW_REDUCE_MAX
};
struct ShadowReduce {
ShadowReduceShaderRD shader;
RID shader_version;
RID pipelines[2];
} shadow_reduce;
RID default_sampler;
RID default_mipmap_sampler;
RID index_buffer;
@ -633,6 +646,9 @@ public:
void resolve_gi(RID p_source_depth, RID p_source_normal_roughness, RID p_source_giprobe, RID p_dest_depth, RID p_dest_normal_roughness, RID p_dest_giprobe, Vector2i p_screen_size, int p_samples);
void reduce_shadow(RID p_source_shadow, RID p_dest_shadow, const Size2i &p_source_size, const Rect2i &p_source_rect, int p_shrink_limit, RenderingDevice::ComputeListID compute_list);
void filter_shadow(RID p_shadow, RID p_backing_shadow, const Size2i &p_source_size, const Rect2i &p_source_rect, RS::EnvVolumetricFogShadowFilter p_filter, RenderingDevice::ComputeListID compute_list, bool p_vertical = true, bool p_horizontal = true);
RasterizerEffectsRD();
~RasterizerEffectsRD();
};

View file

@ -1145,12 +1145,19 @@ void RasterizerSceneHighEndRD::_setup_environment(RID p_environment, RID p_rende
scene_state.ubo.time = time;
scene_state.ubo.gi_upscale_for_msaa = false;
scene_state.ubo.volumetric_fog_enabled = false;
if (p_render_buffers.is_valid()) {
RenderBufferDataHighEnd *render_buffers = (RenderBufferDataHighEnd *)render_buffers_get_data(p_render_buffers);
if (render_buffers->msaa != RS::VIEWPORT_MSAA_DISABLED) {
scene_state.ubo.gi_upscale_for_msaa = true;
}
if (render_buffers_has_volumetric_fog(p_render_buffers)) {
scene_state.ubo.volumetric_fog_enabled = true;
scene_state.ubo.volumetric_fog_inv_length = 1.0 / render_buffers_get_volumetric_fog_end(p_render_buffers);
scene_state.ubo.volumetric_fog_detail_spread = 1.0 / render_buffers_get_volumetric_fog_detail_spread(p_render_buffers); //reverse lookup
}
}
#if 0
if (p_render_buffers.is_valid() && render_buffers_is_sdfgi_enabled(p_render_buffers)) {
@ -1754,6 +1761,7 @@ void RasterizerSceneHighEndRD::_render_scene(RID p_render_buffer, const Transfor
RD::get_singleton()->draw_list_end();
if (render_buffer && render_buffer->msaa != RS::VIEWPORT_MSAA_DISABLED) {
RENDER_TIMESTAMP("Resolve Depth Pre-Pass");
if (depth_pass_mode == PASS_MODE_DEPTH_NORMAL_ROUGHNESS || depth_pass_mode == PASS_MODE_DEPTH_NORMAL_ROUGHNESS_GIPROBE) {
static int texture_samples[RS::VIEWPORT_MSAA_MAX] = { 1, 2, 4, 8, 16 };
storage->get_effects()->resolve_gi(render_buffer->depth_msaa, render_buffer->normal_roughness_buffer_msaa, using_giprobe ? render_buffer->giprobe_buffer_msaa : RID(), render_buffer->depth, render_buffer->normal_roughness_buffer, using_giprobe ? render_buffer->giprobe_buffer : RID(), Vector2i(render_buffer->width, render_buffer->height), texture_samples[render_buffer->msaa]);
@ -2502,7 +2510,17 @@ void RasterizerSceneHighEndRD::_update_render_buffers_uniform_set(RID p_render_b
u.ids.push_back(render_buffers_get_gi_probe_buffer(p_render_buffers));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 10;
u.type = RD::UNIFORM_TYPE_TEXTURE;
RID vfog = render_buffers_get_volumetric_fog_texture(p_render_buffers);
if (vfog.is_null()) {
vfog = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE);
}
u.ids.push_back(vfog);
uniforms.push_back(u);
}
rb->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, default_shader_rd, RENDER_BUFFERS_UNIFORM_SET);
}
}
@ -2815,6 +2833,13 @@ RasterizerSceneHighEndRD::RasterizerSceneHighEndRD(RasterizerStorageRD *p_storag
u.ids.push_back(render_buffers_get_default_gi_probe_buffer());
uniforms.push_back(u);
}
{
RD::Uniform u;
u.binding = 10;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE));
uniforms.push_back(u);
}
default_render_buffers_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, default_shader_rd, RENDER_BUFFERS_UNIFORM_SET);
}

View file

@ -359,6 +359,11 @@ class RasterizerSceneHighEndRD : public RasterizerSceneRD {
int32_t sdf_size[3];
uint32_t gi_upscale_for_msaa;
uint32_t volumetric_fog_enabled;
float volumetric_fog_inv_length;
float volumetric_fog_detail_spread;
uint32_t volumetric_fog_pad;
};
UBO ubo;

View file

@ -227,6 +227,7 @@ void RasterizerSceneRD::_sdfgi_erase(RenderBuffers *rb) {
RD::get_singleton()->free(rb->sdfgi->lightprobe_data);
RD::get_singleton()->free(rb->sdfgi->lightprobe_history_scroll);
RD::get_singleton()->free(rb->sdfgi->occlusion_data);
RD::get_singleton()->free(rb->sdfgi->ambient_texture);
RD::get_singleton()->free(rb->sdfgi->cascades_ubo);
@ -371,6 +372,16 @@ void RasterizerSceneRD::sdfgi_update(RID p_render_buffers, RID p_environment, co
RD::TextureView tv;
tv.format_override = RD::DATA_FORMAT_E5B9G9R9_UFLOAT_PACK32;
sdfgi->lightprobe_texture = RD::get_singleton()->texture_create_shared(tv, sdfgi->lightprobe_data);
//texture handling ambient data, to integrate with volumetric foc
RD::TextureFormat tf_ambient = tf_probes;
tf_ambient.array_layers = sdfgi->cascades.size();
tf_ambient.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT; //pack well with RGBE
tf_ambient.width = sdfgi->probe_axis_count * sdfgi->probe_axis_count;
tf_ambient.height = sdfgi->probe_axis_count;
tf_ambient.type = RD::TEXTURE_TYPE_2D_ARRAY;
//lightprobe texture is an octahedral texture
sdfgi->ambient_texture = RD::get_singleton()->texture_create(tf_ambient, RD::TextureView());
}
sdfgi->cascades_ubo = RD::get_singleton()->uniform_buffer_create(sizeof(SDFGI::Cascade::UBO) * SDFGI::MAX_CASCADES);
@ -930,6 +941,13 @@ void RasterizerSceneRD::sdfgi_update(RID p_render_buffers, RID p_environment, co
u.ids.push_back(parent_average);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 14;
u.ids.push_back(sdfgi->ambient_texture);
uniforms.push_back(u);
}
sdfgi->cascades[i].integrate_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, sdfgi_shader.integrate.version_get_shader(sdfgi_shader.integrate_shader, 0), 0);
}
@ -1282,6 +1300,7 @@ void RasterizerSceneRD::sdfgi_update_probes(RID p_render_buffers, RID p_environm
push_constant.ray_bias = rb->sdfgi->probe_bias;
push_constant.image_size[0] = rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count;
push_constant.image_size[1] = rb->sdfgi->probe_axis_count;
push_constant.store_ambient_texture = env->volumetric_fog_enabled;
RID sky_uniform_set = sdfgi_shader.integrate_default_sky_uniform_set;
push_constant.sky_mode = SDGIShader::IntegratePushConstant::SKY_MODE_DISABLED;
@ -1375,6 +1394,96 @@ void RasterizerSceneRD::sdfgi_update_probes(RID p_render_buffers, RID p_environm
RENDER_TIMESTAMP("<SDFGI Update Probes");
}
void RasterizerSceneRD::_setup_giprobes(RID p_render_buffers, const Transform &p_transform, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, uint32_t &r_gi_probes_used) {
r_gi_probes_used = 0;
RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
ERR_FAIL_COND(rb == nullptr);
RID gi_probe_buffer = render_buffers_get_gi_probe_buffer(p_render_buffers);
GI::GIProbeData gi_probe_data[RenderBuffers::MAX_GIPROBES];
bool giprobes_changed = false;
Transform to_camera;
to_camera.origin = p_transform.origin; //only translation, make local
for (int i = 0; i < RenderBuffers::MAX_GIPROBES; i++) {
RID texture;
if (i < p_gi_probe_cull_count) {
GIProbeInstance *gipi = gi_probe_instance_owner.getornull(p_gi_probe_cull_result[i]);
if (gipi) {
texture = gipi->texture;
GI::GIProbeData &gipd = gi_probe_data[i];
RID base_probe = gipi->probe;
Transform to_cell = storage->gi_probe_get_to_cell_xform(gipi->probe) * gipi->transform.affine_inverse() * to_camera;
gipd.xform[0] = to_cell.basis.elements[0][0];
gipd.xform[1] = to_cell.basis.elements[1][0];
gipd.xform[2] = to_cell.basis.elements[2][0];
gipd.xform[3] = 0;
gipd.xform[4] = to_cell.basis.elements[0][1];
gipd.xform[5] = to_cell.basis.elements[1][1];
gipd.xform[6] = to_cell.basis.elements[2][1];
gipd.xform[7] = 0;
gipd.xform[8] = to_cell.basis.elements[0][2];
gipd.xform[9] = to_cell.basis.elements[1][2];
gipd.xform[10] = to_cell.basis.elements[2][2];
gipd.xform[11] = 0;
gipd.xform[12] = to_cell.origin.x;
gipd.xform[13] = to_cell.origin.y;
gipd.xform[14] = to_cell.origin.z;
gipd.xform[15] = 1;
Vector3 bounds = storage->gi_probe_get_octree_size(base_probe);
gipd.bounds[0] = bounds.x;
gipd.bounds[1] = bounds.y;
gipd.bounds[2] = bounds.z;
gipd.dynamic_range = storage->gi_probe_get_dynamic_range(base_probe) * storage->gi_probe_get_energy(base_probe);
gipd.bias = storage->gi_probe_get_bias(base_probe);
gipd.normal_bias = storage->gi_probe_get_normal_bias(base_probe);
gipd.blend_ambient = !storage->gi_probe_is_interior(base_probe);
gipd.anisotropy_strength = 0;
gipd.ao = storage->gi_probe_get_ao(base_probe);
gipd.ao_size = Math::pow(storage->gi_probe_get_ao_size(base_probe), 4.0f);
gipd.mipmaps = gipi->mipmaps.size();
}
r_gi_probes_used++;
}
if (texture == RID()) {
texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE);
}
if (texture != rb->giprobe_textures[i]) {
giprobes_changed = true;
rb->giprobe_textures[i] = texture;
}
}
if (giprobes_changed) {
RD::get_singleton()->free(rb->gi_uniform_set);
rb->gi_uniform_set = RID();
if (rb->volumetric_fog) {
if (RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
RD::get_singleton()->free(rb->volumetric_fog->uniform_set);
RD::get_singleton()->free(rb->volumetric_fog->uniform_set2);
}
rb->volumetric_fog->uniform_set = RID();
rb->volumetric_fog->uniform_set2 = RID();
}
}
if (p_gi_probe_cull_count > 0) {
RD::get_singleton()->buffer_update(gi_probe_buffer, 0, sizeof(GI::GIProbeData) * MIN(RenderBuffers::MAX_GIPROBES, p_gi_probe_cull_count), gi_probe_data, true);
}
}
void RasterizerSceneRD::_process_gi(RID p_render_buffers, RID p_normal_roughness_buffer, RID p_ambient_buffer, RID p_reflection_buffer, RID p_gi_probe_buffer, RID p_environment, const CameraMatrix &p_projection, const Transform &p_transform, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count) {
RENDER_TIMESTAMP("Render GI");
@ -1490,81 +1599,6 @@ void RasterizerSceneRD::_process_gi(RID p_render_buffers, RID p_normal_roughness
RD::get_singleton()->buffer_update(gi.sdfgi_ubo, 0, sizeof(GI::SDFGIData), &sdfgi_data, true);
}
{
RID gi_probe_buffer = render_buffers_get_gi_probe_buffer(p_render_buffers);
GI::GIProbeData gi_probe_data[RenderBuffers::MAX_GIPROBES];
bool giprobes_changed = false;
Transform to_camera;
to_camera.origin = p_transform.origin; //only translation, make local
for (int i = 0; i < RenderBuffers::MAX_GIPROBES; i++) {
RID texture;
if (i < p_gi_probe_cull_count) {
GIProbeInstance *gipi = gi_probe_instance_owner.getornull(p_gi_probe_cull_result[i]);
if (gipi) {
texture = gipi->texture;
GI::GIProbeData &gipd = gi_probe_data[i];
RID base_probe = gipi->probe;
Transform to_cell = storage->gi_probe_get_to_cell_xform(gipi->probe) * gipi->transform.affine_inverse() * to_camera;
gipd.xform[0] = to_cell.basis.elements[0][0];
gipd.xform[1] = to_cell.basis.elements[1][0];
gipd.xform[2] = to_cell.basis.elements[2][0];
gipd.xform[3] = 0;
gipd.xform[4] = to_cell.basis.elements[0][1];
gipd.xform[5] = to_cell.basis.elements[1][1];
gipd.xform[6] = to_cell.basis.elements[2][1];
gipd.xform[7] = 0;
gipd.xform[8] = to_cell.basis.elements[0][2];
gipd.xform[9] = to_cell.basis.elements[1][2];
gipd.xform[10] = to_cell.basis.elements[2][2];
gipd.xform[11] = 0;
gipd.xform[12] = to_cell.origin.x;
gipd.xform[13] = to_cell.origin.y;
gipd.xform[14] = to_cell.origin.z;
gipd.xform[15] = 1;
Vector3 bounds = storage->gi_probe_get_octree_size(base_probe);
gipd.bounds[0] = bounds.x;
gipd.bounds[1] = bounds.y;
gipd.bounds[2] = bounds.z;
gipd.dynamic_range = storage->gi_probe_get_dynamic_range(base_probe) * storage->gi_probe_get_energy(base_probe);
gipd.bias = storage->gi_probe_get_bias(base_probe);
gipd.normal_bias = storage->gi_probe_get_normal_bias(base_probe);
gipd.blend_ambient = !storage->gi_probe_is_interior(base_probe);
gipd.anisotropy_strength = 0;
gipd.ao = storage->gi_probe_get_ao(base_probe);
gipd.ao_size = Math::pow(storage->gi_probe_get_ao_size(base_probe), 4.0f);
}
}
if (texture == RID()) {
texture = storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_3D_WHITE);
}
if (texture != rb->giprobe_textures[i]) {
giprobes_changed = true;
rb->giprobe_textures[i] = texture;
}
}
if (giprobes_changed) {
RD::get_singleton()->free(rb->gi_uniform_set);
rb->gi_uniform_set = RID();
}
if (p_gi_probe_cull_count > 0) {
RD::get_singleton()->buffer_update(gi_probe_buffer, 0, sizeof(GI::GIProbeData) * MIN(RenderBuffers::MAX_GIPROBES, p_gi_probe_cull_count), gi_probe_data, true);
}
}
if (rb->gi_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->gi_uniform_set)) {
Vector<RD::Uniform> uniforms;
{
@ -2880,6 +2914,48 @@ void RasterizerSceneRD::environment_set_sdfgi(RID p_env, bool p_enable, RS::Envi
env->sdfgi_y_scale = p_y_scale;
}
void RasterizerSceneRD::environment_set_volumetric_fog(RID p_env, bool p_enable, float p_density, const Color &p_light, float p_light_energy, float p_lenght, float p_detail_spread, float p_gi_inject, RenderingServer::EnvVolumetricFogShadowFilter p_shadow_filter) {
Environment *env = environment_owner.getornull(p_env);
ERR_FAIL_COND(!env);
env->volumetric_fog_enabled = p_enable;
env->volumetric_fog_density = p_density;
env->volumetric_fog_light = p_light;
env->volumetric_fog_light_energy = p_light_energy;
env->volumetric_fog_length = p_lenght;
env->volumetric_fog_detail_spread = p_detail_spread;
env->volumetric_fog_shadow_filter = p_shadow_filter;
env->volumetric_fog_gi_inject = p_gi_inject;
}
void RasterizerSceneRD::environment_set_volumetric_fog_volume_size(int p_size, int p_depth) {
volumetric_fog_size = p_size;
volumetric_fog_depth = p_depth;
}
void RasterizerSceneRD::environment_set_volumetric_fog_filter_active(bool p_enable) {
volumetric_fog_filter_active = p_enable;
}
void RasterizerSceneRD::environment_set_volumetric_fog_directional_shadow_shrink_size(int p_shrink_size) {
p_shrink_size = nearest_power_of_2_templated(p_shrink_size);
if (volumetric_fog_directional_shadow_shrink == (uint32_t)p_shrink_size) {
return;
}
_clear_shadow_shrink_stages(directional_shadow.shrink_stages);
}
void RasterizerSceneRD::environment_set_volumetric_fog_positional_shadow_shrink_size(int p_shrink_size) {
p_shrink_size = nearest_power_of_2_templated(p_shrink_size);
if (volumetric_fog_positional_shadow_shrink == (uint32_t)p_shrink_size) {
return;
}
for (uint32_t i = 0; i < shadow_atlas_owner.get_rid_count(); i++) {
ShadowAtlas *sa = shadow_atlas_owner.get_ptr_by_index(i);
_clear_shadow_shrink_stages(sa->shrink_stages);
}
}
void RasterizerSceneRD::environment_set_sdfgi_ray_count(RS::EnvironmentSDFGIRayCount p_ray_count) {
sdfgi_ray_count = p_ray_count;
}
@ -3286,6 +3362,7 @@ void RasterizerSceneRD::shadow_atlas_set_size(RID p_atlas, int p_size) {
if (shadow_atlas->depth.is_valid()) {
RD::get_singleton()->free(shadow_atlas->depth);
shadow_atlas->depth = RID();
_clear_shadow_shrink_stages(shadow_atlas->shrink_stages);
}
for (int i = 0; i < 4; i++) {
//clear subdivisions
@ -3579,6 +3656,7 @@ void RasterizerSceneRD::directional_shadow_atlas_set_size(int p_size) {
if (directional_shadow.depth.is_valid()) {
RD::get_singleton()->free(directional_shadow.depth);
_clear_shadow_shrink_stages(directional_shadow.shrink_stages);
directional_shadow.depth = RID();
}
@ -4951,6 +5029,8 @@ void RasterizerSceneRD::_process_ssao(RID p_render_buffers, RID p_environment, R
Environment *env = environment_owner.getornull(p_environment);
ERR_FAIL_COND(!env);
RENDER_TIMESTAMP("Process SSAO");
if (rb->ssao.ao[0].is_valid() && rb->ssao.ao_full.is_valid() != ssao_half_size) {
RD::get_singleton()->free(rb->ssao.depth);
RD::get_singleton()->free(rb->ssao.ao[0]);
@ -5463,6 +5543,30 @@ RID RasterizerSceneRD::render_buffers_get_sdfgi_occlusion_texture(RID p_render_b
return rb->sdfgi->occlusion_texture;
}
bool RasterizerSceneRD::render_buffers_has_volumetric_fog(RID p_render_buffers) const {
const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
ERR_FAIL_COND_V(!rb, false);
return rb->volumetric_fog != nullptr;
}
RID RasterizerSceneRD::render_buffers_get_volumetric_fog_texture(RID p_render_buffers) {
const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, RID());
return rb->volumetric_fog->fog_map;
}
float RasterizerSceneRD::render_buffers_get_volumetric_fog_end(RID p_render_buffers) {
const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, 0);
return rb->volumetric_fog->length;
}
float RasterizerSceneRD::render_buffers_get_volumetric_fog_detail_spread(RID p_render_buffers) {
const RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
ERR_FAIL_COND_V(!rb || !rb->volumetric_fog, 0);
return rb->volumetric_fog->spread;
}
void RasterizerSceneRD::render_buffers_configure(RID p_render_buffers, RID p_render_target, int p_width, int p_height, RS::ViewportMSAA p_msaa, RenderingServer::ViewportScreenSpaceAA p_screen_space_aa) {
RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
rb->width = p_width;
@ -5679,9 +5783,10 @@ void RasterizerSceneRD::_setup_reflections(RID *p_reflection_probe_cull_result,
}
}
void RasterizerSceneRD::_setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count) {
void RasterizerSceneRD::_setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count) {
uint32_t light_count = 0;
r_directional_light_count = 0;
r_positional_light_count = 0;
sky_scene_state.directional_light_count = 0;
for (int i = 0; i < p_light_cull_count; i++) {
@ -5797,7 +5902,7 @@ void RasterizerSceneRD::_setup_lights(RID *p_light_cull_result, int p_light_cull
light_data.shadow_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BIAS) * bias_scale;
light_data.shadow_normal_bias[j] = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS) * light_instance_get_directional_shadow_texel_size(li, j);
light_data.shadow_transmittance_bias[j] = storage->light_get_transmittance_bias(base) * bias_scale;
light_data.shadow_transmittance_z_scale[j] = light_instance_get_shadow_range(li, j);
light_data.shadow_z_range[j] = light_instance_get_shadow_range(li, j);
light_data.shadow_range_begin[j] = light_instance_get_shadow_range_begin(li, j);
RasterizerStorageRD::store_camera(shadow_mtx, light_data.shadow_matrices[j]);
@ -5826,6 +5931,7 @@ void RasterizerSceneRD::_setup_lights(RID *p_light_cull_result, int p_light_cull
float fade_start = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_FADE_START);
light_data.fade_from = -light_data.shadow_split_offsets[3] * MIN(fade_start, 0.999); //using 1.0 would break smoothstep
light_data.fade_to = -light_data.shadow_split_offsets[3];
light_data.shadow_volumetric_fog_fade = 1.0 / storage->light_get_shadow_volumetric_fog_fade(base);
light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
light_data.softshadow_angle = angular_diameter;
@ -5867,6 +5973,7 @@ void RasterizerSceneRD::_setup_lights(RID *p_light_cull_result, int p_light_cull
Transform light_transform = light_instance_get_base_transform(li);
Cluster::LightData &light_data = cluster.lights[light_count];
cluster.lights_instances[light_count] = li;
float sign = storage->light_is_negative(base) ? -1 : 1;
Color linear_col = storage->light_get_color(base).to_linear();
@ -5965,6 +6072,7 @@ void RasterizerSceneRD::_setup_lights(RID *p_light_cull_result, int p_light_cull
light_data.atlas_rect[3] = rect.size.height;
light_data.soft_shadow_scale = storage->light_get_param(base, RS::LIGHT_PARAM_SHADOW_BLUR);
light_data.shadow_volumetric_fog_fade = 1.0 / storage->light_get_shadow_volumetric_fog_fade(base);
if (type == RS::LIGHT_OMNI) {
light_data.atlas_rect[3] *= 0.5; //one paraboloid on top of another
@ -6005,6 +6113,7 @@ void RasterizerSceneRD::_setup_lights(RID *p_light_cull_result, int p_light_cull
cluster.builder.add_light(type == RS::LIGHT_SPOT ? LightClusterBuilder::LIGHT_TYPE_SPOT : LightClusterBuilder::LIGHT_TYPE_OMNI, light_transform, radius, spot_angle);
light_count++;
r_positional_light_count++;
} break;
}
@ -6152,6 +6261,526 @@ void RasterizerSceneRD::_setup_decals(const RID *p_decal_instances, int p_decal_
}
}
void RasterizerSceneRD::_volumetric_fog_erase(RenderBuffers *rb) {
ERR_FAIL_COND(!rb->volumetric_fog);
RD::get_singleton()->free(rb->volumetric_fog->light_density_map);
RD::get_singleton()->free(rb->volumetric_fog->fog_map);
memdelete(rb->volumetric_fog);
rb->volumetric_fog = nullptr;
}
void RasterizerSceneRD::_allocate_shadow_shrink_stages(RID p_base, int p_base_size, Vector<ShadowShrinkStage> &shrink_stages, uint32_t p_target_size) {
//create fog mipmaps
uint32_t fog_texture_size = p_target_size;
uint32_t base_texture_size = p_base_size;
ShadowShrinkStage first;
first.size = base_texture_size;
first.texture = p_base;
shrink_stages.push_back(first); //put depth first in case we dont find smaller ones
while (fog_texture_size < base_texture_size) {
base_texture_size = MAX(base_texture_size / 8, fog_texture_size);
ShadowShrinkStage s;
s.size = base_texture_size;
RD::TextureFormat tf;
tf.format = RD::DATA_FORMAT_R32_SFLOAT;
tf.width = base_texture_size;
tf.height = base_texture_size;
tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
if (base_texture_size == fog_texture_size) {
s.filter_texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT;
}
s.texture = RD::get_singleton()->texture_create(tf, RD::TextureView());
shrink_stages.push_back(s);
}
}
void RasterizerSceneRD::_clear_shadow_shrink_stages(Vector<ShadowShrinkStage> &shrink_stages) {
for (int i = 1; i < shrink_stages.size(); i++) {
RD::get_singleton()->free(shrink_stages[i].texture);
if (shrink_stages[i].filter_texture.is_valid()) {
RD::get_singleton()->free(shrink_stages[i].filter_texture);
}
}
shrink_stages.clear();
}
void RasterizerSceneRD::_update_volumetric_fog(RID p_render_buffers, RID p_environment, const CameraMatrix &p_cam_projection, const Transform &p_cam_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_gi_probe_count) {
RenderBuffers *rb = render_buffers_owner.getornull(p_render_buffers);
ERR_FAIL_COND(!rb);
Environment *env = environment_owner.getornull(p_environment);
float ratio = float(rb->width) / float((rb->width + rb->height) / 2);
uint32_t target_width = uint32_t(float(volumetric_fog_size) * ratio);
uint32_t target_height = uint32_t(float(volumetric_fog_size) / ratio);
if (rb->volumetric_fog) {
//validate
if (!env || !env->volumetric_fog_enabled || rb->volumetric_fog->width != target_width || rb->volumetric_fog->height != target_height || rb->volumetric_fog->depth != volumetric_fog_depth) {
_volumetric_fog_erase(rb);
_render_buffers_uniform_set_changed(p_render_buffers);
}
}
if (!env || !env->volumetric_fog_enabled) {
//no reason to enable or update, bye
return;
}
if (env && env->volumetric_fog_enabled && !rb->volumetric_fog) {
//required volumetric fog but not existing, create
rb->volumetric_fog = memnew(VolumetricFog);
rb->volumetric_fog->width = target_width;
rb->volumetric_fog->height = target_height;
rb->volumetric_fog->depth = volumetric_fog_depth;
RD::TextureFormat tf;
tf.format = RD::DATA_FORMAT_R16G16B16A16_SFLOAT;
tf.width = target_width;
tf.height = target_height;
tf.depth = volumetric_fog_depth;
tf.type = RD::TEXTURE_TYPE_3D;
tf.usage_bits = RD::TEXTURE_USAGE_STORAGE_BIT;
rb->volumetric_fog->light_density_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
tf.usage_bits |= RD::TEXTURE_USAGE_SAMPLING_BIT;
rb->volumetric_fog->fog_map = RD::get_singleton()->texture_create(tf, RD::TextureView());
_render_buffers_uniform_set_changed(p_render_buffers);
}
//update directional shadow
if (p_use_directional_shadows) {
if (directional_shadow.shrink_stages.empty()) {
if (rb->volumetric_fog->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
//invalidate uniform set, we will need a new one
RD::get_singleton()->free(rb->volumetric_fog->uniform_set);
rb->volumetric_fog->uniform_set = RID();
}
_allocate_shadow_shrink_stages(directional_shadow.depth, directional_shadow.size, directional_shadow.shrink_stages, volumetric_fog_directional_shadow_shrink);
}
if (directional_shadow.shrink_stages.size() > 1) {
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
for (int i = 1; i < directional_shadow.shrink_stages.size(); i++) {
int32_t src_size = directional_shadow.shrink_stages[i - 1].size;
int32_t dst_size = directional_shadow.shrink_stages[i].size;
Rect2i r(0, 0, src_size, src_size);
int32_t shrink_limit = 8 / (src_size / dst_size);
storage->get_effects()->reduce_shadow(directional_shadow.shrink_stages[i - 1].texture, directional_shadow.shrink_stages[i].texture, Size2i(src_size, src_size), r, shrink_limit, compute_list);
RD::get_singleton()->compute_list_add_barrier(compute_list);
if (env->volumetric_fog_shadow_filter != RS::ENV_VOLUMETRIC_FOG_SHADOW_FILTER_DISABLED && directional_shadow.shrink_stages[i].filter_texture.is_valid()) {
Rect2i rf(0, 0, dst_size, dst_size);
storage->get_effects()->filter_shadow(directional_shadow.shrink_stages[i].texture, directional_shadow.shrink_stages[i].filter_texture, Size2i(dst_size, dst_size), rf, env->volumetric_fog_shadow_filter, compute_list);
}
}
RD::get_singleton()->compute_list_end();
}
}
ShadowAtlas *shadow_atlas = shadow_atlas_owner.getornull(p_shadow_atlas);
if (shadow_atlas) {
//shrink shadows that need to be shrunk
bool force_shrink_shadows = false;
if (shadow_atlas->shrink_stages.empty()) {
if (rb->volumetric_fog->uniform_set.is_valid() && RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
//invalidate uniform set, we will need a new one
RD::get_singleton()->free(rb->volumetric_fog->uniform_set);
rb->volumetric_fog->uniform_set = RID();
}
_allocate_shadow_shrink_stages(shadow_atlas->depth, shadow_atlas->size, shadow_atlas->shrink_stages, volumetric_fog_positional_shadow_shrink);
force_shrink_shadows = true;
}
if (rb->volumetric_fog->last_shadow_filter != env->volumetric_fog_shadow_filter) {
//if shadow filter changed, invalidate caches
rb->volumetric_fog->last_shadow_filter = env->volumetric_fog_shadow_filter;
force_shrink_shadows = true;
}
cluster.lights_shadow_rect_cache_count = 0;
for (int i = 0; i < p_positional_light_count; i++) {
if (cluster.lights[i].shadow_color_enabled[3] > 127) {
RID li = cluster.lights_instances[i];
ERR_CONTINUE(!shadow_atlas->shadow_owners.has(li));
uint32_t key = shadow_atlas->shadow_owners[li];
uint32_t quadrant = (key >> ShadowAtlas::QUADRANT_SHIFT) & 0x3;
uint32_t shadow = key & ShadowAtlas::SHADOW_INDEX_MASK;
ERR_CONTINUE((int)shadow >= shadow_atlas->quadrants[quadrant].shadows.size());
ShadowAtlas::Quadrant::Shadow &s = shadow_atlas->quadrants[quadrant].shadows.write[shadow];
if (!force_shrink_shadows && s.fog_version == s.version) {
continue; //do not update, no need
}
s.fog_version = s.version;
uint32_t quadrant_size = shadow_atlas->size >> 1;
Rect2i atlas_rect;
atlas_rect.position.x = (quadrant & 1) * quadrant_size;
atlas_rect.position.y = (quadrant >> 1) * quadrant_size;
uint32_t shadow_size = (quadrant_size / shadow_atlas->quadrants[quadrant].subdivision);
atlas_rect.position.x += (shadow % shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
atlas_rect.position.y += (shadow / shadow_atlas->quadrants[quadrant].subdivision) * shadow_size;
atlas_rect.size.x = shadow_size;
atlas_rect.size.y = shadow_size;
cluster.lights_shadow_rect_cache[cluster.lights_shadow_rect_cache_count] = atlas_rect;
cluster.lights_shadow_rect_cache_count++;
if (cluster.lights_shadow_rect_cache_count == cluster.max_lights) {
break; //light limit reached
}
}
}
if (cluster.lights_shadow_rect_cache_count > 0) {
//there are shadows to be shrunk, try to do them in parallel
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
for (int i = 1; i < shadow_atlas->shrink_stages.size(); i++) {
int32_t base_size = shadow_atlas->shrink_stages[0].size;
int32_t src_size = shadow_atlas->shrink_stages[i - 1].size;
int32_t dst_size = shadow_atlas->shrink_stages[i].size;
uint32_t rect_divisor = base_size / src_size;
int32_t shrink_limit = 8 / (src_size / dst_size);
//shrink in parallel for more performance
for (uint32_t j = 0; j < cluster.lights_shadow_rect_cache_count; j++) {
Rect2i src_rect = cluster.lights_shadow_rect_cache[j];
src_rect.position /= rect_divisor;
src_rect.size /= rect_divisor;
storage->get_effects()->reduce_shadow(shadow_atlas->shrink_stages[i - 1].texture, shadow_atlas->shrink_stages[i].texture, Size2i(src_size, src_size), src_rect, shrink_limit, compute_list);
}
RD::get_singleton()->compute_list_add_barrier(compute_list);
if (env->volumetric_fog_shadow_filter != RS::ENV_VOLUMETRIC_FOG_SHADOW_FILTER_DISABLED && shadow_atlas->shrink_stages[i].filter_texture.is_valid()) {
uint32_t filter_divisor = base_size / dst_size;
//filter in parallel for more performance
for (uint32_t j = 0; j < cluster.lights_shadow_rect_cache_count; j++) {
Rect2i dst_rect = cluster.lights_shadow_rect_cache[j];
dst_rect.position /= filter_divisor;
dst_rect.size /= filter_divisor;
storage->get_effects()->filter_shadow(shadow_atlas->shrink_stages[i].texture, shadow_atlas->shrink_stages[i].filter_texture, Size2i(dst_size, dst_size), dst_rect, env->volumetric_fog_shadow_filter, compute_list, true, false);
}
RD::get_singleton()->compute_list_add_barrier(compute_list);
for (uint32_t j = 0; j < cluster.lights_shadow_rect_cache_count; j++) {
Rect2i dst_rect = cluster.lights_shadow_rect_cache[j];
dst_rect.position /= filter_divisor;
dst_rect.size /= filter_divisor;
storage->get_effects()->filter_shadow(shadow_atlas->shrink_stages[i].texture, shadow_atlas->shrink_stages[i].filter_texture, Size2i(dst_size, dst_size), dst_rect, env->volumetric_fog_shadow_filter, compute_list, false, true);
}
}
}
RD::get_singleton()->compute_list_end();
}
}
//update volumetric fog
if (rb->volumetric_fog->uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->uniform_set)) {
//re create uniform set if needed
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 1;
if (shadow_atlas == nullptr || shadow_atlas->shrink_stages.size() == 0) {
u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK));
} else {
u.ids.push_back(shadow_atlas->shrink_stages[shadow_atlas->shrink_stages.size() - 1].texture);
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 2;
if (directional_shadow.shrink_stages.size() == 0) {
u.ids.push_back(storage->texture_rd_get_default(RasterizerStorageRD::DEFAULT_RD_TEXTURE_BLACK));
} else {
u.ids.push_back(directional_shadow.shrink_stages[directional_shadow.shrink_stages.size() - 1].texture);
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 3;
u.ids.push_back(get_positional_light_buffer());
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 4;
u.ids.push_back(get_directional_light_buffer());
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 5;
u.ids.push_back(get_cluster_builder_texture());
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_STORAGE_BUFFER;
u.binding = 6;
u.ids.push_back(get_cluster_builder_indices_buffer());
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 7;
u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 8;
u.ids.push_back(rb->volumetric_fog->light_density_map);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_IMAGE;
u.binding = 9;
u.ids.push_back(rb->volumetric_fog->fog_map);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 10;
u.ids.push_back(shadow_sampler);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 11;
u.ids.push_back(render_buffers_get_gi_probe_buffer(p_render_buffers));
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 12;
for (int i = 0; i < RenderBuffers::MAX_GIPROBES; i++) {
u.ids.push_back(rb->giprobe_textures[i]);
}
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_SAMPLER;
u.binding = 13;
u.ids.push_back(storage->sampler_rd_get_default(RS::CANVAS_ITEM_TEXTURE_FILTER_LINEAR_WITH_MIPMAPS, RS::CANVAS_ITEM_TEXTURE_REPEAT_DISABLED));
uniforms.push_back(u);
}
rb->volumetric_fog->uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, 0), 0);
SWAP(uniforms.write[7].ids.write[0], uniforms.write[8].ids.write[0]);
rb->volumetric_fog->uniform_set2 = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, 0), 0);
}
bool using_sdfgi = env->volumetric_fog_gi_inject > 0.0001 && env->sdfgi_enabled && (rb->sdfgi != nullptr);
if (using_sdfgi) {
if (rb->volumetric_fog->sdfgi_uniform_set.is_null() || !RD::get_singleton()->uniform_set_is_valid(rb->volumetric_fog->sdfgi_uniform_set)) {
Vector<RD::Uniform> uniforms;
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_UNIFORM_BUFFER;
u.binding = 0;
u.ids.push_back(gi.sdfgi_ubo);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 1;
u.ids.push_back(rb->sdfgi->ambient_texture);
uniforms.push_back(u);
}
{
RD::Uniform u;
u.type = RD::UNIFORM_TYPE_TEXTURE;
u.binding = 2;
u.ids.push_back(rb->sdfgi->occlusion_texture);
uniforms.push_back(u);
}
rb->volumetric_fog->sdfgi_uniform_set = RD::get_singleton()->uniform_set_create(uniforms, volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI), 1);
}
}
rb->volumetric_fog->length = env->volumetric_fog_length;
rb->volumetric_fog->spread = env->volumetric_fog_detail_spread;
VolumetricFogShader::PushConstant push_constant;
Vector2 frustum_near_size = p_cam_projection.get_viewport_half_extents();
Vector2 frustum_far_size = p_cam_projection.get_far_plane_half_extents();
float z_near = p_cam_projection.get_z_near();
float z_far = p_cam_projection.get_z_far();
float fog_end = env->volumetric_fog_length;
Vector2 fog_far_size = frustum_near_size.lerp(frustum_far_size, (fog_end - z_near) / (z_far - z_near));
Vector2 fog_near_size;
if (p_cam_projection.is_orthogonal()) {
fog_near_size = fog_far_size;
} else {
fog_near_size = Vector2();
}
push_constant.fog_frustum_size_begin[0] = fog_near_size.x;
push_constant.fog_frustum_size_begin[1] = fog_near_size.y;
push_constant.fog_frustum_size_end[0] = fog_far_size.x;
push_constant.fog_frustum_size_end[1] = fog_far_size.y;
push_constant.z_near = z_near;
push_constant.z_far = z_far;
push_constant.fog_frustum_end = fog_end;
push_constant.fog_volume_size[0] = rb->volumetric_fog->width;
push_constant.fog_volume_size[1] = rb->volumetric_fog->height;
push_constant.fog_volume_size[2] = rb->volumetric_fog->depth;
push_constant.directional_light_count = p_directional_light_count;
Color light = env->volumetric_fog_light.to_linear();
push_constant.light_energy[0] = light.r * env->volumetric_fog_light_energy;
push_constant.light_energy[1] = light.g * env->volumetric_fog_light_energy;
push_constant.light_energy[2] = light.b * env->volumetric_fog_light_energy;
push_constant.base_density = env->volumetric_fog_density;
push_constant.detail_spread = env->volumetric_fog_detail_spread;
push_constant.gi_inject = env->volumetric_fog_gi_inject;
push_constant.cam_rotation[0] = p_cam_transform.basis[0][0];
push_constant.cam_rotation[1] = p_cam_transform.basis[1][0];
push_constant.cam_rotation[2] = p_cam_transform.basis[2][0];
push_constant.cam_rotation[3] = 0;
push_constant.cam_rotation[4] = p_cam_transform.basis[0][1];
push_constant.cam_rotation[5] = p_cam_transform.basis[1][1];
push_constant.cam_rotation[6] = p_cam_transform.basis[2][1];
push_constant.cam_rotation[7] = 0;
push_constant.cam_rotation[8] = p_cam_transform.basis[0][2];
push_constant.cam_rotation[9] = p_cam_transform.basis[1][2];
push_constant.cam_rotation[10] = p_cam_transform.basis[2][2];
push_constant.cam_rotation[11] = 0;
push_constant.filter_axis = 0;
push_constant.max_gi_probes = env->volumetric_fog_gi_inject > 0.001 ? p_gi_probe_count : 0;
/* Vector2 dssize = directional_shadow_get_size();
push_constant.directional_shadow_pixel_size[0] = 1.0 / dssize.x;
push_constant.directional_shadow_pixel_size[1] = 1.0 / dssize.y;
*/
RD::ComputeListID compute_list = RD::get_singleton()->compute_list_begin();
bool use_filter = volumetric_fog_filter_active;
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[using_sdfgi ? VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI : VOLUMETRIC_FOG_SHADER_DENSITY]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
if (using_sdfgi) {
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->sdfgi_uniform_set, 1);
}
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::PushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth, 4, 4, 4);
RD::get_singleton()->compute_list_add_barrier(compute_list);
if (use_filter) {
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FILTER]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::PushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth, 8, 8, 1);
RD::get_singleton()->compute_list_add_barrier(compute_list);
push_constant.filter_axis = 1;
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set2, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::PushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, rb->volumetric_fog->depth, 8, 8, 1);
RD::get_singleton()->compute_list_add_barrier(compute_list);
}
RD::get_singleton()->compute_list_bind_compute_pipeline(compute_list, volumetric_fog.pipelines[VOLUMETRIC_FOG_SHADER_FOG]);
RD::get_singleton()->compute_list_bind_uniform_set(compute_list, rb->volumetric_fog->uniform_set, 0);
RD::get_singleton()->compute_list_set_push_constant(compute_list, &push_constant, sizeof(VolumetricFogShader::PushConstant));
RD::get_singleton()->compute_list_dispatch_threads(compute_list, rb->volumetric_fog->width, rb->volumetric_fog->height, 1, 8, 8, 1);
RD::get_singleton()->compute_list_end();
}
void RasterizerSceneRD::render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID *p_decal_cull_result, int p_decal_cull_count, InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass) {
Color clear_color;
if (p_render_buffers.is_valid()) {
@ -6190,10 +6819,25 @@ void RasterizerSceneRD::render_scene(RID p_render_buffers, const Transform &p_ca
}
uint32_t directional_light_count = 0;
_setup_lights(p_light_cull_result, p_light_cull_count, p_cam_transform.affine_inverse(), p_shadow_atlas, using_shadows, directional_light_count);
uint32_t positional_light_count = 0;
_setup_lights(p_light_cull_result, p_light_cull_count, p_cam_transform.affine_inverse(), p_shadow_atlas, using_shadows, directional_light_count, positional_light_count);
_setup_decals(p_decal_cull_result, p_decal_cull_count, p_cam_transform.affine_inverse());
cluster.builder.bake_cluster(); //bake to cluster
uint32_t gi_probe_count = 0;
_setup_giprobes(p_render_buffers, p_cam_transform, p_gi_probe_cull_result, p_gi_probe_cull_count, gi_probe_count);
if (p_render_buffers.is_valid()) {
bool directional_shadows = false;
for (uint32_t i = 0; i < directional_light_count; i++) {
if (cluster.directional_lights[i].shadow_enabled) {
directional_shadows = true;
break;
}
}
_update_volumetric_fog(p_render_buffers, p_environment, p_cam_projection, p_cam_transform, p_shadow_atlas, directional_light_count, directional_shadows, positional_light_count, gi_probe_count);
}
_render_scene(p_render_buffers, p_cam_transform, p_cam_projection, p_cam_ortogonal, p_cull_result, p_cull_count, directional_light_count, p_gi_probe_cull_result, p_gi_probe_cull_count, p_lightmap_cull_result, p_lightmap_cull_count, p_environment, p_camera_effects, p_shadow_atlas, p_reflection_atlas, p_reflection_probe, p_reflection_probe_pass, clear_color);
if (p_render_buffers.is_valid()) {
@ -6481,6 +7125,7 @@ void RasterizerSceneRD::render_sdfgi(RID p_render_buffers, int p_region, Instanc
ipush_constant.sky_color[1] = 0;
ipush_constant.sky_color[2] = 0;
ipush_constant.y_mult = rb->sdfgi->y_mult;
ipush_constant.store_ambient_texture = false;
ipush_constant.image_size[0] = rb->sdfgi->probe_axis_count * rb->sdfgi->probe_axis_count;
ipush_constant.image_size[1] = rb->sdfgi->probe_axis_count;
@ -6836,6 +7481,9 @@ bool RasterizerSceneRD::free(RID p_rid) {
if (rb->sdfgi) {
_sdfgi_erase(rb);
}
if (rb->volumetric_fog) {
_volumetric_fog_erase(rb);
}
render_buffers_owner.free(p_rid);
} else if (environment_owner.owns(p_rid)) {
//not much to delete, just free it
@ -7406,6 +8054,8 @@ RasterizerSceneRD::RasterizerSceneRD(RasterizerStorageRD *p_storage) {
cluster.lights = memnew_arr(Cluster::LightData, cluster.max_lights);
cluster.light_buffer = RD::get_singleton()->storage_buffer_create(light_buffer_size);
//defines += "\n#define MAX_LIGHT_DATA_STRUCTS " + itos(cluster.max_lights) + "\n";
cluster.lights_instances = memnew_arr(RID, cluster.max_lights);
cluster.lights_shadow_rect_cache = memnew_arr(Rect2i, cluster.max_lights);
cluster.max_directional_lights = 8;
uint32_t directional_light_buffer_size = cluster.max_directional_lights * sizeof(Cluster::DirectionalLightData);
@ -7422,8 +8072,30 @@ RasterizerSceneRD::RasterizerSceneRD(RasterizerStorageRD *p_storage) {
cluster.builder.setup(16, 8, 24);
{
String defines = "\n#define MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS " + itos(cluster.max_directional_lights) + "\n";
Vector<String> volumetric_fog_modes;
volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n");
volumetric_fog_modes.push_back("\n#define MODE_DENSITY\n#define ENABLE_SDFGI\n");
volumetric_fog_modes.push_back("\n#define MODE_FILTER\n");
volumetric_fog_modes.push_back("\n#define MODE_FOG\n");
volumetric_fog.shader.initialize(volumetric_fog_modes, defines);
volumetric_fog.shader_version = volumetric_fog.shader.version_create();
for (int i = 0; i < VOLUMETRIC_FOG_SHADER_MAX; i++) {
volumetric_fog.pipelines[i] = RD::get_singleton()->compute_pipeline_create(volumetric_fog.shader.version_get_shader(volumetric_fog.shader_version, i));
}
}
default_giprobe_buffer = RD::get_singleton()->uniform_buffer_create(sizeof(GI::GIProbeData) * RenderBuffers::MAX_GIPROBES);
{
RD::SamplerState sampler;
sampler.mag_filter = RD::SAMPLER_FILTER_LINEAR;
sampler.min_filter = RD::SAMPLER_FILTER_LINEAR;
sampler.enable_compare = true;
sampler.compare_op = RD::COMPARE_OP_LESS;
shadow_sampler = RD::get_singleton()->sampler_create(sampler);
}
camera_effects_set_dof_blur_bokeh_shape(RS::DOFBokehShape(int(GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_bokeh_shape"))));
camera_effects_set_dof_blur_quality(RS::DOFBlurQuality(int(GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_bokeh_quality"))), GLOBAL_GET("rendering/quality/depth_of_field/depth_of_field_use_jitter"));
environment_set_ssao_quality(RS::EnvironmentSSAOQuality(int(GLOBAL_GET("rendering/quality/ssao/quality"))), GLOBAL_GET("rendering/quality/ssao/half_size"));
@ -7441,6 +8113,11 @@ RasterizerSceneRD::RasterizerSceneRD(RasterizerStorageRD *p_storage) {
soft_shadow_kernel = memnew_arr(float, 128);
shadows_quality_set(RS::ShadowQuality(int(GLOBAL_GET("rendering/quality/shadows/soft_shadow_quality"))));
directional_shadow_quality_set(RS::ShadowQuality(int(GLOBAL_GET("rendering/quality/directional_shadow/soft_shadow_quality"))));
environment_set_volumetric_fog_volume_size(GLOBAL_GET("rendering/volumetric_fog/volume_size"), GLOBAL_GET("rendering/volumetric_fog/volume_depth"));
environment_set_volumetric_fog_filter_active(GLOBAL_GET("rendering/volumetric_fog/use_filter"));
environment_set_volumetric_fog_directional_shadow_shrink_size(GLOBAL_GET("rendering/volumetric_fog/directional_shadow_shrink"));
environment_set_volumetric_fog_positional_shadow_shrink_size(GLOBAL_GET("rendering/volumetric_fog/positional_shadow_shrink"));
}
RasterizerSceneRD::~RasterizerSceneRD() {
@ -7491,7 +8168,13 @@ RasterizerSceneRD::~RasterizerSceneRD() {
RD::get_singleton()->free(cluster.decal_buffer);
memdelete_arr(cluster.directional_lights);
memdelete_arr(cluster.lights);
memdelete_arr(cluster.lights_shadow_rect_cache);
memdelete_arr(cluster.lights_instances);
memdelete_arr(cluster.reflections);
memdelete_arr(cluster.decals);
}
RD::get_singleton()->free(shadow_sampler);
directional_shadow_atlas_set_size(0);
}

View file

@ -45,6 +45,7 @@
#include "servers/rendering/rasterizer_rd/shaders/sdfgi_integrate.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/sdfgi_preprocess.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/sky.glsl.gen.h"
#include "servers/rendering/rasterizer_rd/shaders/volumetric_fog.glsl.gen.h"
#include "servers/rendering/rendering_device.h"
class RasterizerSceneRD : public RasterizerScene {
@ -78,9 +79,10 @@ protected:
};
virtual RenderBufferData *_create_render_buffer_data() = 0;
void _setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count);
void _setup_lights(RID *p_light_cull_result, int p_light_cull_count, const Transform &p_camera_inverse_transform, RID p_shadow_atlas, bool p_using_shadows, uint32_t &r_directional_light_count, uint32_t &r_positional_light_count);
void _setup_decals(const RID *p_decal_instances, int p_decal_count, const Transform &p_camera_inverse_xform);
void _setup_reflections(RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, const Transform &p_camera_inverse_transform, RID p_environment);
void _setup_giprobes(RID p_render_buffers, const Transform &p_transform, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, uint32_t &r_gi_probes_used);
virtual void _render_scene(RID p_render_buffer, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, int p_directional_light_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, RID p_environment, RID p_camera_effects, RID p_shadow_atlas, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass, const Color &p_default_color) = 0;
virtual void _render_shadow(RID p_framebuffer, InstanceBase **p_cull_result, int p_cull_count, const CameraMatrix &p_projection, const Transform &p_transform, float p_zfar, float p_bias, float p_normal_bias, bool p_use_dp, bool use_dp_flip, bool p_use_pancake) = 0;
@ -490,6 +492,12 @@ private:
/* SHADOW ATLAS */
struct ShadowShrinkStage {
RID texture;
RID filter_texture;
uint32_t size;
};
struct ShadowAtlas {
enum {
QUADRANT_SHIFT = 27,
@ -503,10 +511,12 @@ private:
struct Shadow {
RID owner;
uint64_t version;
uint64_t fog_version; // used for fog
uint64_t alloc_tick;
Shadow() {
version = 0;
fog_version = 0;
alloc_tick = 0;
}
};
@ -528,6 +538,8 @@ private:
RID fb; //for copying
Map<RID, uint32_t> shadow_owners;
Vector<ShadowShrinkStage> shrink_stages;
};
RID_Owner<ShadowAtlas> shadow_atlas_owner;
@ -556,8 +568,14 @@ private:
int light_count = 0;
int size = 0;
int current_light = 0;
Vector<ShadowShrinkStage> shrink_stages;
} directional_shadow;
void _allocate_shadow_shrink_stages(RID p_base, int p_base_size, Vector<ShadowShrinkStage> &shrink_stages, uint32_t p_target_size);
void _clear_shadow_shrink_stages(Vector<ShadowShrinkStage> &shrink_stages);
/* SHADOW CUBEMAPS */
struct ShadowCubemap {
@ -656,6 +674,17 @@ private:
float auto_exp_scale = 0.5;
uint64_t auto_exposure_version = 0;
/// Volumetric Fog
///
bool volumetric_fog_enabled = false;
float volumetric_fog_density = 0.01;
Color volumetric_fog_light = Color(0, 0, 0);
float volumetric_fog_light_energy = 0.0;
float volumetric_fog_length = 64.0;
float volumetric_fog_detail_spread = 2.0;
RS::EnvVolumetricFogShadowFilter volumetric_fog_shadow_filter = RS::ENV_VOLUMETRIC_FOG_SHADOW_FILTER_LOW;
float volumetric_fog_gi_inject = 0.0;
/// Glow
bool glow_enabled = false;
@ -739,6 +768,7 @@ private:
/* RENDER BUFFERS */
struct SDFGI;
struct VolumetricFog;
struct RenderBuffers {
enum {
@ -759,6 +789,7 @@ private:
RID gi_uniform_set;
SDFGI *sdfgi = nullptr;
VolumetricFog *volumetric_fog = nullptr;
//built-in textures used for ping pong image processing and blurring
struct Blur {
@ -885,6 +916,7 @@ private:
RID lightprobe_data;
RID occlusion_texture;
RID occlusion_data;
RID ambient_texture; //integrates with volumetric fog
RID lightprobe_history_scroll; //used for scrolling lightprobes
RID lightprobe_average_scroll; //used for scrolling lightprobes
@ -1077,6 +1109,9 @@ private:
float sky_color[3];
float y_mult;
uint32_t store_ambient_texture;
uint32_t pad[3];
};
SdfgiIntegrateShaderRD integrate;
@ -1141,7 +1176,7 @@ private:
float anisotropy_strength;
float ao;
float ao_size;
uint32_t pad[1];
uint32_t mipmaps;
};
struct PushConstant {
@ -1219,7 +1254,8 @@ private:
float soft_shadow_size;
float soft_shadow_scale;
uint32_t mask;
uint32_t pad[2];
float shadow_volumetric_fog_fade;
uint32_t pad;
float projector_rect[4];
};
@ -1236,10 +1272,12 @@ private:
uint32_t shadow_enabled;
float fade_from;
float fade_to;
uint32_t pad[3];
float shadow_volumetric_fog_fade;
float shadow_bias[4];
float shadow_normal_bias[4];
float shadow_transmittance_bias[4];
float shadow_transmittance_z_scale[4];
float shadow_z_range[4];
float shadow_range_begin[4];
float shadow_split_offsets[4];
float shadow_matrices[4][16];
@ -1283,6 +1321,9 @@ private:
LightData *lights;
uint32_t max_lights;
RID light_buffer;
RID *lights_instances;
Rect2i *lights_shadow_rect_cache;
uint32_t lights_shadow_rect_cache_count = 0;
DirectionalLightData *directional_lights;
uint32_t max_directional_lights;
@ -1292,6 +1333,73 @@ private:
} cluster;
struct VolumetricFog {
uint32_t width = 0;
uint32_t height = 0;
uint32_t depth = 0;
float length;
float spread;
RID light_density_map;
RID fog_map;
RID uniform_set;
RID uniform_set2;
RID sdfgi_uniform_set;
int last_shadow_filter = -1;
};
enum {
VOLUMETRIC_FOG_SHADER_DENSITY,
VOLUMETRIC_FOG_SHADER_DENSITY_WITH_SDFGI,
VOLUMETRIC_FOG_SHADER_FILTER,
VOLUMETRIC_FOG_SHADER_FOG,
VOLUMETRIC_FOG_SHADER_MAX,
};
struct VolumetricFogShader {
struct PushConstant {
float fog_frustum_size_begin[2];
float fog_frustum_size_end[2];
float fog_frustum_end;
float z_near;
float z_far;
uint32_t filter_axis;
int32_t fog_volume_size[3];
uint32_t directional_light_count;
float light_energy[3];
float base_density;
float detail_spread;
float gi_inject;
uint32_t max_gi_probes;
uint32_t pad;
float cam_rotation[12];
};
VolumetricFogShaderRD shader;
RID shader_version;
RID pipelines[VOLUMETRIC_FOG_SHADER_MAX];
} volumetric_fog;
uint32_t volumetric_fog_depth = 128;
uint32_t volumetric_fog_size = 128;
bool volumetric_fog_filter_active = false;
uint32_t volumetric_fog_directional_shadow_shrink = 512;
uint32_t volumetric_fog_positional_shadow_shrink = 512;
void _volumetric_fog_erase(RenderBuffers *rb);
void _update_volumetric_fog(RID p_render_buffers, RID p_environment, const CameraMatrix &p_cam_projection, const Transform &p_cam_transform, RID p_shadow_atlas, int p_directional_light_count, bool p_use_directional_shadows, int p_positional_light_count, int p_gi_probe_count);
RID shadow_sampler;
uint64_t scene_pass = 0;
uint64_t shadow_atlas_realloc_tolerance_msec = 500;
@ -1391,6 +1499,12 @@ public:
void environment_glow_set_use_bicubic_upscale(bool p_enable);
void environment_set_fog(RID p_env, bool p_enable, float p_begin, float p_end, RID p_gradient_texture) {}
void environment_set_volumetric_fog(RID p_env, bool p_enable, float p_density, const Color &p_light, float p_light_energy, float p_lenght, float p_detail_spread, float p_gi_inject, RS::EnvVolumetricFogShadowFilter p_shadow_filter);
virtual void environment_set_volumetric_fog_volume_size(int p_size, int p_depth);
virtual void environment_set_volumetric_fog_filter_active(bool p_enable);
virtual void environment_set_volumetric_fog_directional_shadow_shrink_size(int p_shrink_size);
virtual void environment_set_volumetric_fog_positional_shadow_shrink_size(int p_shrink_size);
void environment_set_ssr(RID p_env, bool p_enable, int p_max_steps, float p_fade_int, float p_fade_out, float p_depth_tolerance);
void environment_set_ssao(RID p_env, bool p_enable, float p_radius, float p_intensity, float p_bias, float p_light_affect, float p_ao_channel_affect, RS::EnvironmentSSAOBlur p_blur, float p_bilateral_sharpness);
@ -1708,6 +1822,11 @@ public:
float render_buffers_get_sdfgi_energy(RID p_render_buffers) const;
RID render_buffers_get_sdfgi_occlusion_texture(RID p_render_buffers) const;
bool render_buffers_has_volumetric_fog(RID p_render_buffers) const;
RID render_buffers_get_volumetric_fog_texture(RID p_render_buffers);
float render_buffers_get_volumetric_fog_end(RID p_render_buffers);
float render_buffers_get_volumetric_fog_detail_spread(RID p_render_buffers);
void render_scene(RID p_render_buffers, const Transform &p_cam_transform, const CameraMatrix &p_cam_projection, bool p_cam_ortogonal, InstanceBase **p_cull_result, int p_cull_count, RID *p_light_cull_result, int p_light_cull_count, RID *p_reflection_probe_cull_result, int p_reflection_probe_cull_count, RID *p_gi_probe_cull_result, int p_gi_probe_cull_count, RID *p_decal_cull_result, int p_decal_cull_count, InstanceBase **p_lightmap_cull_result, int p_lightmap_cull_count, RID p_environment, RID p_shadow_atlas, RID p_camera_effects, RID p_reflection_atlas, RID p_reflection_probe, int p_reflection_probe_pass);
void render_shadow(RID p_light, RID p_shadow_atlas, int p_pass, InstanceBase **p_cull_result, int p_cull_count);

View file

@ -3290,6 +3290,7 @@ RID RasterizerStorageRD::light_create(RS::LightType p_type) {
light.param[RS::LIGHT_PARAM_SHADOW_NORMAL_BIAS] = 1.0;
light.param[RS::LIGHT_PARAM_SHADOW_PANCAKE_SIZE] = 20.0;
light.param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS] = 0.05;
light.param[RS::LIGHT_PARAM_SHADOW_VOLUMETRIC_FOG_FADE] = 1.0;
return light_owner.make_rid(light);
}

View file

@ -1184,6 +1184,13 @@ public:
return light->param[RS::LIGHT_PARAM_TRANSMITTANCE_BIAS];
}
_FORCE_INLINE_ float light_get_shadow_volumetric_fog_fade(RID p_light) const {
const Light *light = light_owner.getornull(p_light);
ERR_FAIL_COND_V(!light, 0.0);
return light->param[RS::LIGHT_PARAM_SHADOW_VOLUMETRIC_FOG_FADE];
}
RS::LightBakeMode light_get_bake_mode(RID p_light);
uint32_t light_get_max_sdfgi_cascade(RID p_light);
uint64_t light_get_version(RID p_light) const;

View file

@ -35,3 +35,5 @@ if "RD_GLSL" in env["BUILDERS"]:
env.RD_GLSL("sdfgi_direct_light.glsl")
env.RD_GLSL("sdfgi_debug.glsl")
env.RD_GLSL("sdfgi_debug_probes.glsl")
env.RD_GLSL("volumetric_fog.glsl")
env.RD_GLSL("shadow_reduce.glsl")

View file

@ -0,0 +1,95 @@
#define CLUSTER_COUNTER_SHIFT 20
#define CLUSTER_POINTER_MASK ((1 << CLUSTER_COUNTER_SHIFT) - 1)
#define CLUSTER_COUNTER_MASK 0xfff
struct LightData { //this structure needs to be as packed as possible
vec3 position;
float inv_radius;
vec3 direction;
float size;
uint attenuation_energy; //attenuation
uint color_specular; //rgb color, a specular (8 bit unorm)
uint cone_attenuation_angle; // attenuation and angle, (16bit float)
uint shadow_color_enabled; //shadow rgb color, a>0.5 enabled (8bit unorm)
vec4 atlas_rect; // rect in the shadow atlas
mat4 shadow_matrix;
float shadow_bias;
float shadow_normal_bias;
float transmittance_bias;
float soft_shadow_size; // for spot, it's the size in uv coordinates of the light, for omni it's the span angle
float soft_shadow_scale; // scales the shadow kernel for blurrier shadows
uint mask;
float shadow_volumetric_fog_fade;
uint pad;
vec4 projector_rect; //projector rect in srgb decal atlas
};
#define REFLECTION_AMBIENT_DISABLED 0
#define REFLECTION_AMBIENT_ENVIRONMENT 1
#define REFLECTION_AMBIENT_COLOR 2
struct ReflectionData {
vec3 box_extents;
float index;
vec3 box_offset;
uint mask;
vec4 params; // intensity, 0, interior , boxproject
vec3 ambient; // ambient color
uint ambient_mode;
mat4 local_matrix; // up to here for spot and omni, rest is for directional
// notes: for ambientblend, use distance to edge to blend between already existing global environment
};
struct DirectionalLightData {
vec3 direction;
float energy;
vec3 color;
float size;
float specular;
uint mask;
float softshadow_angle;
float soft_shadow_scale;
bool blend_splits;
bool shadow_enabled;
float fade_from;
float fade_to;
uvec3 pad;
float shadow_volumetric_fog_fade;
vec4 shadow_bias;
vec4 shadow_normal_bias;
vec4 shadow_transmittance_bias;
vec4 shadow_z_range;
vec4 shadow_range_begin;
vec4 shadow_split_offsets;
mat4 shadow_matrix1;
mat4 shadow_matrix2;
mat4 shadow_matrix3;
mat4 shadow_matrix4;
vec4 shadow_color1;
vec4 shadow_color2;
vec4 shadow_color3;
vec4 shadow_color4;
vec2 uv_scale1;
vec2 uv_scale2;
vec2 uv_scale3;
vec2 uv_scale4;
};
struct DecalData {
mat4 xform; //to decal transform
vec3 inv_extents;
float albedo_mix;
vec4 albedo_rect;
vec4 normal_rect;
vec4 orm_rect;
vec4 emission_rect;
vec4 modulate;
float emission_energy;
uint mask;
float upper_fade;
float lower_fade;
mat3x4 normal_xform;
vec3 normal;
float normal_fade;
};

View file

@ -80,7 +80,7 @@ struct GIProbeData {
float anisotropy_strength;
float ambient_occlusion;
float ambient_occlusion_size;
uint pad2;
uint mipmaps;
};
layout(set = 0, binding = 16, std140) uniform GIProbes {

View file

@ -1237,7 +1237,7 @@ void light_process_spot(uint idx, vec3 vertex, vec3 eye_vec, vec3 normal, vec3 v
float shadow_z = textureLod(sampler2D(shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), splane.xy, 0.0).r;
//reconstruct depth
shadow_z / lights.data[idx].inv_radius;
shadow_z /= lights.data[idx].inv_radius;
//distance to light plane
float z = dot(spot_dir, -light_rel_vec);
transmittance_z = z - shadow_z;
@ -1601,6 +1601,21 @@ void sdfgi_process(uint cascade, vec3 cascade_pos, vec3 cam_pos, vec3 cam_normal
#endif //!defined(MODE_RENDER_DEPTH) && !defined(MODE_UNSHADED)
#ifndef MODE_RENDER_DEPTH
vec4 volumetric_fog_process(vec2 screen_uv, float z) {
vec3 fog_pos = vec3(screen_uv, z * scene_data.volumetric_fog_inv_length);
if (fog_pos.z < 0.0) {
return vec4(0.0);
} else if (fog_pos.z < 1.0) {
fog_pos.z = pow(fog_pos.z, scene_data.volumetric_fog_detail_spread);
}
return texture(sampler3D(volumetric_fog_texture, material_samplers[SAMPLER_LINEAR_CLAMP]), fog_pos);
}
#endif
void main() {
#ifdef MODE_DUAL_PARABOLOID
@ -2187,8 +2202,8 @@ FRAGMENT_SHADER_CODE
trans_coord /= trans_coord.w;
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.x;
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.x;
shadow_z *= directional_lights.data[i].shadow_z_range.x;
float z = trans_coord.z * directional_lights.data[i].shadow_z_range.x;
transmittance_z = z - shadow_z;
}
@ -2219,8 +2234,8 @@ FRAGMENT_SHADER_CODE
trans_coord /= trans_coord.w;
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.y;
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.y;
shadow_z *= directional_lights.data[i].shadow_z_range.y;
float z = trans_coord.z * directional_lights.data[i].shadow_z_range.y;
transmittance_z = z - shadow_z;
}
@ -2251,8 +2266,8 @@ FRAGMENT_SHADER_CODE
trans_coord /= trans_coord.w;
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.z;
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.z;
shadow_z *= directional_lights.data[i].shadow_z_range.z;
float z = trans_coord.z * directional_lights.data[i].shadow_z_range.z;
transmittance_z = z - shadow_z;
}
@ -2285,8 +2300,8 @@ FRAGMENT_SHADER_CODE
trans_coord /= trans_coord.w;
float shadow_z = textureLod(sampler2D(directional_shadow_atlas, material_samplers[SAMPLER_LINEAR_CLAMP]), trans_coord.xy, 0.0).r;
shadow_z *= directional_lights.data[i].shadow_transmittance_z_scale.w;
float z = trans_coord.z * directional_lights.data[i].shadow_transmittance_z_scale.w;
shadow_z *= directional_lights.data[i].shadow_z_range.w;
float z = trans_coord.z * directional_lights.data[i].shadow_z_range.w;
transmittance_z = z - shadow_z;
}
@ -2662,8 +2677,6 @@ FRAGMENT_SHADER_CODE
diffuse_light *= 1.0 - metallic; // TODO: avoid all diffuse and ambient light calculations when metallic == 1 up to this point
ambient_light *= 1.0 - metallic;
//fog
#ifdef MODE_MULTIPLE_RENDER_TARGETS
#ifdef MODE_UNSHADED
@ -2679,16 +2692,27 @@ FRAGMENT_SHADER_CODE
specular_buffer = vec4(specular_light, metallic);
#endif
if (scene_data.volumetric_fog_enabled) {
vec4 fog = volumetric_fog_process(screen_uv, -vertex.z);
diffuse_buffer.rgb = mix(diffuse_buffer.rgb, fog.rgb, fog.a);
specular_buffer.rgb = mix(specular_buffer.rgb, vec3(0.0), fog.a);
;
}
#else //MODE_MULTIPLE_RENDER_TARGETS
#ifdef MODE_UNSHADED
frag_color = vec4(albedo, alpha);
#else
frag_color = vec4(emission + ambient_light + diffuse_light + specular_light, alpha);
//frag_color = vec4(1.0);;;
//frag_color = vec4(1.0);
#endif //USE_NO_SHADING
if (scene_data.volumetric_fog_enabled) {
vec4 fog = volumetric_fog_process(screen_uv, -vertex.z);
frag_color.rgb = mix(frag_color.rgb, fog.rgb, fog.a);
}
#endif //MODE_MULTIPLE_RENDER_TARGETS
#endif //MODE_RENDER_DEPTH

View file

@ -3,6 +3,8 @@
#define MAX_GI_PROBES 8
#include "cluster_data_inc.glsl"
layout(push_constant, binding = 0, std430) uniform DrawCall {
uint instance_index;
uint pad; //16 bits minimum size
@ -94,6 +96,10 @@ layout(set = 0, binding = 3, std140) uniform SceneData {
ivec3 sdf_size;
bool gi_upscale_for_msaa;
bool volumetric_fog_enabled;
float volumetric_fog_inv_length;
float volumetric_fog_detail_spread;
uint volumetric_fog_pad;
#if 0
vec4 ambient_light_color;
vec4 bg_color;
@ -163,86 +169,16 @@ layout(set = 0, binding = 4, std430) restrict readonly buffer Instances {
}
instances;
struct LightData { //this structure needs to be as packed as possible
vec3 position;
float inv_radius;
vec3 direction;
float size;
uint attenuation_energy; //attenuation
uint color_specular; //rgb color, a specular (8 bit unorm)
uint cone_attenuation_angle; // attenuation and angle, (16bit float)
uint shadow_color_enabled; //shadow rgb color, a>0.5 enabled (8bit unorm)
vec4 atlas_rect; // rect in the shadow atlas
mat4 shadow_matrix;
float shadow_bias;
float shadow_normal_bias;
float transmittance_bias;
float soft_shadow_size; // for spot, it's the size in uv coordinates of the light, for omni it's the span angle
float soft_shadow_scale; // scales the shadow kernel for blurrier shadows
uint mask;
uint pad[2];
vec4 projector_rect; //projector rect in srgb decal atlas
};
layout(set = 0, binding = 5, std430) restrict readonly buffer Lights {
LightData data[];
}
lights;
#define REFLECTION_AMBIENT_DISABLED 0
#define REFLECTION_AMBIENT_ENVIRONMENT 1
#define REFLECTION_AMBIENT_COLOR 2
struct ReflectionData {
vec3 box_extents;
float index;
vec3 box_offset;
uint mask;
vec4 params; // intensity, 0, interior , boxproject
vec3 ambient; // ambient color
uint ambient_mode;
mat4 local_matrix; // up to here for spot and omni, rest is for directional
// notes: for ambientblend, use distance to edge to blend between already existing global environment
};
layout(set = 0, binding = 6) buffer restrict readonly ReflectionProbeData {
ReflectionData data[];
}
reflections;
struct DirectionalLightData {
vec3 direction;
float energy;
vec3 color;
float size;
float specular;
uint mask;
float softshadow_angle;
float soft_shadow_scale;
bool blend_splits;
bool shadow_enabled;
float fade_from;
float fade_to;
vec4 shadow_bias;
vec4 shadow_normal_bias;
vec4 shadow_transmittance_bias;
vec4 shadow_transmittance_z_scale;
vec4 shadow_range_begin;
vec4 shadow_split_offsets;
mat4 shadow_matrix1;
mat4 shadow_matrix2;
mat4 shadow_matrix3;
mat4 shadow_matrix4;
vec4 shadow_color1;
vec4 shadow_color2;
vec4 shadow_color3;
vec4 shadow_color4;
vec2 uv_scale1;
vec2 uv_scale2;
vec2 uv_scale3;
vec2 uv_scale4;
};
layout(set = 0, binding = 7, std140) uniform DirectionalLights {
DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
}
@ -271,31 +207,9 @@ layout(set = 0, binding = 12, std140) restrict readonly buffer LightmapCaptures
}
lightmap_captures;
#define CLUSTER_COUNTER_SHIFT 20
#define CLUSTER_POINTER_MASK ((1 << CLUSTER_COUNTER_SHIFT) - 1)
#define CLUSTER_COUNTER_MASK 0xfff
layout(set = 0, binding = 13) uniform texture2D decal_atlas;
layout(set = 0, binding = 14) uniform texture2D decal_atlas_srgb;
struct DecalData {
mat4 xform; //to decal transform
vec3 inv_extents;
float albedo_mix;
vec4 albedo_rect;
vec4 normal_rect;
vec4 orm_rect;
vec4 emission_rect;
vec4 modulate;
float emission_energy;
uint mask;
float upper_fade;
float lower_fade;
mat3x4 normal_xform;
vec3 normal;
float normal_fade;
};
layout(set = 0, binding = 15, std430) restrict readonly buffer Decals {
DecalData data[];
}
@ -394,9 +308,7 @@ layout(set = 3, binding = 2) uniform texture2D normal_roughness_buffer;
layout(set = 3, binding = 4) uniform texture2D ao_buffer;
layout(set = 3, binding = 5) uniform texture2D ambient_buffer;
layout(set = 3, binding = 6) uniform texture2D reflection_buffer;
layout(set = 3, binding = 7) uniform texture2DArray sdfgi_lightprobe_texture;
layout(set = 3, binding = 8) uniform texture3D sdfgi_occlusion_cascades;
struct GIProbeData {
@ -412,7 +324,7 @@ struct GIProbeData {
float anisotropy_strength;
float ambient_occlusion;
float ambient_occlusion_size;
uint pad2;
uint mipmaps;
};
layout(set = 3, binding = 9, std140) uniform GIProbes {
@ -420,6 +332,8 @@ layout(set = 3, binding = 9, std140) uniform GIProbes {
}
gi_probes;
layout(set = 3, binding = 10) uniform texture3D volumetric_fog_texture;
#endif
/* Set 4 Skeleton & Instancing (Multimesh) */

View file

@ -37,6 +37,8 @@ layout(rgba32i, set = 0, binding = 12) uniform restrict iimage2D lightprobe_aver
layout(rgba32i, set = 0, binding = 13) uniform restrict iimage2D lightprobe_average_parent_texture;
layout(rgba16f, set = 0, binding = 14) uniform restrict writeonly image2DArray lightprobe_ambient_texture;
layout(set = 1, binding = 0) uniform textureCube sky_irradiance;
layout(set = 1, binding = 1) uniform sampler linear_sampler_mipmaps;
@ -68,6 +70,9 @@ layout(push_constant, binding = 0, std430) uniform Params {
vec3 sky_color;
float y_mult;
bool store_ambient_texture;
uint pad[3];
}
params;
@ -319,6 +324,13 @@ void main() {
imageStore(lightprobe_history_texture, prev_pos, ivalue);
imageStore(lightprobe_average_texture, average_pos, average);
if (params.store_ambient_texture && i == 0) {
ivec3 ambient_pos = ivec3(pos, int(params.cascade));
vec4 ambient_light = (vec4(average) / float(params.history_size)) / float(1 << HISTORY_BITS);
ambient_light *= 0.88622; // SHL0
imageStore(lightprobe_ambient_texture, ambient_pos, ambient_light);
}
}
#endif // MODE PROCESS

View file

@ -0,0 +1,105 @@
#[compute]
#version 450
VERSION_DEFINES
#define BLOCK_SIZE 8
layout(local_size_x = BLOCK_SIZE, local_size_y = BLOCK_SIZE, local_size_z = 1) in;
#ifdef MODE_REDUCE
shared float tmp_data[BLOCK_SIZE * BLOCK_SIZE];
const uint swizzle_table[BLOCK_SIZE] = uint[](0, 4, 2, 6, 1, 5, 3, 7);
const uint unswizzle_table[BLOCK_SIZE] = uint[](0, 0, 0, 1, 0, 2, 1, 3);
#endif
layout(r32f, set = 0, binding = 0) uniform restrict readonly image2D source_depth;
layout(r32f, set = 0, binding = 1) uniform restrict writeonly image2D dst_depth;
layout(push_constant, binding = 1, std430) uniform Params {
ivec2 source_size;
ivec2 source_offset;
uint min_size;
uint gaussian_kernel_version;
ivec2 filter_dir;
}
params;
void main() {
#ifdef MODE_REDUCE
uvec2 pos = gl_LocalInvocationID.xy;
ivec2 image_offset = params.source_offset;
ivec2 image_pos = image_offset + ivec2(gl_GlobalInvocationID.xy);
uint dst_t = swizzle_table[pos.y] * BLOCK_SIZE + swizzle_table[pos.x];
tmp_data[dst_t] = imageLoad(source_depth, min(image_pos, params.source_size - ivec2(1))).r;
ivec2 image_size = params.source_size;
uint t = pos.y * BLOCK_SIZE + pos.x;
//neighbours
uint size = BLOCK_SIZE;
do {
groupMemoryBarrier();
barrier();
size >>= 1;
image_size >>= 1;
image_offset >>= 1;
if (all(lessThan(pos, uvec2(size)))) {
uint nx = t + size;
uint ny = t + (BLOCK_SIZE * size);
uint nxy = ny + size;
tmp_data[t] += tmp_data[nx];
tmp_data[t] += tmp_data[ny];
tmp_data[t] += tmp_data[nxy];
tmp_data[t] /= 4.0;
}
} while (size > params.min_size);
if (all(lessThan(pos, uvec2(size)))) {
image_pos = ivec2(unswizzle_table[size + pos.x], unswizzle_table[size + pos.y]);
image_pos += image_offset + ivec2(gl_WorkGroupID.xy) * int(size);
image_size = max(ivec2(1), image_size); //in case image size became 0
if (all(lessThan(image_pos, uvec2(image_size)))) {
imageStore(dst_depth, image_pos, vec4(tmp_data[t]));
}
}
#endif
#ifdef MODE_FILTER
ivec2 image_pos = params.source_offset + ivec2(gl_GlobalInvocationID.xy);
if (any(greaterThanEqual(image_pos, params.source_size))) {
return;
}
ivec2 clamp_min = ivec2(params.source_offset);
ivec2 clamp_max = ivec2(params.source_size) - 1;
//gaussian kernel, size 9, sigma 4
const int kernel_size = 9;
const float gaussian_kernel[kernel_size * 3] = float[](
0.000229, 0.005977, 0.060598, 0.241732, 0.382928, 0.241732, 0.060598, 0.005977, 0.000229,
0.028532, 0.067234, 0.124009, 0.179044, 0.20236, 0.179044, 0.124009, 0.067234, 0.028532,
0.081812, 0.101701, 0.118804, 0.130417, 0.134535, 0.130417, 0.118804, 0.101701, 0.081812);
float accum = 0.0;
for (int i = 0; i < kernel_size; i++) {
ivec2 ofs = clamp(image_pos + params.filter_dir * (i - kernel_size / 2), clamp_min, clamp_max);
accum += imageLoad(source_depth, ofs).r * gaussian_kernel[params.gaussian_kernel_version + i];
}
imageStore(dst_depth, image_pos, vec4(accum));
#endif
}

View file

@ -0,0 +1,530 @@
#[compute]
#version 450
VERSION_DEFINES
#if defined(MODE_FOG) || defined(MODE_FILTER)
layout(local_size_x = 8, local_size_y = 8, local_size_z = 1) in;
#endif
#if defined(MODE_DENSITY)
layout(local_size_x = 4, local_size_y = 4, local_size_z = 4) in;
#endif
#include "cluster_data_inc.glsl"
#define M_PI 3.14159265359
layout(set = 0, binding = 1) uniform texture2D shadow_atlas;
layout(set = 0, binding = 2) uniform texture2D directional_shadow_atlas;
layout(set = 0, binding = 3, std430) restrict readonly buffer Lights {
LightData data[];
}
lights;
layout(set = 0, binding = 4, std140) uniform DirectionalLights {
DirectionalLightData data[MAX_DIRECTIONAL_LIGHT_DATA_STRUCTS];
}
directional_lights;
layout(set = 0, binding = 5) uniform utexture3D cluster_texture;
layout(set = 0, binding = 6, std430) restrict readonly buffer ClusterData {
uint indices[];
}
cluster_data;
layout(set = 0, binding = 7) uniform sampler linear_sampler;
#ifdef MODE_DENSITY
layout(rgba16f, set = 0, binding = 8) uniform restrict writeonly image3D density_map;
layout(rgba16f, set = 0, binding = 9) uniform restrict readonly image3D fog_map; //unused
#endif
#ifdef MODE_FOG
layout(rgba16f, set = 0, binding = 8) uniform restrict readonly image3D density_map;
layout(rgba16f, set = 0, binding = 9) uniform restrict writeonly image3D fog_map;
#endif
#ifdef MODE_FILTER
layout(rgba16f, set = 0, binding = 8) uniform restrict readonly image3D source_map;
layout(rgba16f, set = 0, binding = 9) uniform restrict writeonly image3D dest_map;
#endif
layout(set = 0, binding = 10) uniform sampler shadow_sampler;
#define MAX_GI_PROBES 8
struct GIProbeData {
mat4 xform;
vec3 bounds;
float dynamic_range;
float bias;
float normal_bias;
bool blend_ambient;
uint texture_slot;
float anisotropy_strength;
float ambient_occlusion;
float ambient_occlusion_size;
uint mipmaps;
};
layout(set = 0, binding = 11, std140) uniform GIProbes {
GIProbeData data[MAX_GI_PROBES];
}
gi_probes;
layout(set = 0, binding = 12) uniform texture3D gi_probe_textures[MAX_GI_PROBES];
layout(set = 0, binding = 13) uniform sampler linear_sampler_with_mipmaps;
#ifdef ENABLE_SDFGI
// SDFGI Integration on set 1
#define SDFGI_MAX_CASCADES 8
struct SDFGIProbeCascadeData {
vec3 position;
float to_probe;
ivec3 probe_world_offset;
float to_cell; // 1/bounds * grid_size
};
layout(set = 1, binding = 0, std140) uniform SDFGI {
vec3 grid_size;
uint max_cascades;
bool use_occlusion;
int probe_axis_size;
float probe_to_uvw;
float normal_bias;
vec3 lightprobe_tex_pixel_size;
float energy;
vec3 lightprobe_uv_offset;
float y_mult;
vec3 occlusion_clamp;
uint pad3;
vec3 occlusion_renormalize;
uint pad4;
vec3 cascade_probe_size;
uint pad5;
SDFGIProbeCascadeData cascades[SDFGI_MAX_CASCADES];
}
sdfgi;
layout(set = 1, binding = 1) uniform texture2DArray sdfgi_ambient_texture;
layout(set = 1, binding = 2) uniform texture3D sdfgi_occlusion_texture;
#endif //SDFGI
layout(push_constant, binding = 0, std430) uniform Params {
vec2 fog_frustum_size_begin;
vec2 fog_frustum_size_end;
float fog_frustum_end;
float z_near;
float z_far;
int filter_axis;
ivec3 fog_volume_size;
uint directional_light_count;
vec3 light_color;
float base_density;
float detail_spread;
float gi_inject;
uint max_gi_probes;
uint pad;
mat3x4 cam_rotation;
}
params;
float get_depth_at_pos(float cell_depth_size, int z) {
float d = float(z) * cell_depth_size + cell_depth_size * 0.5; //center of voxels
d = pow(d, params.detail_spread);
return params.fog_frustum_end * d;
}
vec3 hash3f(uvec3 x) {
x = ((x >> 16) ^ x) * 0x45d9f3b;
x = ((x >> 16) ^ x) * 0x45d9f3b;
x = (x >> 16) ^ x;
return vec3(x & 0xFFFFF) / vec3(float(0xFFFFF));
}
void main() {
vec3 fog_cell_size = 1.0 / vec3(params.fog_volume_size);
#ifdef MODE_DENSITY
ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);
if (any(greaterThanEqual(pos, params.fog_volume_size))) {
return; //do not compute
}
vec3 posf = vec3(pos);
//posf += mix(vec3(0.0),vec3(1.0),0.3) * hash3f(uvec3(pos)) * 2.0 - 1.0;
vec3 fog_unit_pos = posf * fog_cell_size + fog_cell_size * 0.5; //center of voxels
fog_unit_pos.z = pow(fog_unit_pos.z, params.detail_spread);
vec3 view_pos;
view_pos.xy = (fog_unit_pos.xy * 2.0 - 1.0) * mix(params.fog_frustum_size_begin, params.fog_frustum_size_end, vec2(fog_unit_pos.z));
view_pos.z = -params.fog_frustum_end * fog_unit_pos.z;
view_pos.y = -view_pos.y;
vec3 total_light = params.light_color;
float total_density = params.base_density;
float cell_depth_size = abs(view_pos.z - get_depth_at_pos(fog_cell_size.z, pos.z + 1));
//compute directional lights
for (uint i = 0; i < params.directional_light_count; i++) {
vec3 shadow_attenuation = vec3(1.0);
if (directional_lights.data[i].shadow_enabled) {
float depth_z = -view_pos.z;
vec4 pssm_coord;
vec3 shadow_color = directional_lights.data[i].shadow_color1.rgb;
vec3 light_dir = directional_lights.data[i].direction;
vec4 v = vec4(view_pos, 1.0);
float z_range;
if (depth_z < directional_lights.data[i].shadow_split_offsets.x) {
pssm_coord = (directional_lights.data[i].shadow_matrix1 * v);
pssm_coord /= pssm_coord.w;
z_range = directional_lights.data[i].shadow_z_range.x;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.y) {
pssm_coord = (directional_lights.data[i].shadow_matrix2 * v);
pssm_coord /= pssm_coord.w;
z_range = directional_lights.data[i].shadow_z_range.y;
} else if (depth_z < directional_lights.data[i].shadow_split_offsets.z) {
pssm_coord = (directional_lights.data[i].shadow_matrix3 * v);
pssm_coord /= pssm_coord.w;
z_range = directional_lights.data[i].shadow_z_range.z;
} else {
pssm_coord = (directional_lights.data[i].shadow_matrix4 * v);
pssm_coord /= pssm_coord.w;
z_range = directional_lights.data[i].shadow_z_range.w;
}
float depth = texture(sampler2D(directional_shadow_atlas, linear_sampler), pssm_coord.xy).r;
float shadow = exp(min(0.0, (depth - pssm_coord.z)) * z_range * directional_lights.data[i].shadow_volumetric_fog_fade);
/*
//float shadow = textureProj(sampler2DShadow(directional_shadow_atlas,shadow_sampler),pssm_coord);
float shadow = 0.0;
for(float xi=-1;xi<=1;xi++) {
for(float yi=-1;yi<=1;yi++) {
vec2 ofs = vec2(xi,yi) * 1.5 * params.directional_shadow_pixel_size;
shadow += textureProj(sampler2DShadow(directional_shadow_atlas,shadow_sampler),pssm_coord + vec4(ofs,0.0,0.0));
}
}
shadow /= 3.0 * 3.0;
*/
shadow = mix(shadow, 1.0, smoothstep(directional_lights.data[i].fade_from, directional_lights.data[i].fade_to, view_pos.z)); //done with negative values for performance
shadow_attenuation = mix(shadow_color, vec3(1.0), shadow);
}
total_light += shadow_attenuation * directional_lights.data[i].color * directional_lights.data[i].energy / M_PI;
}
//compute lights from cluster
vec3 cluster_pos;
cluster_pos.xy = fog_unit_pos.xy;
cluster_pos.z = clamp((abs(view_pos.z) - params.z_near) / (params.z_far - params.z_near), 0.0, 1.0);
uvec4 cluster_cell = texture(usampler3D(cluster_texture, linear_sampler), cluster_pos);
uint omni_light_count = cluster_cell.x >> CLUSTER_COUNTER_SHIFT;
uint omni_light_pointer = cluster_cell.x & CLUSTER_POINTER_MASK;
for (uint i = 0; i < omni_light_count; i++) {
uint light_index = cluster_data.indices[omni_light_pointer + i];
vec3 light_pos = lights.data[i].position;
float d = distance(lights.data[i].position, view_pos) * lights.data[i].inv_radius;
vec3 shadow_attenuation = vec3(1.0);
if (d < 1.0) {
vec2 attenuation_energy = unpackHalf2x16(lights.data[i].attenuation_energy);
vec4 color_specular = unpackUnorm4x8(lights.data[i].color_specular);
float attenuation = pow(max(1.0 - d, 0.0), attenuation_energy.x);
vec3 light = attenuation_energy.y * color_specular.rgb / M_PI;
vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[i].shadow_color_enabled);
if (shadow_color_enabled.a > 0.5) {
//has shadow
vec4 v = vec4(view_pos, 1.0);
vec4 splane = (lights.data[i].shadow_matrix * v);
float shadow_len = length(splane.xyz); //need to remember shadow len from here
splane.xyz = normalize(splane.xyz);
vec4 clamp_rect = lights.data[i].atlas_rect;
if (splane.z >= 0.0) {
splane.z += 1.0;
clamp_rect.y += clamp_rect.w;
} else {
splane.z = 1.0 - splane.z;
}
splane.xy /= splane.z;
splane.xy = splane.xy * 0.5 + 0.5;
splane.z = shadow_len * lights.data[i].inv_radius;
splane.xy = clamp_rect.xy + splane.xy * clamp_rect.zw;
splane.w = 1.0; //needed? i think it should be 1 already
float depth = texture(sampler2D(shadow_atlas, linear_sampler), splane.xy).r;
float shadow = exp(min(0.0, (depth - splane.z)) / lights.data[i].inv_radius * lights.data[i].shadow_volumetric_fog_fade);
shadow_attenuation = mix(shadow_color_enabled.rgb, vec3(1.0), shadow);
}
total_light += light * attenuation * shadow_attenuation;
}
}
uint spot_light_count = cluster_cell.y >> CLUSTER_COUNTER_SHIFT;
uint spot_light_pointer = cluster_cell.y & CLUSTER_POINTER_MASK;
for (uint i = 0; i < spot_light_count; i++) {
uint light_index = cluster_data.indices[spot_light_pointer + i];
vec3 light_pos = lights.data[i].position;
vec3 light_rel_vec = lights.data[i].position - view_pos;
float d = length(light_rel_vec) * lights.data[i].inv_radius;
vec3 shadow_attenuation = vec3(1.0);
if (d < 1.0) {
vec2 attenuation_energy = unpackHalf2x16(lights.data[i].attenuation_energy);
vec4 color_specular = unpackUnorm4x8(lights.data[i].color_specular);
float attenuation = pow(max(1.0 - d, 0.0), attenuation_energy.x);
vec3 spot_dir = lights.data[i].direction;
vec2 spot_att_angle = unpackHalf2x16(lights.data[i].cone_attenuation_angle);
float scos = max(dot(-normalize(light_rel_vec), spot_dir), spot_att_angle.y);
float spot_rim = max(0.0001, (1.0 - scos) / (1.0 - spot_att_angle.y));
attenuation *= 1.0 - pow(spot_rim, spot_att_angle.x);
vec3 light = attenuation_energy.y * color_specular.rgb / M_PI;
vec4 shadow_color_enabled = unpackUnorm4x8(lights.data[i].shadow_color_enabled);
if (shadow_color_enabled.a > 0.5) {
//has shadow
vec4 v = vec4(view_pos, 1.0);
vec4 splane = (lights.data[i].shadow_matrix * v);
splane /= splane.w;
float depth = texture(sampler2D(shadow_atlas, linear_sampler), splane.xy).r;
float shadow = exp(min(0.0, (depth - splane.z)) / lights.data[i].inv_radius * lights.data[i].shadow_volumetric_fog_fade);
shadow_attenuation = mix(shadow_color_enabled.rgb, vec3(1.0), shadow);
}
total_light += light * attenuation * shadow_attenuation;
}
}
vec3 world_pos = mat3(params.cam_rotation) * view_pos;
for (uint i = 0; i < params.max_gi_probes; i++) {
vec3 position = (gi_probes.data[i].xform * vec4(world_pos, 1.0)).xyz;
//this causes corrupted pixels, i have no idea why..
if (all(bvec2(all(greaterThanEqual(position, vec3(0.0))), all(lessThan(position, gi_probes.data[i].bounds))))) {
position /= gi_probes.data[i].bounds;
vec4 light = vec4(0.0);
for (uint j = 0; j < gi_probes.data[i].mipmaps; j++) {
vec4 slight = textureLod(sampler3D(gi_probe_textures[i], linear_sampler_with_mipmaps), position, float(j));
float a = (1.0 - light.a);
light += a * slight;
}
light.rgb *= gi_probes.data[i].dynamic_range * params.gi_inject;
total_light += light.rgb;
}
}
//sdfgi
#ifdef ENABLE_SDFGI
{
float blend = -1.0;
vec3 ambient_total = vec3(0.0);
for (uint i = 0; i < sdfgi.max_cascades; i++) {
vec3 cascade_pos = (world_pos - sdfgi.cascades[i].position) * sdfgi.cascades[i].to_probe;
if (any(lessThan(cascade_pos, vec3(0.0))) || any(greaterThanEqual(cascade_pos, sdfgi.cascade_probe_size))) {
continue; //skip cascade
}
vec3 base_pos = floor(cascade_pos);
ivec3 probe_base_pos = ivec3(base_pos);
vec4 ambient_accum = vec4(0.0);
ivec3 tex_pos = ivec3(probe_base_pos.xy, int(i));
tex_pos.x += probe_base_pos.z * sdfgi.probe_axis_size;
for (uint j = 0; j < 8; j++) {
ivec3 offset = (ivec3(j) >> ivec3(0, 1, 2)) & ivec3(1, 1, 1);
ivec3 probe_posi = probe_base_pos;
probe_posi += offset;
// Compute weight
vec3 probe_pos = vec3(probe_posi);
vec3 probe_to_pos = cascade_pos - probe_pos;
vec3 trilinear = vec3(1.0) - abs(probe_to_pos);
float weight = trilinear.x * trilinear.y * trilinear.z;
// Compute lightprobe occlusion
if (sdfgi.use_occlusion) {
ivec3 occ_indexv = abs((sdfgi.cascades[i].probe_world_offset + probe_posi) & ivec3(1, 1, 1)) * ivec3(1, 2, 4);
vec4 occ_mask = mix(vec4(0.0), vec4(1.0), equal(ivec4(occ_indexv.x | occ_indexv.y), ivec4(0, 1, 2, 3)));
vec3 occ_pos = clamp(cascade_pos, probe_pos - sdfgi.occlusion_clamp, probe_pos + sdfgi.occlusion_clamp) * sdfgi.probe_to_uvw;
occ_pos.z += float(i);
if (occ_indexv.z != 0) { //z bit is on, means index is >=4, so make it switch to the other half of textures
occ_pos.x += 1.0;
}
occ_pos *= sdfgi.occlusion_renormalize;
float occlusion = dot(textureLod(sampler3D(sdfgi_occlusion_texture, linear_sampler), occ_pos, 0.0), occ_mask);
weight *= max(occlusion, 0.01);
}
// Compute ambient texture position
ivec3 uvw = tex_pos;
uvw.xy += offset.xy;
uvw.x += offset.z * sdfgi.probe_axis_size;
vec3 ambient = texelFetch(sampler2DArray(sdfgi_ambient_texture, linear_sampler), uvw, 0).rgb;
ambient_accum.rgb += ambient * weight;
ambient_accum.a += weight;
}
if (ambient_accum.a > 0) {
ambient_accum.rgb /= ambient_accum.a;
}
ambient_total = ambient_accum.rgb;
break;
}
total_light += ambient_total * params.gi_inject;
}
#endif
imageStore(density_map, pos, vec4(total_light, total_density));
#endif
#ifdef MODE_FOG
ivec3 pos = ivec3(gl_GlobalInvocationID.xy, 0);
if (any(greaterThanEqual(pos, params.fog_volume_size))) {
return; //do not compute
}
vec4 fog_accum = vec4(0.0);
float prev_z = 0.0;
float t = 1.0;
for (int i = 0; i < params.fog_volume_size.z; i++) {
//compute fog position
ivec3 fog_pos = pos + ivec3(0, 0, i);
//get fog value
vec4 fog = imageLoad(density_map, fog_pos);
//get depth at cell pos
float z = get_depth_at_pos(fog_cell_size.z, i);
//get distance from previos pos
float d = abs(prev_z - z);
//compute exinction based on beer's
float extinction = t * exp(-d * fog.a);
//compute alpha based on different of extinctions
float alpha = t - extinction;
//update extinction
t = extinction;
fog_accum += vec4(fog.rgb * alpha, alpha);
prev_z = z;
vec4 fog_value;
if (fog_accum.a > 0.0) {
fog_value = vec4(fog_accum.rgb / fog_accum.a, 1.0 - t);
} else {
fog_value = vec4(0.0);
}
imageStore(fog_map, fog_pos, fog_value);
}
#endif
#ifdef MODE_FILTER
ivec3 pos = ivec3(gl_GlobalInvocationID.xyz);
const float gauss[7] = float[](0.071303, 0.131514, 0.189879, 0.214607, 0.189879, 0.131514, 0.071303);
const ivec3 filter_dir[3] = ivec3[](ivec3(1, 0, 0), ivec3(0, 1, 0), ivec3(0, 0, 1));
ivec3 offset = filter_dir[params.filter_axis];
vec4 accum = vec4(0.0);
for (int i = -3; i <= 3; i++) {
accum += imageLoad(source_map, clamp(pos + offset * i, ivec3(0), params.fog_volume_size - ivec3(1))) * gauss[i + 3];
}
imageStore(dest_map, pos, accum);
#endif
}

View file

@ -565,6 +565,12 @@ public:
BIND5(environment_set_fog, RID, bool, const Color &, const Color &, float)
BIND7(environment_set_fog_depth, RID, bool, float, float, float, bool, float)
BIND5(environment_set_fog_height, RID, bool, float, float, float)
BIND9(environment_set_volumetric_fog, RID, bool, float, const Color &, float, float, float, float, EnvVolumetricFogShadowFilter)
BIND2(environment_set_volumetric_fog_volume_size, int, int)
BIND1(environment_set_volumetric_fog_filter_active, bool)
BIND1(environment_set_volumetric_fog_directional_shadow_shrink_size, int)
BIND1(environment_set_volumetric_fog_positional_shadow_shrink_size, int)
BIND11(environment_set_sdfgi, RID, bool, EnvironmentSDFGICascades, float, EnvironmentSDFGIYScale, bool, bool, bool, float, float, float)
BIND1(environment_set_sdfgi_ray_count, EnvironmentSDFGIRayCount)

View file

@ -482,6 +482,12 @@ public:
FUNC5(environment_set_fog, RID, bool, const Color &, const Color &, float)
FUNC7(environment_set_fog_depth, RID, bool, float, float, float, bool, float)
FUNC5(environment_set_fog_height, RID, bool, float, float, float)
FUNC9(environment_set_volumetric_fog, RID, bool, float, const Color &, float, float, float, float, EnvVolumetricFogShadowFilter)
FUNC2(environment_set_volumetric_fog_volume_size, int, int)
FUNC1(environment_set_volumetric_fog_filter_active, bool)
FUNC1(environment_set_volumetric_fog_directional_shadow_shrink_size, int)
FUNC1(environment_set_volumetric_fog_positional_shadow_shrink_size, int)
FUNC3R(Ref<Image>, environment_bake_panorama, RID, bool, const Size2i &)

View file

@ -2411,6 +2411,17 @@ RenderingServer::RenderingServer() {
ProjectSettings::get_singleton()->set_custom_property_info("rendering/sdfgi/probe_ray_count", PropertyInfo(Variant::INT, "rendering/sdfgi/probe_ray_count", PROPERTY_HINT_ENUM, "8 (Fastest),16,32,64,96,128 (Slowest)"));
GLOBAL_DEF("rendering/sdfgi/frames_to_converge", 1);
ProjectSettings::get_singleton()->set_custom_property_info("rendering/sdfgi/frames_to_converge", PropertyInfo(Variant::INT, "rendering/sdfgi/frames_to_converge", PROPERTY_HINT_ENUM, "5 (Less Latency but Lower Quality),10,15,20,25,30 (More Latency but Higher Quality)"));
GLOBAL_DEF("rendering/volumetric_fog/volume_size", 64);
ProjectSettings::get_singleton()->set_custom_property_info("rendering/volumetric_fog/volume_size", PropertyInfo(Variant::INT, "rendering/volumetric_fog/volume_size", PROPERTY_HINT_RANGE, "16,512,1"));
GLOBAL_DEF("rendering/volumetric_fog/volume_depth", 128);
ProjectSettings::get_singleton()->set_custom_property_info("rendering/volumetric_fog/volume_depth", PropertyInfo(Variant::INT, "rendering/volumetric_fog/volume_depth", PROPERTY_HINT_RANGE, "16,512,1"));
GLOBAL_DEF("rendering/volumetric_fog/use_filter", 0);
ProjectSettings::get_singleton()->set_custom_property_info("rendering/volumetric_fog/use_filter", PropertyInfo(Variant::INT, "rendering/volumetric_fog/use_filter", PROPERTY_HINT_ENUM, "No (Faster),Yes (Higher Quality)"));
GLOBAL_DEF("rendering/volumetric_fog/directional_shadow_shrink", 512);
ProjectSettings::get_singleton()->set_custom_property_info("rendering/volumetric_fog/directional_shadow_shrink", PropertyInfo(Variant::INT, "rendering/volumetric_fog/directional_shadow_shrink", PROPERTY_HINT_RANGE, "32,2048,1"));
GLOBAL_DEF("rendering/volumetric_fog/positional_shadow_shrink", 512);
ProjectSettings::get_singleton()->set_custom_property_info("rendering/volumetric_fog/positional_shadow_shrink", PropertyInfo(Variant::INT, "rendering/volumetric_fog/positional_shadow_shrink", PROPERTY_HINT_RANGE, "32,2048,1"));
}
RenderingServer::~RenderingServer() {

View file

@ -390,6 +390,7 @@ public:
LIGHT_PARAM_SHADOW_BIAS,
LIGHT_PARAM_SHADOW_PANCAKE_SIZE,
LIGHT_PARAM_SHADOW_BLUR,
LIGHT_PARAM_SHADOW_VOLUMETRIC_FOG_FADE,
LIGHT_PARAM_TRANSMITTANCE_BIAS,
LIGHT_PARAM_MAX
};
@ -865,6 +866,19 @@ public:
virtual void environment_set_fog_depth(RID p_env, bool p_enable, float p_depth_begin, float p_depth_end, float p_depth_curve, bool p_transmit, float p_transmit_curve) = 0;
virtual void environment_set_fog_height(RID p_env, bool p_enable, float p_min_height, float p_max_height, float p_height_curve) = 0;
enum EnvVolumetricFogShadowFilter {
ENV_VOLUMETRIC_FOG_SHADOW_FILTER_DISABLED,
ENV_VOLUMETRIC_FOG_SHADOW_FILTER_LOW,
ENV_VOLUMETRIC_FOG_SHADOW_FILTER_MEDIUM,
ENV_VOLUMETRIC_FOG_SHADOW_FILTER_HIGH,
};
virtual void environment_set_volumetric_fog(RID p_env, bool p_enable, float p_density, const Color &p_light, float p_light_energy, float p_lenght, float p_detail_spread, float p_gi_inject, EnvVolumetricFogShadowFilter p_shadow_filter) = 0;
virtual void environment_set_volumetric_fog_volume_size(int p_size, int p_depth) = 0;
virtual void environment_set_volumetric_fog_filter_active(bool p_enable) = 0;
virtual void environment_set_volumetric_fog_directional_shadow_shrink_size(int p_shrink_size) = 0;
virtual void environment_set_volumetric_fog_positional_shadow_shrink_size(int p_shrink_size) = 0;
virtual Ref<Image> environment_bake_panorama(RID p_env, bool p_bake_irradiance, const Size2i &p_size) = 0;
virtual void screen_space_roughness_limiter_set_active(bool p_enable, float p_amount, float p_limit) = 0;